Image: A math a math

A Borel-reducibility Main Gap

Miguel Moreno University of Vienna FWF Meitner-Programm

Generalized Descriptive Set Theory 23 Lausanne

29 September, 2023

Independence of Euclid's fifth postulate, the parallel postulate.

Khayyám (1077) and Saccheri (1733) considered the three different cases of the Khayyám-Saccheri quadrilateral (right, obtuse, and acute).

Euclidean geometry, Elliptic geometry, Hyperbolic geometry.

The spectrum fuction

Let T be a countable theory over a countable language. Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

Categoricity

- 1904: Veble introduced categorical theories.
- 1915 1920: Löwenheim-Skolem Theorem.
- ▶ **1929:** Gödel's completeness theorem.
- ▶ **1954:** Łoś and Vaught introduced κ -categorical theories.
- ▶ **1965:** Morley's categoricity theorem.

Morley's conjecture

1960's: Let T be a first-order countable theory over a countable language. For all $\aleph_0 < \lambda < \kappa$,

 $I(T,\lambda) \leq I(T,\kappa).$

1990: Shelah proved Morley's conjecture.

(a)

Shelah's Main Gap Theorem

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T, \alpha) = 2^{\alpha}$; or $\forall \alpha > 0$, $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$.

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Descriptive Set Theory

▶ **1989:** Friedman and Stanley introduced the Borel reducibility between classes of countable structures.

1993: Mekler-Väänänen *κ*-separation theorem.

2014: Friedman-Hyttinen-Kulikov developed GDST and a systematic comparison between the Main Gap dividing lines and the complexity given by Borel reducibility.

The bounded topology

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

Miguel Moreno (UV)

A Borel-reducibility Main Gap

The Generalised Baire spaces

Miguel Morer

A Borel-reduc

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

The generalised Cantor space is the subspace 2^{κ} .

no (UV)	GDST23
cibility Main Gap	9 of 58

Coding structures

Let $\omega \leq \mu \leq \kappa$ be a cardinal. Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$ and a bijection π_{μ} between $\mu^{<\omega}$ and μ .

Definition

For every $\eta \in \kappa^{\kappa}$ define the structure $\mathcal{A}_{\eta \restriction \mu}$ with domain μ as follows: For every tuple (a_1, a_2, \ldots, a_n) in μ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta} \restriction \mu} \Leftrightarrow \eta(\pi_\mu(m, a_1, a_2, \ldots, a_n)) > 0.$$

The isomorphism relation

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $f, g \in \kappa^{\kappa}$ are \cong^{μ}_{T} equivalent if one of the following holds:

$$\begin{array}{l} \blacktriangleright \quad \mathcal{A}_{\eta \restriction \mu} \models \mathcal{T}, \mathcal{A}_{\xi \restriction \mu} \models \mathcal{T}, \mathcal{A}_{\eta \restriction \mu} \cong \mathcal{A}_{\xi \restriction \mu} \\ \blacktriangleright \quad \mathcal{A}_{\eta \restriction \mu} \nvDash \mathcal{T}, \mathcal{A}_{\xi \restriction \mu} \nvDash \mathcal{T} \end{array}$$

Reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *reducible* to E_2 , if there is a function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T'$$
 iff $\cong_T \hookrightarrow_C \cong_{T'}$

Non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;
- ► *T* is superstable with DOP; %pause
- ► *T* is superstable with OTOP.

Classifiable theories

Classifiable are divided into:

shallow,

$$I(T, \aleph_{\alpha}) < \beth_{\omega_1}(\mid \alpha \mid);$$

non-shallow,

 $I(T,\alpha)=2^{\alpha}.$

Miguel Moreno (UV)	GDST23
A Borel-reducibility Main Gap	14 of 58

イロン イロン イヨン イヨン

э.

First dividing lines

Fact (Friedman-Hyttinen-Kulikov 2014)

- 1. Let $\kappa^{<\kappa} = \kappa > 2^{\omega}$. If T is classifiable and shallow, then \cong_T is κ -Borel.
- 2. If T is classifiable non-shallow, then \cong_T is $\Delta_1^1(\kappa)$ not κ -Borel.
- 3. If T is unstable or stable with the OTOP or superstable with the DOP and $\kappa > \omega_1$, then \cong_T is not $\Delta_1^1(\kappa)$.
- 4. If T is stable unsuperstable, then \cong_T is not κ -Borel.

