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The spectrum fuction

Let T be a countable theory over a countable language. Let
I(T , α) denote the number of non-isomorphic models of T with
cardinality α.

What is the behavior of I(T , α)?
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Categoricity

▶ 1904: Veble introduced categorical theories.

▶ 1915 - 1920: Löwenheim-Skolem Theorem.

▶ 1965: Morley’s categoricity theorem.
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Morley’s conjecture

1960’s: Let T be a first-order countable theory over a countable
language. For all ℵ0 < λ < κ,

I(T , λ) ≤ I(T , κ).

1990: Shelah proved Morley’s conjecture.
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Shelah’s Main Gap Theorem

Theorem (Shelah 1990)
Either, for every uncountable cardinal α, I(T , α) = 2α; or ∀α > 0,
I(T , ℵα) < ℶω1(| α |).

If T is classifiable and T ′ is not, then T is less complex than T ′

and their complexity are not close.
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Descriptive Set Theory

▶ 1989: Friedman and Stanley introduced the Borel reducibility
between classes of countable structures.

▶ 1991: Väänänen Cantor-Bendixson theorem.

▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a
systematic comparison between the Main Gap dividing lines
and the complexity given by Borel reducibility.
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The bounded topology

Let κ be an uncountable cardinal that satisfies κ<κ = κ.

We equip the set κκ with the bounded topology. For every
ζ ∈ κ<κ, the set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set.
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The Generalised Baire spaces

The generalised Baire space is the space κκ endowed with the
bounded topology.

The generalised Cantor space is the subspace 2κ.
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Coding structures

Let ω ≤ µ ≤ κ be a cardinal. Fix a relational language
L = {Pn|n < ω} and a bijection πµ between µ<ω and µ.

Definition
For every η ∈ κκ define the structure Aη↾µ with domain µ as
follows: For every tuple (a1, a2, . . . , an) in µn

(a1, a2, . . . , an) ∈ PAη↾µ
m ⇔ η(πµ(m, a1, a2, . . . , an)) > 0.
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The isomorphism relation

Definition
Let ω ≤ µ ≤ κ be a cardinal and T a first-order theory in a
relational countable language, we say that f , g ∈ κκ are ∼=µ

T
equivalent if one of the following holds:
▶ Aη↾µ |= T , Aξ↾µ |= T , Aη↾µ

∼= Aξ↾µ

▶ Aη↾µ ̸|= T , Aξ↾µ ̸|= T
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Reductions

Let E1 and E2 be equivalence relations on κκ. We say that E1 is
reducible to E2, if there is a function f : κκ → κκ that satisfies
(x , y) ∈ E1 ⇔ (f (x), f (y)) ∈ E2. We write E1 ↪→r E2.

With Borel functions, we can define a partial order on the set of all
first-order complete countable theories

T ≤κ T ′ iff ∼=T ↪→B ∼=T ′
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Question

Question: What can we say about the Borel-reducibility between
different dividing lines?

Conjecture: If T is classifiable and T ′ is not classifiable, then

∼=T ↪→B ∼=T ′ .
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Borel-reducibility Main Gap

Theorem (M.)
Let c = 2ω. Suppose κ = λ+ = 2λ and 2c ≤ λ = λω1 . If T is a
classifiable theory, and T ′ is a non-classifiable theory, then

∼=T ↪→C ∼=T ′ and ∼=T ′ ̸↪→B ∼=T .
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Equivalence modulo γ cofinality

Definition
We define the equivalence relation =2

γ ⊆ 2κ × 2κ, as follows: let
S = {α < κ | cf (α) = γ},

η =2
γ ξ ⇐⇒ {α < κ | η(α) ̸= ξ(α)} ∩ S is non-stationary.
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Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Assume T is a classifiable theory. If ♢S holds, then ∼=T ↪→L =2

γ .
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=2
γ ↪→C ∼=T , κ = λ+

Theory λ = λθ 2c ≤ λ =
λθ

2c ≤ λ =
λ<λ

Stable
Unsuper-

stable

γ = ω γ = ω γ = ω

Unstable ω ≤ γ ≤
θ

ω ≤ γ ≤
θ

ω ≤ γ ≤
λ

Superstable
with

OTOP

ω ≤ γ ≤
θ

ω ≤ γ ≤
θ

ω ≤ γ ≤
λ

Superstable
with DOP

? ω1 ≤ γ ≤
θ

ω1 ≤ γ ≤
λ
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Main Gap Dichotomy

Theorem (M.)
Let κ be inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 . There
exists a < κ-closed κ+-cc forcing extension in which for any
countable first-order theory in a countable vocabulary (not
necessarily complete), T , one of the following holds:
▶ ∼=T is ∆1

1(κ);
▶ ∼=T is Σ1

1(κ)-complete.
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Classifiable theories

▶ shallow,
I(T , ℵα) < ℶω1(| α |);

▶ non-shallow,
I(T , α) = 2α.

Miguel Moreno (UH) ESTC
The Borel reducibility Main Gap 18 of 25



History GDST Main result Below the gap References

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)
Let κ = ℵγ be such that κ<κ = κ and ℶω1(|γ|) ≤ κ. Let T , T ′ be
countable complete first-order theories, and suppose T is
classifiable and shallow, while T ′ is not. Then

∼=T ↪→B ∼=T ′
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General reduction

Fact (Mangraviti-Motto Ros)
Let E1 be a Borel equivalence relation with γ ≤ κ equivalence
classes and E2 be an equivalence relation with θ equivalence
classes. If γ ≤ θ, then E1 ↪→B E2.
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In between

Lemma (M.)
Suppose κ = λ+ = 2λ. Let κ = ℵγ be such that ℶω1(| γ |) ≤ κ
and 2c ≤ λ = λ<ω1 . Suppose T1 is a classifiable shallow theory, T2
a classifiable non-shallow theory, and T3 non-classifiable theory.
Then

∼=T1 ↪→B ∼=λ
T3 ↪→C ∼=T2 ↪→C ∼=T3 .
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Thank you

Article at: https://arxiv.org/abs/2308.07510

Miguel Moreno (UH) ESTC
The Borel reducibility Main Gap 22 of 25



History GDST Main result Below the gap References

References

▶ O. Veblen, A System of Axioms for Geometry, Transactions of
the American Mathematical Society 5, 343–384 (1904).
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