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Geometry

▶ Independence of Euclid’s fifth postulate, the parallel postulate.

▶ Khayyám (1077) and Saccheri (1733) considered the three
different cases of the Khayyám-Saccheri quadrilateral (right,
obtuse, and acute).

▶ Euclidean geometry, Elliptic geometry, Hyperbolic geometry.
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The spectrum fuction

Let T be a countable theory over a countable language. Let
I(T , α) denote the number of non-isomorphic models of T with
cardinality α.

What is the behavior of I(T , α)?
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Categoricity

▶ 1904: Veble introduced categorical theories.

▶ 1915 - 1920: Löwenheim-Skolem Theorem.

▶ 1929: Gödel’s completeness theorem.

▶ 1954:  Loś and Vaught introduced κ-categorical theories.

▶ 1965: Morley’s categoricity theorem.
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Morley’s conjecture

1960’s: Let T be a first-order countable theory over a countable
language. For all ℵ0 < λ < κ,

I(T , λ) ≤ I(T , κ).

1990: Shelah proved Morley’s conjecture.
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Shelah’s Main Gap Theorem

Theorem (Shelah 1990)
Either, for every uncountable cardinal α, I(T , α) = 2α; or ∀α > 0,
I(T , ℵα) < ℶω1(| α |).

If T is classifiable and T ′ is not, then T is less complex than T ′

and their complexity are not close.
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Descriptive Set Theory

▶ 1989: Friedman and Stanley introduced the Borel reducibility
between classes of countable structures.

▶ 1993: Mekler-Väänänen κ-separation theorem.

▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a
systematic comparison between the Main Gap dividing lines
and the complexity given by Borel reducibility.
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The bounded topology

Let κ be an uncountable cardinal that satisfies κ<κ = κ.

We equip the set κκ with the bounded topology. For every
ζ ∈ κ<κ, the set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set.
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The Generalised Baire spaces

The generalised Baire space is the space κκ endowed with the
bounded topology.

The generalised Cantor space is the subspace 2κ.
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Coding structures

Let ω ≤ µ ≤ κ be a cardinal. Fix a relational language
L = {Pn|n < ω} and a bijection πµ between µ<ω and µ.

Definition
For every η ∈ κκ define the structure Aη↾µ with domain µ as
follows: For every tuple (a1, a2, . . . , an) in µn

(a1, a2, . . . , an) ∈ PAη↾µ
m ⇔ η(πµ(m, a1, a2, . . . , an)) > 0.
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The isomorphism relation

Definition
Let ω ≤ µ ≤ κ be a cardinal and T a first-order theory in a
relational countable language, we say that f , g ∈ κκ are ∼=µ

T
equivalent if one of the following holds:
▶ Aη↾µ |= T , Aξ↾µ |= T , Aη↾µ

∼= Aξ↾µ

▶ Aη↾µ ̸|= T , Aξ↾µ ̸|= T
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Reductions

Let E1 and E2 be equivalence relations on κκ. We say that E1 is
reducible to E2, if there is a function f : κκ → κκ that satisfies
(x , y) ∈ E1 ⇔ (f (x), f (y)) ∈ E2. We write E1 ↪→r E2.

We can define a partial order on the set of all first-order complete
countable theories

T ≤κ T ′ iff ∼=T ↪→C ∼=T ′
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Non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory
that satisfies one of the following:
▶ T is unstable;
▶ T is stable unsuperstable;
▶ T is superstable with DOP; %pause
▶ T is superstable with OTOP.
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Classifiable theories

Classifiable are divided into:
▶ shallow,

I(T , ℵα) < ℶω1(| α |);
▶ non-shallow,

I(T , α) = 2α.
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First dividing lines

Fact (Friedman-Hyttinen-Kulikov 2014)

1. Let κ<κ = κ > 2ω. If T is classifiable and shallow, then ∼=T is
κ-Borel.

2. If T is classifiable non-shallow, then ∼=T is ∆1
1(κ) not κ-Borel.

3. If T is unstable or stable with the OTOP or superstable with
the DOP and κ > ω1, then ∼=T is not ∆1

1(κ).
4. If T is stable unsuperstable, then ∼=T is not κ-Borel.
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Question

Question: What can we say about the Borel-reducibility between
different dividing lines?
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Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)
Let κ be such that κ > 2ω. If T is classifiable and shallow with
depth α, then rkB(∼=T ) ≤ 4α.