Question

Question: What can we say about the Borel-reducibility between different dividing lines?

イロン イロン イヨン イヨン

≣ ∽ ९ ९ GDST23 16 of 58

Miguel Moreno (UV)	
A Borel-reducibility Main Gap	

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)

Let κ be such that $\kappa > 2^{\omega}$. If T is classifiable and shallow with depth α , then $\mathsf{rk}_B(\cong_T) \leq 4\alpha$.

Theorem (Mangraviti - Motto Ros 2020)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \le \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T \hookrightarrow_B \cong_{T'}$$

General reduction

Fact (Mangraviti-Motto Ros)

Let E_1 be a Borel equivalence relation with $\gamma \leq \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma \leq \theta$, then $E_1 \hookrightarrow_B E_2$.

$\mathbf{1}_{\varrho}$ relation

Let $0 < \varrho \le \kappa$. $\eta \ 1_{\varrho} \xi$ if and only if one of the following holds: • ϱ is finite: • $\eta(0) = \xi(0) < \varrho - 1;$ • $\eta(0), \xi(0) \ge \varrho - 1.$ • ϱ is infinite: • $\eta(0) = \xi(0) < \varrho;$ • $\eta(0), \xi(0) \ge \varrho.$

Few equivalence classes

Lemma (M. 2023)

Suppose $\kappa > 2^{\omega}$ and T is a countable first-order theory in a countable vocabulary (not necessarily complete) such that \cong_T has $\varrho \leq \kappa$ equivalence classes. Then

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} 1_{\varrho} \text{ and } 1_{\varrho} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}} .$$

Even more, if T is not categorical then $\cong_T \not\hookrightarrow_C 1_{\varrho}$.

Proof

- $\blacktriangleright \cong_T \hookrightarrow_B 1_{\varrho}$ follows from Mangraviti-Motto Ros.
- ▶ $\eta \upharpoonright 1$ determines the equivalence class of η . So $1_{\varrho} \hookrightarrow_L \cong_T$.
- ▶ 1_{ϱ} is open, so $\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{C}} 1_{\varrho}$ implies $\cong_{\mathcal{T}}$ is open.
- ▶ $\cong_{\mathcal{T}}$ is open iff \mathcal{T} is categorical (Mangraviti-Motto Ros), so if \mathcal{T} is not categorical then $\cong_{\mathcal{T}} \nleftrightarrow_{\mathcal{C}} 1_{\varrho}$.

Gap: Shallow and Non-shallow

Theorem (M. 2023)

Suppose $\aleph_{\mu} = \kappa = \lambda^{+} = 2^{\lambda}$ is such that $\beth_{\omega_{1}}(|\mu|) \leq \kappa$. Let T_{1} be a countable complete classifiable shallow theory with $\varrho = I(\kappa, T_{1})$, T_{2} be a countable complete theory not classifiable shallow. If T is classifiable shallow such that $1 < I(\kappa, T) < I(\kappa, T_{1})$, then

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} \mathbf{1}_{\varrho} \, \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_1} \hookrightarrow_{\mathcal{B}} \mathbf{1}_{\kappa} \, \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_2}.$$

In particular

$$\cong_{T_2} \not\hookrightarrow_r \ 1_{\kappa} \not\hookrightarrow_r \cong_{T_1} \not\hookrightarrow_C \ 1_{\varrho} \not\hookrightarrow_r \cong_T.$$

< ロ > < 同 > < 三 > < 三 >

Consistency

Theorem (Hyttinen - Kulikov - M. 2017)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. There is a κ -closed κ^+ -cc forcing which forces: If T is classifiable and T' is non-classifiable, then $T \leq^{\kappa} T'$ and $T' \nleq^{\kappa} T$.

イロト イポト イヨト イヨト

Unsuperstable theories

Theorem (Hyttinen - Kulikov - M. 2017) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{\omega} = \lambda$. If T is classifiable and T' is stable unsuperstable, then $T \leq^{\kappa} T'$ and $T' \not\leq^{\kappa} T$.

Theorem (M. 2022) Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{\omega} = \lambda$. If T is a classifiable theory, and T' is an unsuperstable theory, then $T \leq^{\kappa} T'$ and $T' \not\leq^{\kappa} T$.

