Miguel Moreno University of Vienna FWF Meitner-Programm

Young Set Theory Workshop 2022

20 August, 2022

This is a joint work with Gabriel Fernandes and Assaf Rinot.

Generalised Baire space

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The generalised Baire space is the space κ^{κ} endowed with the bounded topology, for every $\eta \in \kappa^{<\kappa}$ the following set

$$N_{\eta} = \{ \xi \in \kappa^{\kappa} \mid \eta \subseteq \xi \}$$

is a basic open set.

The generalised Cantor space is the subspace 2^{κ} .

Reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

Definition

A function $f: X_0 \to X_1$ is said to be a reduction of R_0 to R_1 iff, for all $\eta, \xi \in X_0$,

$$\eta R_0 \xi \text{ iff } f(\eta) R_1 f(\xi).$$

The existence of a function f satisfying this is denoted by $R_0 \hookrightarrow R_1$.

GDST

0000

The existence of a continuous reduction f is denoted by $R_0 \hookrightarrow_{\mathcal{C}} R_1$. We say that R_0 is at most as complex as R_1 .

In the case $R_0 \hookrightarrow_{\mathcal{C}} R_1$ and $R_1 \nleftrightarrow_{\mathcal{C}} R_0$, we say that R_0 is less complex than R_0 .

In generalized descriptive set theory, the complexity of a theory can be study by studying the complexity of the isomorphism relation of the theory.

GDST

0000

In model theory, the complexity of a theory can be measure by the number of models of the theory.

Shelah's main gap theorem can be understood as: Classifiable theories are less complex than non-classifiable theories, in the model theory complexity.

Question. Are classifiable theories less complex than non-classifiable theories, in the generalised descriptive set theory complexity?

Stationary reflection

Let α be an ordinal of uncountable cofinality. A set $C \subseteq \alpha$ is a club if it is closed and unbounded. A set $S \subseteq \alpha$ is stationary if for all club $C \subset \alpha$, $C \cap S \neq \emptyset$.

Definition

Let $\alpha \in \kappa$ be an ordinal of uncountable cofinality, and a stationary $S \subseteq \kappa$, we say that S reflects at α if $S \cap \alpha$ is stationary in α

If κ is a weakly compact cardinal, every stationary subset of κ reflects at a regular cardinal $\alpha < \kappa$.

Definition

For every stationary set $S \subseteq \kappa$ and $\theta \in [2, \kappa]$, the equivalence relation $=^{\theta}_{S}$ over the subspace θ^{κ} is defined via

$$\eta = {}^{\theta}_{S} \xi$$
 iff $\{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\}$ is non-stationary.

Definition

The quasi-order \leq^S over κ^{κ} is defined via

$$\eta \leq^{S} \xi$$
 iff $\{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\}$ is non-stationary.

The quasi-order \subseteq^S over 2^{κ} is nothing but $\leq^S \cap (2^{\kappa} \times 2^{\kappa})$.

Progress

Let us denote by $=^{\theta}_{\lambda}$ the relation $=^{\theta}_{S}$ when $S = \{ \alpha < \kappa \mid cf(\alpha) = \lambda \}.$

Fact (Hyttinen-M)

The isomorphism relation of any classifiable theory is less complex than $=^{\kappa}_{\lambda}$ for all λ .

Under some cardinal arithmetic assumptions the following can be proved:

Fact (Friedman-Hyttinen-Kulikov)

Suppose T is a non-classifiable theory. There is a regular cardinal $\lambda < \kappa$ such that $= \frac{2}{\lambda}$ is at most as complex as the isomorphism relation of T

Question

Is
$$=^{\kappa}_{\lambda}$$
 Borel-reducible to $=^{2}_{\lambda}$, i.e. $=^{\kappa}_{\lambda} \hookrightarrow_{c} =^{2}_{\lambda}$, for all λ ?

Fact (Asperó-Hyttinen-Kulikov-M)

If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=_X^{\kappa} \hookrightarrow_c =_Y^{\kappa}$.

Fact (Friedman-Hyttinen-Kulikov)

Suppose V=L, and $X\subseteq \kappa$ and $Y\subseteq reg(\kappa)$ are stationary. If every stationary subset of X reflects at stationary many $\alpha\in Y$, then $=_X^2\hookrightarrow_c=_Y^2$.

Limitations

▶ For all regular cardinals $\gamma \leq \lambda < \kappa$, any $X \subseteq S_{\lambda}^{\kappa}$, X does not reflect at any $\alpha \in S_{\gamma}^{\kappa}$.