Theorem (Mangraviti - Motto Ros 2020)
Let κ = ℵγ be such that κ<κ = κ and ℶω1(|γ|) ≤ κ. Let T , T ′ be
countable complete first-order theories, and suppose T is
classifiable and shallow, while T ′ is not. Then

∼=T ↪→B ∼=T ′
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General reduction

Fact (Mangraviti-Motto Ros)
Let E1 be a Borel equivalence relation with γ ≤ κ equivalence
classes and E2 be an equivalence relation with θ equivalence
classes. If γ ≤ θ, then E1 ↪→B E2.
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1ϱ relation

Let 0 < ϱ ≤ κ. η 1ϱ ξ if and only if one of the following holds:
▶ ϱ is finite:

▶ η(0) = ξ(0) < ϱ − 1;
▶ η(0), ξ(0) ≥ ϱ − 1.

▶ ϱ is infinite:
▶ η(0) = ξ(0) < ϱ;
▶ η(0), ξ(0) ≥ ϱ.
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Few equivalence classes

Lemma (M. 2023)
Suppose κ > 2ω and T is a countable first-order theory in a
countable vocabulary (not necessarily complete) such that ∼=T has
ϱ ≤ κ equivalence classes. Then

∼=T ↪→B 1ϱ and 1ϱ ↪→L ∼=T .

Even more, if T is not categorical then ∼=T ̸↪→C 1ϱ.
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Proof

▶ ∼=T ↪→B 1ϱ follows from Mangraviti-Motto Ros.
▶ η ↾ 1 determines the equivalence class of η. So 1ϱ ↪→L ∼=T .
▶ 1ϱ is open, so ∼=T ↪→C 1ϱ implies ∼=T is open.
▶ ∼=T is open iff T is categorical (Mangraviti-Motto Ros), so if

T is not categorical then ∼=T ̸↪→C 1ϱ.
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Gap: Shallow and Non-shallow

Theorem (M. 2023)
Suppose ℵµ = κ = λ+ = 2λ is such that ℶω1(| µ |) ≤ κ. Let T1 be
a countable complete classifiable shallow theory with ϱ = I(κ, T1),
T2 be a countable complete theory not classifiable shallow. If T is
classifiable shallow such that 1 < I(κ, T ) < I(κ, T1), then

∼=T ↪→B 1ϱ ↪→L ∼=T1 ↪→B 1κ ↪→L ∼=T2 .

In particular

∼=T2 ̸↪→r 1κ ̸↪→r ∼=T1 ̸↪→C 1ϱ ̸↪→r ∼=T .
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Consistency

Theorem (Hyttinen - Kulikov - M. 2017)
Suppose κ = λ+, 2λ > 2ω, and λ<λ = λ. There is a κ-closed
κ+-cc forcing which forces: If T is classifiable and T ′ is
non-classifiable, then T ≤κ T ′ and T ′ ̸≤κ T.
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Unsuperstable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Suppose κ = λ+, 2λ > 2ω, and λω = λ. If T is classifiable and T ′

is stable unsuperstable, then T ≤κ T ′ and T ′ ̸≤κ T.

Theorem (M. 2022)
Suppose κ = λ+ = 2λ and λω = λ. If T is a classifiable theory,
and T ′ is an unsuperstable theory, then T ≤κ T ′ and T ′ ̸≤κ T.
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Equivalence modulo γ cofinality

Definition
We define the equivalence relation =2

γ ⊆ 2κ × 2κ, as follows: let
S = {α < κ | cf (α) = γ},

η =2
γ ξ ⇐⇒ {α < κ | η(α) ̸= ξ(α)} ∩ S is non-stationary.
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Borel-reducibility Main Gap

Theorem (M. 2023)
Let c = 2ω. Suppose κ = λ+ = 2λ and 2c ≤ λ = λω1 . If T is a
classifiable theory, and T ′ is a non-classifiable theory, then there is
γ < κ such that

∼=T ↪→C =2
γ ↪→C ∼=T ′ and =2

γ ̸↪→B ∼=T .

In particular
T ≤κ T ′ and T ′ ̸≤κ T .
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Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Assume T is a classifiable theory. If ♢S holds, then ∼=T ↪→C =2

γ .
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The reductions

Theorem (M. 2023)
Let κ be inaccessible or κ = λ+ = 2λ. Suppose T is a
non-classifiable theory.

1. If T is stable unsuperstable, then let θ = γ = ω.
2. If T is unstable, or superstable with OTOP, then let θ = ω

and ω ≤ γ < κ.
3. If T is superstable with DOP, then let θ = 2ω = c and

ω1 ≤ γ < κ.
If θ, γ, and κ satisfy that ∀α < κ, αγ < κ, and (2θ)+ ≤ κ, then

=2
γ ↪→C ∼=T .
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Ordered trees

Definition
Let γ < κ be a regular cardinal and I a linear order. (A, ≺, <) is
an ordered tree if the following holds:
▶ (A, ≺) is a κ+, (γ + 2)-tree∗.
▶ for all x ∈ A, (succ(x), <) is isomorphic to I.
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Isomorphism of trees