Equivalence modulo γ cofinality

Definition

We define the equivalence relation $=_{\gamma}^2 \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let $S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}$,

 $\eta =_{\gamma}^{2} \xi \iff \{ \alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha) \} \cap S \text{ is non-stationary.}$

Borel-reducibility Main Gap

Theorem (M. 2023)

Let $\mathfrak{c} = 2^{\omega}$. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then there is $\gamma < \kappa$ such that

$$\cong_T \hookrightarrow_C =^2_{\gamma} \hookrightarrow_C \cong_{T'}$$
 and $=^2_{\gamma} \not\hookrightarrow_B \cong_T$.

In particular

$$T \leq^{\kappa} T'$$
 and $T' \not\leq^{\kappa} T$.

イロト イポト イヨト イヨト

GDST23

26 of 58

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017) Assume T is a classifiable theory. If \diamondsuit_S holds, then $\cong_T \hookrightarrow_C =_{\gamma}^2$.

Miguel Moreno (UV)	GDST23
A Borel-reducibility Main Gap	27 of 58

<ロ> <四> <四> <四> <三</p>

The reductions

Theorem (M. 2023)

Let κ be inaccessible or $\kappa = \lambda^+ = 2^{\lambda}$. Suppose T is a non-classifiable theory.

- 1. If T is stable unsuperstable, then let $\theta = \gamma = \omega$.
- 2. If T is unstable, or superstable with OTOP, then let $\theta = \omega$ and $\omega \leq \gamma < \kappa$.
- 3. If T is superstable with DOP, then let $\theta = 2^{\omega} = \mathfrak{c}$ and $\omega_1 \leq \gamma < \kappa$.

If θ , γ , and κ satisfy that $\forall \alpha < \kappa$, $\alpha^{\gamma} < \kappa$, and $(2^{\theta})^+ \leq \kappa$, then

$$=^2_{\gamma} \hookrightarrow_C \cong_T .$$

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Ordered trees

Definition

Let $\gamma < \kappa$ be a regular cardinal and I a linear order. $(A, \prec, <)$ is an ordered tree if the following holds:

- (A, \prec) is a κ^+ , (γ + 2)-tree^{*}.
- for all $x \in A$, (succ(x), <) is isomorphic to *I*.

Isomorphism of trees

Theorem (M. 2023)

Suppose $\gamma < \kappa$ is such that for all $\epsilon < \kappa$, $\epsilon^{\gamma} < \kappa$, and there is a κ -colorable linear order I. For all $f \in 2^{\kappa}$ there is an ordered tree A_f such that for all $f, g \in 2^{\kappa}$,

$$f =_{\gamma}^{2} g \Leftrightarrow A_{f} \cong A_{g}.$$

(日) (四) (三) (三)

The models

Lemma (M. 2023)

Suppose T is unstable or superstable with DOP or OTOP in a countable relational vocabulary τ . If A is an ordered tree with (succ(x), <) is ω_1 -dense, then there is an Ehrenfeucht-Mostowski model, $\mathcal{M}(A)$, with the skeleton indiscernible in $\mathcal{M}(A)$ relative to $L_{\infty\omega_1}$.

The isomorphism theorem

Theorem (M. 2023)

Migue A Bor Suppose T is unstable or superstable with DOP or OTOP in a countable relational vocabulary τ . If there is a ω_1 -dense, $(\kappa, bs, bs, \omega_1)$ -nice, $(< \kappa, bs)$ -stable, and κ -colorable linear order, then for all $f, g \in 2^{\kappa}$,

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}(A_{f}) \cong \mathcal{M}(A_{g}).$$

el Moreno (UV)	GDST23
rel-reducibility Main Gap	32 of 58

ε -dense

Definition

Let I be a linear order of size κ and ε a regular cardinal smaller than κ . We say that I is ε -dense if the following holds.

If $A, B \subseteq I$ are subsets of size less than ε such that for all $a \in A$ and $b \in B$, a < b, then there is $c \in I$, such that for all $a \in A$ and $b \in B$, a < c < b.

κ -representation

Definition

Let A be an arbitrary set of size κ . The sequence $\mathbb{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a κ -representation of A, if $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is an increasing continuous sequence of subsets of A, for all $\alpha < \kappa$, $|A_{\alpha}| < \kappa$, and $\bigcup_{\alpha < \kappa} A_{\alpha} = A$.