▶ If $\kappa = \lambda^+$ and \square_{λ} holds, then for all $X \subseteq \kappa$ there is a stationary $Y \subseteq X$ such that Y does not reflect at any $\alpha < \kappa$.

▶ Usual stationary reflection requires large cardinals.

Suppose S is stationary subset of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is non-stationary;

For any ordinal $\alpha < \kappa$ of uncountable cofinality, denote by $CUB(\alpha)$ the club filter of subsets of α . The sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S_{\omega_1}^{\kappa} \rangle$ define by $\mathcal{F}_{\alpha} = CUB(\alpha)$, capture clubs.

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that $X \not\in \mathcal{F}$ -reflects to S iff $\not\in \mathcal{F}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary

Definition

We say that X f-reflects to S iff there exists a sequence of filters $\vec{\mathcal{F}}$ over a stationary subset S' of S such that X $\vec{\mathcal{F}}$ -reflects to S'.

We refer as fake reflection to the case when $\mathcal{F}_{\alpha} \neq \text{CUB}(\alpha)$ for all α .

Definition

We say that X strongly $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y\subseteq X$, the set $\{\alpha\in S\mid Y\cap\alpha\in\mathcal{F}_\alpha\}$ is stationary.

Definition

We say that $X \not F$ -reflects with \diamondsuit to S iff $\not F$ captures clubs and there exists a sequence $\langle Y_\alpha \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y_\alpha = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_\alpha^+\}$ is stationary.

We apply the same convention for X strongly \mathfrak{f} -reflects to S and X \mathfrak{f} -reflects with \diamondsuit to S

Properties

Fact (Monotonicity)

For stationary sets $Y \subseteq X \subseteq \kappa$ and $S \subseteq T \subseteq \kappa$. If X \mathfrak{f} -reflects to S, then Y \mathfrak{f} -reflects to T;

Fact

Suppose X strongly \mathfrak{f} -reflects to S. If \Diamond_X holds, then so does \Diamond_S .

Fact

Suppose V = L, then for all stationary sets $X, S \subseteq \kappa$, X \mathfrak{f} -reflects to S.

Over the limits

- ▶ Usual stationary reflection is a special case of filter reflection.
- For all regular cardinals $\gamma \leq \lambda < \kappa$, any $X \subseteq S_{\lambda}^{\kappa}$, X does not reflect at any $\alpha \in S_{\gamma}^{\kappa}$. S_{λ}^{κ} f-reflects to S_{γ}^{κ} is consistently true.
- ▶ If $\kappa = \lambda^+$ and \square_{λ} holds, then for all $X \subseteq \kappa$ there is a stationary $Y \subseteq X$ such that Y does not reflect at any $\alpha < \kappa$. Fake reflection is consistent with \square_{λ} .
- ► Fake reflection does not require large cardinals.

Killing Filter Reflection

Theorem

There exists a cofinality-preserving forcing extension in which, for all stationary subsets X, S of κ , X does not \mathfrak{f} -reflect to S

Force a coherent regressive *C*-sequence, then force with $Add(\kappa, \kappa^+)$.

Forcing Filter Reflection

Theorem

For all stationary subsets X and S of κ , there exists a $<\kappa$ -closed κ^+ -cc forcing extension, in which X \mathfrak{f} -reflects to S.

Force with Sakai's forcing

Stationary Reflection

Theorem

If κ is strongly inaccessible, then in the forcing extension by $Add(\kappa, \kappa^+)$, for all two disjoint stationary subsets X, S of κ , the following are equivalent:

- 1. *X* f-reflects to *S*;
- 2. every stationary subset of X reflects in S.

 $Add(\omega,\kappa)$

Theorem

Suppose X f-reflects to S holds. Then Add(ω, κ) forces that X f-reflects to S.

Preserving Filter Reflection

Definition

Let $\kappa=\lambda^+$. A notion of forcing $\mathbb Q$ satisfies κ -stationary-cc if for every sequence $\langle q_\delta \mid \delta < \kappa \rangle$ of conditions in $\mathbb Q$ there is a club $D\subseteq \kappa$ and a regressive map $h:D\cap E^\kappa_{\mathrm{cof}(\lambda)}\to \kappa$ such that for all $\gamma,\delta\in dom(h)$, if $h(\gamma)=h(\delta)$ then q_γ and q_δ are comparable.

