Ordered trees and the kappa-Borel reducibility of unsuperstable theories

Miguel Moreno University of Vienna FWF Meitner-Programm

European Set Theory Conference 2022

30 August, 2022

Shelah's Main Gap Theorem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

Theorem (Shelah)

Either, for every uncountable cardinal α , $I(T,\alpha) = 2^{\alpha}$, or $\forall \alpha > 0 \ I(T,\aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$.

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

The topology

 κ is an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set 2^{κ} with the bounded topology. For every $\zeta \in 2^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in 2^{\kappa} \mid \zeta \subset \eta \}$$

is a basic open set.

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f\in 2^{\kappa}$ define the structure \mathcal{A}_f with domain κ and for every tuple (a_1,a_2,\ldots,a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f,g\in 2^{\kappa}$ are \cong_T^{κ} equivalent if $\mathcal{A}_f\models T, \mathcal{A}_g\models T, \mathcal{A}_f\cong \mathcal{A}_g$ or $\mathcal{A}_f\nvDash T, \mathcal{A}_\sigma\nvDash T$

Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is Borel reducible to E_2 , if there is a Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$. We write $E_1 \hookrightarrow_h^{\kappa} E_2$.

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T' \text{ iff } \cong^{\kappa}_{T} \hookrightarrow^{\kappa}_{b} \cong^{\kappa}_{T'}$$

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem in the generalized descriptive set theoretical approach?

non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;
- T is superstable with DOP;
- T is superstable with OTOP.

Progress

Theorem (Mangraviti - Motto Ros)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \le \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$T \leq^{\kappa} T'$$

Theorem (Friedman - Hyttinen - Kulikov)

If T is classifiable and T' is unsuperstable, then

$$T' \not\leq^{\kappa} T$$

Progress

Theorem (Hyttinen - Kulikov - Moreno)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. There is a κ -closed κ^+ -cc forcing which forces:

If T is classifiable and T' is not, then $T \leq^{\kappa} T'$ and $T' \nleq^{\kappa} T$

Theorem (Fernandes - Moreno - Rinot)

Suppose $\kappa=\lambda^+$, $2^{\lambda}>2^{\omega}$, and $\lambda^{<\lambda}=\lambda$. Let T be a non-classifiable theory. There is a κ -closed κ^+ -cc forcing which forces:

If T' is a countable complete first-order theory, then $T' \leq^{\kappa} T$.

Stable unsuperstable theories

Theorem (Hyttinen - Kulikov - Moreno)

Suppose $\kappa=\lambda^+$, $2^{\lambda}>2^{\omega}$, and $\lambda^{<\lambda}=\lambda$. If T is classifiable and T' is stable unsuperstable, then $T\leq^{\kappa}T'$.

Equivalence modulo ω cofinality

Definition

We define the equivalence relation $=_{\omega}^{2} \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let $S = \{\alpha < \kappa \mid cf(\alpha) = \omega\}$,

$$\eta =_{\omega}^{2} \xi \iff \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S$$
 is non-stationary.

Theorem (Hyttinen - Kulikov - Moreno)

000000

Assume T is a countable complete classifiable theory over a countable vocabulary. Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. Then $\cong_{\tau}^{\kappa} \hookrightarrow_{h}^{\kappa} =_{\omega}^{2}$.

000000

Coloured trees

Definition

Let β an ordinal smaller or equal to κ . A coloured tree is a pair (t,c), where t is a κ^+ , $(\omega+2)$ -tree and c is a map $c: leaves(t) \rightarrow \beta$ (the color function).

Theorem (Hyttinen - Kulikov)

For all $f \in 2^{\kappa}$ there is a coloured tree J_f with two colors, such that for all $f, g \in 2^{\kappa}$ the following holds:

$$f =_{\omega}^{2} g \Leftrightarrow J_{f} \cong J_{g}.$$

Definition

Let K_{tr}^{ω} be the class of models $(A, \prec, (P_n)_{n \leq \omega}, <)$, where:

- ▶ there is a linear order $(I, <_I)$ such that $A \subseteq I^{\leq \omega}$;
- \triangleright (A, \prec) is a tree with unique limits;
- let $lg(\eta)$ be the length of η (i.e. the domain of η) and $P_n = \{ \eta \in A \mid lg(\eta) = n \}$ for $n \leq \omega$;

Ordered trees

Definition (continuation)

Let K_{tr}^{ω} be the class of models $(A, \prec, (P_n)_{n \leq \omega}, <)$, where:

- ▶ for every $\eta \in A$ with $lg(\eta) < \omega$, define $Suc_A(\eta)$ as $\{\xi \in A \mid \eta \prec \xi \land lg(\xi) = lg(\eta) + 1\}$. If $\xi < \zeta$, then there is $\eta \in A$ such that $\xi, \zeta \in Suc_A(\eta)$;
- ▶ for every $\eta \in A \backslash P_{\omega}$, $\langle \upharpoonright Suc_A(\eta) \rangle$ is the induced linear order from I, i.e.

$$\eta^{\frown}\langle x\rangle < \eta^{\frown}\langle y\rangle \Leftrightarrow x <_I y;$$

Coloring orders

Definition

Let I be a linear order of size κ . We say that I is κ -colorable if there is a function $F:I\to \kappa$ such that for all $B\subseteq I$, $|B|<\kappa$, $b\in I\setminus B$, and $p=tp_{bs}(b,B,I)$ such that the following hold: For all $\alpha\in\kappa$, $|\{a\in I\mid a\models p\ \&\ F(a)=\alpha\}|=\kappa$.