$(\kappa, bs, bs, \varepsilon)$ -nice

Definition

Let $\varepsilon < \kappa$ be a regular cardinal, A be a linear order of size κ and $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ a κ -representation. Then A is $(\kappa, bs, bs, \varepsilon)$ -nice if there is a club $C \subseteq \kappa$, such that for all limit $\delta \in C$ with $cf(\delta) \ge \varepsilon$, for all $x \in A$ there is $\beta < \delta$ such that one of the following holds:

$$\forall \sigma \in A_{\delta}[\sigma \ge x \Rightarrow \exists \sigma' \in A_{\beta} \ (\sigma \ge \sigma' \ge x)]$$

$$\blacktriangleright \quad \forall \sigma \in \mathcal{A}_{\delta}[\sigma \leq x \Rightarrow \exists \sigma' \in \mathcal{A}_{\beta} \ (\sigma \leq \sigma' \leq x)]$$

$$(<\kappa, bs)$$
-stable

Definition

A linear order I is $(< \kappa, bs)$ -stable if for every $B \subseteq I$ of size smaller than κ ,

$$\kappa > |\{tp_{bs}(a, B, I) \mid a \in I\}|.$$

< ロ > < 回 > < 回 > < 回 > < 回 >

κ -colorable

Definition

Let I be a linear order of size κ . We say that I is κ -colorable if there is a function $F : I \to \kappa$ such that for all $B \subseteq I$, $|B| < \kappa$, $b \in I \setminus B$, and $p = tp_{bs}(b, B, I)$ such that the following hold: For all $\alpha \in \kappa$,

$$|\{a \in I \mid a \models p \& F(a) = \alpha\}| = \kappa.$$

Existence

Let $\theta < \kappa$ be the smallest cardinal such that there is a ε -dense model of *DLO* of size θ .

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa = \lambda^+$, $2^{\theta} \leq \lambda = \lambda^{<\varepsilon}$. There is a ε -dense, $(\kappa, bs, bs, \varepsilon)$ -nice, $(< \kappa, bs)$ -stable, and κ -colorable linear order.

Construction

Let Q be a model of *DLO* of size $\theta < \kappa$, that is ε -dense.

Definition

Let $\kappa \times Q$ be ordered by the lexicographic order, I^0 be the set of functions $f : \varepsilon \to \kappa \times Q$ such that $f(\alpha) = (f_1(\alpha), f_2(\alpha))$, for which $|\{\alpha \in \varepsilon \mid f_1(\alpha) \neq 0\}|$ is smaller than ε . If $f, g \in I^0$, then f < g if and only if $f(\alpha) < g(\alpha)$, where α is the least number such that $f(\alpha) \neq g(\alpha)$.

Construction

Let us fix $\tau \in Q$. Let *I* be the set of functions

 $f: \varepsilon \to (\{0\} \times I^0) \cup (\kappa \times Q)$ such that the following hold:

 $\blacktriangleright f \upharpoonright \{0\} : \{0\} \to \{0\} \times I^0;$

•
$$f \upharpoonright \varepsilon \setminus \{0\} : \varepsilon \setminus \{0\} \to \kappa \times \mathcal{Q};$$

- there is α < ε ordinal such that ∀β > α, f(β) = (0, τ). We say that the least α with such property is the *depth* of f and we denote it by *dp*(f);
- ▶ there are functions $f_1 : \varepsilon \to \kappa$ and $f_2 : \varepsilon \to I^0 \cup Q$ such that $f(\beta) = (f_1(\beta), f_2(\beta))$ and $f_1 \upharpoonright dp(f) + 1$ is strictly increasing.

э.

Construction

We say that f < g if and only if one of the following holds:

Generators

Definition For all $f \in I$ with depth α , define the generator of f, Gen(f), by

$$Gen(f) = \{g \in I \mid f \upharpoonright \alpha + 1 = g \upharpoonright \alpha + 1\}.$$

Miguel Moreno (UV) A Borel-reducibility Main Gap GDST23 42 of 58

Generators

- If $f \neq g$ and $g \in Gen(f)$, then f > g.
- Let f ∈ Gen(ν). If g ∉ Gen(ν), then g < ν if and only if g < f.</p>

• If
$$f \in Gen(\nu)$$

$$f \models tp_{bs}(\nu, I \setminus Gen(\nu), I) \cup \{\nu > x\}.$$

• Let $f \in Gen(\nu)$. If $\sigma \in I$ is such that $\nu \ge \sigma \ge f$, then $\sigma \in Gen(\nu)$.