Definition

We say that a sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in \mathcal{S} \rangle$ is θ -complete if the set $\{\alpha \in \mathcal{S} \mid \mathcal{F}_{\alpha} \text{ is not } \theta\text{-complete}\}$ is non-stationary.

Preserving Filter Reflection

Theorem

Suppose $\vec{\mathcal{F}} = \langle \mathcal{F}_\alpha \mid \alpha \in S \rangle$ is a θ -complete sequence. Suppose $\mathbb P$ is a forcing notion with θ -cc and κ -stationary-cc, and $X \subseteq \kappa$ is a stationary set such that X $\vec{\mathcal{F}}$ -reflects to S. Then $\mathbb P$ forces that X $\vec{\mathcal{F}}$ -reflects to S.

Definition

Let \mathcal{F} be a filter over α . For every $\theta \in [2, \kappa]$, the equivalence modulo \mathcal{F} , $\sim_{\mathcal{F}}^{\theta}$, over θ^{α} , is defined via

$$(\eta, \xi) \in \sim_{\mathcal{F}}^{\theta} \text{ iff } \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\} \in \mathcal{F}$$

Definition

For every $\theta, \gamma \in [2, \kappa]$, $F : \theta^{\kappa} \to \gamma^{\kappa}$, and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in \mathcal{S} \rangle$ a sequence of filters. We say that F captures $\vec{\mathcal{F}}$ if for all $\alpha \in \mathcal{S}$ and $\eta, \xi \in \theta^{\kappa}$

$$\eta \upharpoonright \alpha \sim_{\mathcal{F}_{\alpha}}^{\theta} \xi \upharpoonright \alpha \text{ iff } F(\eta)(\alpha) = F(\xi)(\alpha).$$

Theorem

Let $X, S \subseteq \kappa$ be stationary sets. The following are equivalent:

- 1. X f-reflects to S.
- 2. There is $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in \mathcal{S} \rangle$ and $F : 2^{\kappa} \to \kappa^{\kappa}$ a reduction from $=_X^2$ to $=_S^{\kappa}$ that captures $\vec{\mathcal{F}}$.

Theorem

Let $X, S \subseteq \kappa$ be stationary sets. The following are equivalent.

- 1. X strongly f-reflects to S.
- 2. There is a reduction $F: 2^{\kappa} \to 2^{\kappa}$ from $=_X^2$ to $=_S^2$ such that for all $\alpha \in S$ the set

$$\{\eta \upharpoonright_{\alpha}^{-1} [\gamma] \mid \eta \in 2^{\kappa} \& F(\eta)(\alpha) = \gamma\}$$

is a filter.

Lemma

If X strongly f-reflects to S, then for all $\theta \in [2, \kappa]$, $=_X^{\theta} \hookrightarrow_c =_S^{\theta}$.

Theorem

Let $X, S \subseteq \kappa$ be stationary sets. If X \mathfrak{f} -reflects with \diamondsuit to S, then

$$\leq^X \hookrightarrow_c \subseteq^S$$
.

Theorem

Let $\kappa = \lambda^+$. If $cof(\omega)$ f-reflects with \diamondsuit to $cof(\omega)$ and $cof(\lambda)$ f-reflects with \diamondsuit to $cof(\lambda)$, then the isomorphism relation of any classifiable theory is continuous reducible to the isomorphism relation of any non-classifiable theory.

Theorem

Let $\kappa = \lambda^+$ and $X \subseteq \kappa$ a stationary set such that $X \cap cof(\lambda) = \emptyset$. If X strongly \mathfrak{f} -reflects to $cof(\lambda)$, then the isomorphism relation of any classifiable theory is continuous reducible to the isomorphism relation of any non-classifiable theory.

Martin Maximum

Theorem

Suppose Martin's Maximum holds, $\kappa > \omega_2$, $X \subseteq cof(\omega)$ a stationary set and $S \subseteq cof(\omega_1)$. If \Diamond_X holds, then X reflects with \Diamond to S.

MM implies that for $\kappa=\lambda^+$, λ a singular strong limit of uncountable cofinality, it holds

$$=^{\kappa}_{\omega} \hookrightarrow_{c} =^{2}_{\omega_{1}}.$$

Is the following consistently true? For all $S \subseteq \kappa$ stationary,

$$=^{\kappa}_{S} \not\hookrightarrow_{c} =^{2}_{S}.$$

Reductions 00000000

Thank you

YSTW 2022