Theorem (M. 2023)
Suppose γ < κ is such that for all ϵ < κ, ϵγ < κ, and there is a
κ-colorable linear order I. For all f ∈ 2κ there is an ordered tree Af
such that for all f , g ∈ 2κ,

f =2
γ g ⇔ Af ∼= Ag .
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The models

Lemma (M. 2023)
Suppose T is unstable or superstable with DOP or OTOP in a
countable relational vocabulary τ . If A is an ordered tree with
(succ(x), <) is ω1-dense, then there is an Ehrenfeucht-Mostowski
model, M(A), with the skeleton indiscernible in M(A) relative to
L∞ω1 .
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The isomorphism theorem

Theorem (M. 2023)
Suppose T is unstable or superstable with DOP or OTOP in a
countable relational vocabulary τ . If there is a ω1-dense,
(κ, bs, bs, ω1)-nice, (< κ, bs)-stable, and κ-colorable linear order,
then for all f , g ∈ 2κ,

f =2
γ g iff M(Af ) ∼= M(Ag ).
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ε-dense

Definition
Let I be a linear order of size κ and ε a regular cardinal smaller
than κ. We say that I is ε-dense if the following holds.

If A, B ⊆ I are subsets of size less than ε such that for all a ∈ A
and b ∈ B, a < b, then there is c ∈ I, such that for all a ∈ A and
b ∈ B, a < c < b.
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κ-representation

Definition
Let A be an arbitrary set of size κ. The sequence
A = ⟨Aα | α < κ⟩ is a κ-representation of A, if ⟨Aα | α < κ⟩ is an
increasing continuous sequence of subsets of A, for all α < κ,
|Aα| < κ, and

⋃
α<κ Aα = A.
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(κ, bs, bs, ε)-nice

Definition
Let ε < κ be a regular cardinal, A be a linear order of size κ and
⟨Aα | α < κ⟩ a κ-representation. Then A is (κ, bs, bs, ε)-nice if
there is a club C ⊆ κ, such that for all limit δ ∈ C with cf (δ) ≥ ε,
for all x ∈ A there is β < δ such that one of the following holds:
▶ ∀σ ∈ Aδ[σ ≥ x ⇒ ∃σ′ ∈ Aβ (σ ≥ σ′ ≥ x)]
▶ ∀σ ∈ Aδ[σ ≤ x ⇒ ∃σ′ ∈ Aβ (σ ≤ σ′ ≤ x)]
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(< κ, bs)-stable

Definition
A linear order I is (< κ, bs)-stable if for every B ⊆ I of size smaller
than κ,

κ > |{tpbs(a, B, I) | a ∈ I}|.
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κ-colorable

Definition
Let I be a linear order of size κ. We say that I is κ-colorable if
there is a function F : I → κ such that for all B ⊆ I, |B| < κ,
b ∈ I\B, and p = tpbs(b, B, I) such that the following hold: For all
α ∈ κ,

|{a ∈ I | a |= p & F (a) = α}| = κ.
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Existence

Let θ < κ be the smallest cardinal such that there is a ε-dense
model of DLO of size θ.

Theorem (M. 2023)
Suppose κ is inaccessible, or κ = λ+, 2θ ≤ λ = λ<ε. There is a
ε-dense, (κ, bs, bs, ε)-nice, (< κ, bs)-stable, and κ-colorable linear
order.
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Construction

Let Q be a model of DLO of size θ < κ, that is ε-dense.

Definition
Let κ × Q be ordered by the lexicographic order, I0 be the set of
functions f : ε → κ × Q such that f (α) = (f1(α), f2(α)), for which
|{α ∈ ε | f1(α) ̸= 0}| is smaller than ε.
If f , g ∈ I0, then f < g if and only if f (α) < g(α), where α is the
least number such that f (α) ̸= g(α).
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Construction

Let us fix τ ∈ Q. Let I be the set of functions
f : ε → ({0} × I0) ∪ (κ × Q) such that the following hold:
▶ f ↾ {0} : {0} → {0} × I0;
▶ f ↾ ε\{0} : ε\{0} → κ × Q;
▶ there is α < ε ordinal such that ∀β > α, f (β) = (0, τ). We

say that the least α with such property is the depth of f and
we denote it by dp(f );

▶ there are functions f1 : ε → κ and f2 : ε → I0 ∪ Q such that
f (β) = (f1(β), f2(β)) and f1 ↾ dp(f ) + 1 is strictly increasing.
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Construction

We say that f < g if and only if one of the following holds:
▶ f (0) ̸= g(0) and f2(0) < g2(0);
▶ let α = dp(g), ∀β ≤ α, f (β) = g(β) and f1(α + 1) ̸= 0;
▶ exists α > 0 such that ∀β < α, f (β) = g(β), and

f1(α), g1(α) ̸= 0 and g(α) > f (α).
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Generators

Definition
For all f ∈ I with depth α, define the generator of f , Gen(f ), by

Gen(f ) = {g ∈ I | f ↾ α + 1 = g ↾ α + 1}.
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Generators

▶ If f ̸= g and g ∈ Gen(f ), then f > g .
▶ Let f ∈ Gen(ν). If g /∈ Gen(ν), then g < ν if and only if

g < f .
▶ If f ∈ Gen(ν)

f |= tpbs(ν, I\Gen(ν), I) ∪ {ν > x}.

