Shelah's Main Gap Theorem in the Borel-reducibility hierarchy

Miguel Moreno (Joint work with Tapani Hyttinen and Vadim Kulikov)

Department of Mathematics and Statistics University of Helsinki

27th Nordic Congress of Mathematicians Stockholm

2 Shelah's Main Gap Theorem

Outline

1 Classifying First-order countable Theories

2 Shelah's Main Gap Theorem

Miguel Moreno (UH)

27th Nordic Congress of MathematiciansStocl / 16

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

- Löwenheim-Skolem Theorem: $\exists \alpha \ge \omega \ I(T, \alpha) \neq 0 \Rightarrow \forall \beta \ge \omega \ I(T, \beta) \neq 0.$
- Morley's categoricity: $\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1$
- Shelah's Main Gap Theorem: Either, for every uncountable cardinal α, *I*(*T*, α) = 2^α, or ∀α > 0 *I*(*T*, ℵ_α) < □_{ω1}(| α |).

Approaches

• Shelah's stability theory.

Classify the models of T by cardinal invariants and clearly differenciate clearly between the theories that can be classified and those that cannot.

• Descriptive set theory:

It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.

The topology

 κ is a cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set 2^{κ} with the bounded topology. For every $\zeta \in 2^{<\kappa}$, the set

$$[\zeta]=\{\eta\in 2^\kappa\mid \zeta\subset\eta\}$$

is a basic open set.

Reductions

A function $f: 2^{\kappa} \to 2^{\kappa}$ is *Borel*, if for every open set $A \subseteq 2^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^{κ} .

Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is *Borel* reducible to E_2 , if there is a Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq B E_2$.

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $\eta \in 2^{\kappa}$ define the structure \mathcal{A}_{η} with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_\eta} \Leftrightarrow \eta(\pi(m, a_1, a_2, \ldots, a_n)) = 1$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $\eta, \xi \in 2^{\kappa}$ are \cong_T^{κ} equivalent if

•
$$\mathcal{A}_{\eta} \models \mathcal{T}, \mathcal{A}_{\xi} \models \mathcal{T}, \mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}$$

or

• $\mathcal{A}_{\eta} \nvDash T, \mathcal{A}_{\xi} \nvDash T$

Borel-reducibility hierarchy

We can define a partial order on the set of all first-order complete countable theories

$$T \leqslant^{\kappa} T'$$
 iff $\cong^{\kappa}_{T} \leqslant_{B} \cong^{\kappa}_{T'}$

Outline

1 Classifying First-order countable Theories

2 Shelah's Main Gap Theorem

Miguel Moreno (UH)

27th Nordic Congress of MathematiciansStocl / 16

Countable

 $T = Th(\mathbb{Q}, \leq).$ T', the theory of vector space over the field of rational numbers.

By the Borel-reducibility hierarchy:

 $T \leqslant^{\omega} T'$ $T' \nleq^{\omega} T$

By the stability theory T' is simpler than T.

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Miguel Moreno (UH)

27th Nordic Congress of MathematiciansStocl / 16

Uncountable

Under some cardinality assumptions on κ have been proved the following.

Theorem (Friedman, Hyttinen, Kulikov) If T is unstable and T' is classifiable, then $T \leq \kappa T'$.

Theorem

If T is stable unsuperstable and T' is classifiable, then

$$T' \leqslant^{\kappa} T$$
$$T \not\leqslant^{\kappa} T'$$

Miguel Moreno (UH)

27th Nordic Congress of MathematiciansStoc \$/\$16\$

Consistency

Theorem

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq {}^{\kappa} T'$ and $T' \leq {}^{\kappa} T$.

The following statements hold:

- 1) If V = L, then $H(\kappa)$ holds.
- There is a κ-closed forcing notion P with the κ⁺-c.c. which forces H(κ).

Borel-reducibility Counterpart

Theorem

The following statement is consistent:

If T_1 is classifiable and T_2 is not classifiable, then $T_1 \leq^{\kappa} T_2$ and there are 2^{κ} equivalence relations strictly between $\cong_{T_1}^{\kappa}$ and $\cong_{T_2}^{\kappa}$.

References

- S.D. Friedman, T. Hyttinen, and V. Kulikov, *Generalized descriptive set theory and classification theory*, Memoirs of the Amer. Math. Soc. Vol. 230/1081 (American Mathematical Society, 2014).
- T. Hyttinen, and M. Moreno, *On the reducibility of isomorphism relations*, Math. Logic. Quart. To appear.
- T. Hyttinen, and V. Kulikov, *Borel* sets in the generalized Baire space*, Trends in Logic. To appear.
- A. Mekler, and J. Väänänen, *Trees and* Π¹₁ subsets of ω^{ω1}₁, J. Symb. Log. 58(3), 97–114, (1993).
- S. Shelah, *Classification theory*, Stud. Logic Found. Math. Vol. 92, (North-Holland, Amsterdam, 1990).