The Borel reducibility Main Gap

Miguel Moreno University of Helsinki

Logic Colloquium 2025

10 July, 2025

Two notions

▶ Model theory notion. Classification theory (Shelah 1990)

Set theory notion. Borel reducibility (Friedman and Stanley 1989)

Theories

- Classifiable theories are divided into:
 - shallow.

$$I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|);$$

non-shallow,

$$I(T,\alpha)=2^{\alpha}.$$

Non-classifiable theories

Continuous reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is continuous reducible to E_2 , if there is a continuous function $f: \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$. We write $E_1 \hookrightarrow_C E_2$.

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T' \text{ iff } \cong_{T} \hookrightarrow_{C} \cong_{T'}$$

Question

Question: What can we say about the reducibility between those dividing lines?

Friedman-Hyttinen-Kulikov

Conjecture: If T is classifiable and T' is non-classifiable, then $T < \kappa T' \ (\cong_T \hookrightarrow_C \cong_{T'}).$

Borel-reducibility Main Gap

Theorem (M.)

Let $\mathfrak{c}=2^\omega$. Suppose $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq\lambda=\lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then

$$T \leq^{\kappa} T'$$
 and $T' \nleq^{\kappa} T$.

Main Gap Dichotomy

Theorem (M.)

Let κ be inaccessible, or $\kappa=\lambda^+=2^\lambda$ and $2^{\mathfrak{c}}\leq \lambda=\lambda^{<\omega_1}$. There exists a $<\kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

- $ightharpoonup \cong_{\mathcal{T}} \text{ is } \Delta^1_1(\kappa);$
- ightharpoonup $\cong_{\mathcal{T}}$ is $\Sigma^1_1(\kappa)$ -complete.

In between

Lemma (M.)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$. Let $\kappa = \aleph_{\gamma}$ be such that $\beth_{\omega_1}(|\gamma|) \le \kappa$ and $2^{\mathfrak{c}} \le \lambda = \lambda^{<\omega_1}$. Suppose T_1 is a classifiable shallow theory, T_2 a classifiable non-shallow theory, and T_3 non-classifiable theory. Then

$$\cong_{T_1} \hookrightarrow_B \cong_{T_3}^{\lambda} \hookrightarrow_C \cong_{T_2} \hookrightarrow_C \cong_{T_3}.$$

Equivalence modulo γ cofinality

Definition

We define the equivalence relation $=_{\gamma}^{2} \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let $S = \{\alpha < \kappa \mid cf(\alpha) = \gamma\}$,

$$\eta = {}^2_{\gamma} \xi \iff \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S$$
 is non-stationary.

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)

Assume T is a classifiable theory and let

$$S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}.$$
 If \diamondsuit_S holds, then $\cong_T \hookrightarrow_C =_{\gamma}^2$.

The idea

- ► Construct the reductions $(=^2_{\gamma} \hookrightarrow_C \cong_T)$.
- ► Construct Ehrenfeucht-Mostowski models, such that

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Construct ordered trees, such that

$$f =_{\gamma}^{2} g \Leftrightarrow A_{f} \cong A_{g} \Leftrightarrow \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Ordered trees from the linear order

 \triangleright ω_1 -dense,

 \blacktriangleright (κ, ω_1) -nice, $(<\kappa)$ -stable,

 \triangleright κ -colorable.

The F^{φ}_{ω} isolation

Definition

Let $\varphi(x,y):=$ "y>x", we define F_{ω}^{φ} in the following way. Let $|B|<\kappa$ and $p\in S_{bs}(B),\ (p,A)\in F_{\omega}^{\varphi}$ if and only if $A\subseteq B,\ A$ is finite, and there is $a\in A$ such that

$${a > x, x = a} \cap p \neq \emptyset \& a \models p \upharpoonright B \setminus {a}.$$

F_{ω}^{φ} saturation

Definition

C is $(F_{\omega}^{\varphi}, \kappa)$ -saturated if for all $B \subseteq C$ of size smaller than κ , and $p \in S_{bs}(B)$, $(p, A) \in F_{\omega}^{\varphi}$ implies that p is realized in C.

$(F_{\omega}^{\varphi}, \kappa)$ -saturated model

Lemma (M.)

Let $\mathfrak{c}=2^\omega$. Suppose $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq\lambda=\lambda^{\omega_1}$. There is an $(F_\omega^\varphi,\kappa)$ -saturated model over \mathcal{I}^0 and it is an ω_1 -dense, (κ,ω_1) -nice, $(<\kappa)$ -stable, and κ -colorable linear order.

Thus

$$\cong_T \hookrightarrow_C =_{\gamma}^2 \hookrightarrow_C \cong_{T'}$$
.

Thank you

Article at: https://arxiv.org/abs/2308.07510