▶ Let f ∈ Gen(ν). If σ ∈ I is such that ν ≥ σ ≥ f , then
σ ∈ Gen(ν).
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Iterations

For all f ∈ I with depth α, define o(f ) = f1(α) the complexity of f .

Suppose i is such that I i is defined. Let

I i+1 = {f ∈ I | o(f ) ≤ i + 1}.

Suppose i is a limit ordinal such that for all j < i , I j is defined, let

I i =
⋃
j<i

I j .

Miguel Moreno (UV) GDST23
A Borel-reducibility Main Gap 44 of 58



History GDST Dividing lines Classifiable theories Non-classifiable theories The order The Gap References

κ-representation

Define ⟨I0
α | α < κ⟩ by

I0
α = {ν ∈ I0 | ν1(n) < α for all n < ε}.

Suppose i < κ is such that ⟨I i
α | α < κ⟩ has been defined. For all

α < κ let

I i+1
α = {f ∈ I | o(f ) ≤ i + 1 & f2(0) ∈ I0

α},

for i < κ is a limit ordinal so

I i
α = ∪j<i I j

α.
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κ-representation

Let us define the κ-representation ⟨Iα | α < κ⟩ by

Iα = Iα
α .

Let ν ∈ I i
δ. For all f ∈ Gen(ν), f ∈ Io(f )

δ .
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Roads

Definition
For all ν ∈ I with dp(ν) = α, there is a maximal sequence
⟨νi | i ≤ α⟩ such that ν0 ∈ I0, να = ν, and for all i < j ,
νi ∈ Gen(νi ).
We call this sequence the road from I0 to ν.

Fact
Let ⟨νj | j ≤ α⟩ be the road from I0 to να. For all i < α

να |= tpbs(νi , Io(νi+1)\Gen(νi+1), I) ∪ {νi > x}
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∼=T ↪→C =2
µ, κ = λ+

Theory λ = λγ ♢λ Dl∗Sκ
γ

(Π1
1)

Classifiable ω ≤ µ ≤
γ

µ = λ µ = γ

Non-
classifiable

Indep Indep µ = γ
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=2
µ ↪→C ∼=T , κ = λ+

Theory λ = λγ 2c ≤ λ =
λγ

2c ≤ λ =
λ<λ

& ♢λ

Stable
Unsuper-

stable

µ = ω µ = ω µ = ω

Unstable ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with

OTOP

ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with DOP

? ω1 ≤ µ ≤
γ

ω1 ≤ µ ≤
λ
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A bigger Gap

Theorem (M. 2023)
Suppose κ is inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λω1 .
There exists a cofinality-preserving forcing extension in which the
following holds:
If T1 is classifiable and T2 is not. Then there is a regular cardinal
γ < κ such that, if X , Y ⊆ Sκ

γ are stationary and disjoint, then
=2

X and =2
Y are strictly in between ∼=T1 and ∼=T2 .
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Main Gap Dichotomy

Theorem (M. 2023)
Let κ be inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 . There
exists a < κ-closed κ+-cc forcing extension in which for any
countable first-order theory in a countable vocabulary (not
necessarily complete), T , one of the following holds:
▶ ∼=T is ∆1

1(κ);
▶ ∼=T is Σ1

1(κ)-complete.
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Non-classifiable theories

Lemma (M. 2023)
Let κ be strongly inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 .
For all cardinals ℵ0 < µ < δ < κ, if T is a non-classifiable theory
then

∼=µ
T ↪→C ∼=δ

T ↪→C id ↪→C ∼=T .
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Classifiable non-shallow

Lemma (M. 2023)
Suppose κ = λ+ = 2λ. The following reduction is strict. Let
2c ≤ λ = λ<ω1 . If T1 is a classifiable non-shallow theory and T2 is
a non-classifiable theory, then

∼=λ
T2 ↪→C ∼=T1 ↪→C ∼=T2 .
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Classifiable shallow

Lemma (M. 2023)
Suppose κ = λ+ = 2λ. The following reductions are strict.
Let κ = ℵγ be such that ℶω1(| γ |) ≤ κ. Suppose T1 is a
classifiable shallow theory, T2 a classifiable non-shallow theory, and
T3 non-classifiable theory. Then

∼=T1 ↪→B ∼=λ
T3 ↪→C ∼=T2 .
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Thank you

Article at: https://arxiv.org/abs/2308.07510
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