FILTER REFLECTION AND THE BOREL REDUCIBILITY

MIGUEL MORENO

Institute of Mathematics, University of Vienna. FWF Meitner-Program Joint work with **Gabriel Fernandes** and **Assaf Rinot**.

CAPTURING CLUBS

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is non-stationary.

Example. When $\vec{\mathcal{F}}$ is the sequence of club filters, $\vec{\mathcal{F}}$ captures clubs.

FILTER REFLECTION

We say that $X \not F$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary.

We say that X f-reflects to S iff there exists a sequence of filters $\vec{\mathcal{F}}$ over a stationary subset S' of S such that X $\vec{\mathcal{F}}$ -reflects to S'.

REFLECTION WITH DIAMOND

We say that $X \vec{\mathcal{F}}$ -reflects with \diamondsuit to S iff $\vec{\mathcal{F}}$ captures clubs and there exists a sequence $\langle Y_{\alpha} \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y_{\alpha} = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_{\alpha}^{+}\}$ is stationary.

We say that X \mathfrak{f} -reflects with \diamondsuit to S whenever there exists a stationary $S'\subseteq S$ and sequence of filters $\vec{\mathcal{F}}=\langle\mathcal{F}_\alpha\mid\alpha\in S'\rangle$ such that X $\vec{\mathcal{F}}$ -reflects with \diamondsuit to S'.

EXAMPLES

Vanilla stationary reflection is a particular case of filter reflection, this is when $\vec{\mathcal{F}}$ is the sequence of club filters.

Suppose V=L. Then, for every stationary $S\subseteq \kappa$, κ f-reflects with \diamondsuit to S. In particular, filter reflection holds at any non weakly compact cardinal.

FORCING FILTER REFLECTION

For all stationary subsets X and S of κ , there exists a $<\kappa$ -closed κ^+ -cc forcing extension, in which X f-reflects to S.

FAILURE OF FILTER REFLECTION

There exists a cofinality-preserving forcing extension in which for all two disjoint stationary subsets X, S of κ , X does not \mathfrak{f} -reflect to S.

FORCING-PRESERVING FILTER REFLECTION

Definition. We say that a sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is θ -complete if the set $\{\alpha \in S \mid \mathcal{F}_{\alpha} \text{ is not } \theta\text{-complete}\}$ is non-stationary.

Theorem. Suppose $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a θ -complete sequence. Suppose \mathbb{P} is a forcing notion with θ -cc and κ -stationary-cc, and $X \subseteq \kappa$ is a stationary set such that X $\vec{\mathcal{F}}$ -reflects to S. Then \mathbb{P} forces that X f-reflects to S.

Notice that for any regular uncountable cardinal $\theta < \kappa$, if $S \subseteq cof(\geq \theta)$, then for every $\alpha \in S$, the club filter over α is θ -complete. **Therefore, forcing with** θ -cc and κ -stationary-cc cannot destroy vanilla stationary reflection.

REDUCIBILITY

Definition. For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively. A function $f: X_0 \to X_1$ is said to be a reduction of R_0 to R_1 iff, for all $\eta, \xi \in X_0$,

$$\eta R_0 \xi \text{ iff } f(\eta) R_1 f(\xi).$$

The existence of a continuous function f that is a reduction is denoted by $R_0 \hookrightarrow_c R_1$. We likewise define $R_0 \hookrightarrow_B R_1$ once we replace continuous by Borel

RELATIONS

Defintion. For every $\theta \in [2, \kappa]$, the equivalence relation $=^{\theta}_{S}$ over θ^{κ} is defined via

$$\eta =_S^{\theta} \xi \text{ iff } \{\alpha \in S \mid \eta(\alpha) \neq \xi(\alpha)\} \text{ is non-stationary.}$$

Defintion. Let \mathcal{F} be a filter over α . For every $\theta \in [2, \kappa]$, the equivalence modulo \mathcal{F} , $\sim_{\mathcal{F}}^{\theta}$, over θ^{α} , is define via

$$(\eta, \xi) \in \sim_{\mathcal{F}}^{\theta} \text{ iff } \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\} \in \mathcal{F}$$

THEOREM 1

If X \mathfrak{f} -reflects with \diamondsuit to S, then $=_X^{\kappa} \hookrightarrow_c =_S^2$.

THEOREM 2

Suppose Martin's Maximum (MM) holds, $\kappa \geq \aleph_2$, $X \subseteq \kappa \cap cof(\omega)$ is stationary, and $S = \kappa \cap cof(\omega_1)$. If \diamondsuit_X holds, then X reflects with \diamondsuit to S.

Remark. MM implies that for every successor κ of a singular strong limit of uncountable cofinality, $=_X^{\kappa} \hookrightarrow_c =_S^2$ for $X = E_{\omega}^k$ and $S = E_{\omega_1}^k$.

FILTERED FUNCTIONS

Definition. For every $\theta, \gamma \in [2, \kappa]$, $F : \theta^{\kappa} \to \gamma^{\kappa}$, and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ a sequence of filters. We say that F captures $\vec{\mathcal{F}}$ if the following holds: For all $\alpha \in S$ and $\eta, \xi \in \theta^{\kappa}$, $\eta \upharpoonright \alpha \sim_{\mathcal{F}_{\alpha}}^{\theta} \xi \upharpoonright \alpha$ iff $F(\eta)(\alpha) = F(\xi)(\alpha)$.

MAIN THEOREM

Theorem. Let $X,S\subseteq \kappa$ be stationary sets. The following are equivalent:

- 1. X f-reflects to S
- 2. there is $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ and $F : 2^{\kappa} \to \kappa^{\kappa}$ a reduction from $=_X^2$ to $=_S^{\kappa}$ that captures $\vec{\mathcal{F}}$.

Remark. X stationary reflects to S if and only if there is $F: 2^{\kappa} \to \kappa^{\kappa}$ a reduction from $=_X^2$ to $=_S^{\kappa}$ that captures the sequence of the club filters.

QUESTION

Is it consistence that $=_S^{\kappa} \not\hookrightarrow_B =_S^2$ holds for all stationary set $S \subseteq \kappa$?

CONTACT INFORMATION

Web www.miguelmath.com

Email contact@miquelmath.com