Miguel Moreno (UV)GDST23A Borel-reducibility Main Gap43 of 58

Iterations

For all $f \in I$ with depth α , define $o(f) = f_1(\alpha)$ the *complexity* of f.

Suppose *i* is such that I^i is defined. Let

$$I^{i+1} = \{ f \in I \mid o(f) \le i+1 \}.$$

Suppose *i* is a limit ordinal such that for all j < i, l^{j} is defined, let

$$I^i = \bigcup_{j < i} I^j.$$

κ -representation

Define $\langle I_{\alpha}^{0} \mid \alpha < \kappa \rangle$ by $I_{\alpha}^{0} = \{ \nu \in I^{0} \mid \nu_{1}(n) < \alpha \text{ for all } n < \varepsilon \}.$ Suppose $i < \kappa$ is such that $\langle I_{\alpha}^{i} \mid \alpha < \kappa \rangle$ has been defined. For all $\alpha < \kappa$ let

$$I_{lpha}^{i+1} = \{ f \in I \mid o(f) \leq i+1 \ \& \ f_2(0) \in I_{lpha}^0 \},$$

for $i < \kappa$ is a limit ordinal so

$$I_{\alpha}^{i} = \bigcup_{j < i} I_{\alpha}^{j}.$$

	 	 =
Miguel Moreno (UV)		GDST23
A Borel-reducibility Main Gap		45 of 58

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

κ -representation

Let us define the κ -representation $\langle I_{\alpha} \mid \alpha < \kappa \rangle$ by

$$I_{\alpha} = I_{\alpha}^{\alpha}.$$

Let
$$\nu \in I^i_{\delta}$$
. For all $f \in Gen(
u)$, $f \in I^{o(f)}_{\delta}$.

 Miguel Moreno (UV)
 GDST23

 A Borel-reducibility Main Gap
 46 of 58

(a)

Roads

Definition

For all $\nu \in I$ with $dp(\nu) = \alpha$, there is a maximal sequence $\langle \nu_i \mid i \leq \alpha \rangle$ such that $\nu_0 \in I^0$, $\nu_\alpha = \nu$, and for all i < j, $\nu_i \in Gen(\nu_i)$. We call this sequence the road from I^0 to ν .

Fact Let $\langle \nu_j \mid j \leq \alpha \rangle$ be the road from l^0 to ν_{α} . For all $i < \alpha$

$$\nu_{\alpha} \models tp_{bs}(\nu_i, I^{o(\nu_{i+1})} \setminus Gen(\nu_{i+1}), I) \cup \{\nu_i > x\}$$

Miguel Moreno (UV)GDST23A Borel-reducibility Main Gap47 of 58

The order The Gap References

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{C}} =_{\mu}^{2}, \kappa = \lambda^{+}$$

Miguel Moreno (UV)

Theory	$\lambda = \lambda^{\gamma}$	\Diamond_{λ}	$Dl^*_{\mathcal{S}^\kappa_\gamma}(\Pi^1_1)$
Classifiable	$\omega \le \mu \le$	$\mu = \lambda$	$\mu=\gamma$
	γ		
Non-	Indep	Indep	$\mu = \gamma$
classifiable			

・ロト ・四ト ・ヨト ・ヨト æ GDST23 A Borel-reducibility Main Gap 48 of 58

The order The Gap References

$$=^2_{\mu} \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}}, \kappa = \lambda^+$$

Theory	$\lambda = \lambda^{\gamma}$	$2^{\mathfrak{c}} \leq \lambda =$	$2^{\mathfrak{c}} \leq \lambda =$
		λ^γ	$\lambda^{<\lambda}$
			$\& \diamondsuit_\lambda$
Stable	$\mu = \omega$	$\mu = \omega$	$\mu = \omega$
Unsuper-			
stable			
Unstable	$\omega \le \mu \le$	$\omega \leq \mu \leq$	$\omega \le \mu \le$
	γ	γ	λ
Superstable	$\omega \leq \mu \leq$	$\omega \leq \mu \leq$	$\omega \le \mu \le 0$
with	γ	γ	λ
OTOP			
Superstable	?	$\omega_1 \leq \mu \leq$	$\omega_1 \leq \mu \leq 0$
with DOP		γ	λ

GDST23

・ロト ・四ト ・ヨト ・ヨト

Miguel Moreno (UV)