Theorem

Suppose I is a κ -colorable linear order. Then for any $f \in 2^{\kappa}$, there is an ordered tree $A_f(I)$ that satisfies: For all $f, g \in 2^{\kappa}$,

$$f =_{\omega}^{2} g \Leftrightarrow A_{f}(I) \cong A_{g}(I).$$

The isomorphism

Theorem (Shelah)

Suppose T is a countable complete unsuperstable theory in a countable vocabulary.

If κ is a regular uncountable cardinal, $A_1, A_2 \in K_{tr}^{\omega}$ have size κ , A_1 , A_2 are locally (κ, bs, bs) -nice and $(< \kappa, bs)$ -stable, $EM(A_1, \Phi)$ is isomorphic to $EM(A_2, \Phi)$, then $S(A_1) =_{\omega}^2 S(A_2)$.

In our construction, $S(A_f(I)) =_{\omega}^2 S(A_g(I))$ is equivalent $f =_{\omega}^2 g$.

Unsuperstable theories 000000

Question: Is there a κ -colorable linear order I such that for all $f \in 2^{\kappa}$, $A_f(I)$ is locally (κ, bs, bs) -nice and $(\langle \kappa, bs \rangle$ -stable?

κ -representation

Definition

Let A be an arbitrary set of size at most κ . A sequence $\mathbb{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a κ -representation of A, if $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is an increasing continuous sequence of subsets of A, for all $\alpha < \kappa$, $|A_{\alpha}| < \kappa$, and $\bigcup_{\alpha < \kappa} A_{\alpha} = A$.

Nice linear order

Definition (Lemma by Hyttinen - Tuuri)

Let I be a linear order of size κ and $\langle I_{\alpha} \mid \alpha < \kappa \rangle$ a κ -representation. If there is a club $C \subseteq \kappa$, such that for all limit $\delta \in C$, for all $x \in I$ there is $\beta < \delta$ such that:

$$\forall \sigma \in I_{\delta}[\sigma \geq x \Rightarrow \exists \sigma' \in I_{\beta} \ (\sigma \geq \sigma' \geq x)]$$

Then I is (κ, bs, bs) -nice and for all $f \in 2^{\kappa}$, $A_f(I)$ is locally (κ, bs, bs) -nice.

Locally nice ordered tree

Definition

 $A \in K_{tr}^{\omega}$ of size at most κ , is locally (κ, bs, bs) -nice if for every $\eta \in A \backslash P_{\alpha, \gamma}^A$ (Suc_A(η), <) is (κ, bs, bs) -nice, Suc_A(η) is infinite, and there is $\xi \in P_{\omega}^{A}$ such that $\eta \prec \xi$.

Definition

 $A \in K_{tr}^{\omega}$ is $(< \kappa, bs)$ -stable if for every $B \subseteq A$ of size smaller than κ,

$$\kappa > |\{tp_{bs}(a, B, A) \mid a \in A\}|.$$

Theorem

There is a $(< \kappa, bs)$ -stable (κ, bs, bs) -nice κ -colorable linear order.

Construction

Definition

Let \mathbb{Q} be the linear order of the rational numbers.

Let $\kappa \times \mathbb{Q}$ be order by the lexicographic order, I^0 be the set of functions $f: \omega \to \kappa \times \mathbb{Q}$ such that $f(n) = (f_1(n), f_2(n))$, for which $\{n \in \omega \mid f_1(n) \neq 0\}$ is finite.

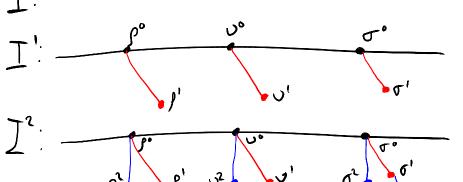
If $f, g \in I^0$, then f < g if and only if f(n) < g(n), where n is the least number such that $f(n) \neq g(n)$.

Lemma

Shelah's Main Gap Theorem and GDST

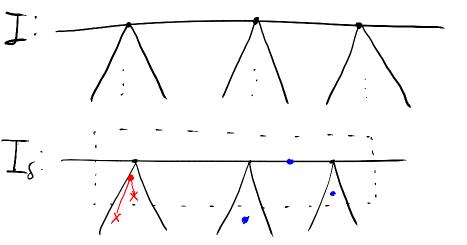
 I^0 is a $(< \kappa, bs)$ -stable (κ, bs, bs) -nice linear order.

Construction



Shelah's Main Gap Theorem and GDST

Construction



Corollary

Theorem

Suppose $\kappa=\lambda^+=2^\lambda$ and $\lambda^\omega=\lambda$. If T_1 is a countable complete classifiable theory, and T_2 is a countable complete unsuperstable theory, then $T_1\leq^\kappa T_2$.

Theorem

There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for all countable complete unsuperstable theory T, \cong_T^{κ} is Σ_1^1 -complete.

The paper entitled **On unsuperstable theories in GDST** can be found at:

https://arxiv.org/abs/2203.14292

Thank you