æ

A bigger Gap

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. There exists a cofinality-preserving forcing extension in which the following holds:

If T_1 is classifiable and T_2 is not. Then there is a regular cardinal $\gamma < \kappa$ such that, if $X, Y \subseteq S_{\gamma}^{\kappa}$ are stationary and disjoint, then $=_X^2$ and $=_Y^2$ are strictly in between \cong_{T_1} and \cong_{T_2} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

GDST23

50 of 58

Main Gap Dichotomy

Theorem (M. 2023)

Let κ be inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

$$\blacktriangleright \cong_T$$
 is $\Delta^1_1(\kappa)$;

$$\blacktriangleright \cong_T$$
 is $\Sigma^1_1(\kappa)$ -complete.

Non-classifiable theories

Lemma (M. 2023)

Let κ be strongly inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. For all cardinals $\aleph_0 < \mu < \delta < \kappa$, if T is a non-classifiable theory then

$$\cong^{\mu}_{T} \hookrightarrow_{C} \cong^{\delta}_{T} \hookrightarrow_{C} \quad \textit{id} \ \hookrightarrow_{C} \cong_{T}.$$

Miguel Moreno (UV)	GDST2
A Borel-reducibility Main Gap	52 of 5

ヘロト ヘロト ヘビト ヘビト

э

58

Classifiable non-shallow

Lemma (M. 2023)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$. The following reduction is strict. Let $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. If T_1 is a classifiable non-shallow theory and T_2 is a non-classifiable theory, then

$$\cong_{T_2}^{\lambda} \hookrightarrow_{\mathcal{C}} \cong_{T_1} \hookrightarrow_{\mathcal{C}} \cong_{T_2}.$$

Classifiable shallow

Lemma (M. 2023)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$. The following reductions are strict. Let $\kappa = \aleph_{\gamma}$ be such that $\beth_{\omega_1}(|\gamma|) \le \kappa$. Suppose T_1 is a classifiable shallow theory, T_2 a classifiable non-shallow theory, and T_3 non-classifiable theory. Then

$$\cong_{T_1} \hookrightarrow_B \cong_{T_3}^{\lambda} \hookrightarrow_C \cong_{T_2}$$
.

イロン イロン イヨン イヨン

2

Thank you

Article at: https://arxiv.org/abs/2308.07510

Miguel Moreno (UV)	GDST23
A Borel-reducibility Main Gap	55 of 58

References

- O. Veblen, A System of Axioms for Geometry, Transactions of the American Mathematical Society 5, 343–384 (1904).
- L. Löwenheim, Über Möglichkeiten im Relativkalkül, Math. Ann. 76, 447–470 (1915).

Classifiable theories Non-classifiable theories

- T. Skolem, Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnskapsselskapets skrifter. I. Mat.-naturv. klasse. 4, 1–36 (1920).
- K. Gödel, Über die Vollständigkeit des Logikkalküls, Ph.D. thesis. University Of Vienna. (Vienna, 1929).
- J. Łoś, On the categoricity in power of elementary deductive systems, Colloq. Math. 3, 58–62 (1954).

イロト イポト イヨト イヨト

References

References

 M. Morley, *Categoricity in power*, Trans. Amer. Math. Soc. 114, 514–538 (1965).

Classifiable theories Non-classifiable theories

- S. Shelah, *Classification theory*, Stud. Logic Found. Math.
 92, North-Holland (1990).
- H. Friedman, L. Stanley, A Borel reducibility theory for classes of countable structures, Journal of Symbolic Logic. 54, 894–914 (1989).
- A. Mekler, and J. Väänänen, *Trees and* Π¹₁-subsets of ^ω₁ω₁, The Journal of Symbolic Logic. 58, 1052–1070 (1993).
- S.D. Friedman, T. Hyttinen, and V. Kulikov, *Generalized* descriptive set theory and classification theory, in Memories of the American Mathematical Society 230 (2014).

イロト イボト イヨト イヨト

References

References

- F. Mangraviti, and L. Motto Ros, A descriptive main gap theorem, Journal of Mathematical Logic. 21, 2050025 (2020).
- T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. math. Logic. 56, 175 – 185 (2017).
- M. Moreno, On unsuperstable theories in GDST, (arXiv:2203.14292). The Journal of Symbolic Logic, accepted, (2022).
- M. Moreno, Shelah's Main Gap and the generalized Borel-reducibility. Preprint, (2023).