Diamond sharp and the Generalized Baire Spaces

Miguel Moreno Bar-Ilan University

European Set Theory Conference 2019

July 2019

Miguel Moreno (ESTC 19)

July 2019 1 / 26

This is a joint work with Gabriel Fernandes and Assaf Rinot at BIU.

Our paper, entitled **Inclusion modulo nonstationary** is available at https://arxiv.org/abs/1906.10066

A month ago, the name of our preprint was *Analytic quasi-orders and two forms of diamond* since we had one diamond principle for non-ineffable sets and one for ineffable sets. In the meantime, we found a single principle that works uniformly.

Motivation

Outline

1 Motivation

- 2 Another Kind of Universality
- 3 A Diamond reflecting second-order formulas
- 4 Universality of Inclusion Modulo Nonstationarity

A Quasi-order

A quasi-order is a binary relation which is reflexive and transitive.

Definition

The quasi-order \leq^* over the Baire space $\mathbb{N}^{\mathbb{N}}$ is defined as follows:

 $\eta \leq^* \xi \Leftrightarrow \{n \in \mathbb{N} \mid \eta(n) > \xi(n)\}$ is finite.

Theorem (Hechler, 1974)

The structure $(\mathbb{N}^{\mathbb{N}}, \leq^*)$ is universal in the following sense: For any σ -directed poset \mathbb{P} with no maximal element, there is a ccc forcing extension in which $(\mathbb{N}^{\mathbb{N}}, \leq^*)$ contains a cofinal order-isomorphic copy of \mathbb{P} .

A Refinement of \leqslant^*

Definition

Given a stationary subset $S \subseteq \kappa$, we define a quasi-order \leq^{S} over κ^{κ} by letting, for any two elements $\eta : \kappa \to \kappa$ and $\xi : \kappa \to \kappa$,

 $\eta \leq^{\mathsf{S}} \xi$ iff $\{\alpha \in \mathsf{S} \mid \eta(\alpha) > \xi(\alpha)\}$ is nonstationary.

Galvin and Hajnal (1975) used this order to attach a rank $\|\eta\|$ to each η , in studying the behavior of the power function over the singular cardinals.

Motivation

Comparing \leq^{S}

How \leq^{S} compares with $\leq^{S'}$, for different S and S'?

Theorem

Assume that κ is a regular uncountable cardinal and GCH holds. Then there exists a cofinality-preserving GCH-preserving forcing extension in which for all stationary subsets S, S' of κ , there exists a map $f: \kappa^{\leq \kappa} \to \kappa^{\leq \kappa}$ such that, for all $\eta, \xi \in \kappa^{\leq \kappa}$,

- dom $(f(\eta)) = dom(\eta);$
- if $\eta \subseteq \xi$, then $f(\eta) \subseteq f(\xi)$;
- if dom $(\eta) = dom(\xi) = \kappa$, then $\eta \leq^{S} \xi$ iff $f(\eta) \leq^{S'} f(\xi)$.

Outline

- 1 Motivation
- 2 Another Kind of Universality
- 3 A Diamond reflecting second-order formulas
- 4 Universality of Inclusion Modulo Nonstationarity

The Generalized Baire Space

The generalized Baire space is the set κ^{κ} endowed with the bounded topology, in which a basic open set takes the form $[\zeta] := \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$, with ζ , an element of $\kappa^{<\kappa}$.

A subset $F \subseteq \kappa^{\kappa}$ is *closed* iff its complement is open iff there exists a tree $T \subseteq \kappa^{<\kappa}$ such that $[T] := \{\eta \in \kappa^{\kappa} \mid \forall \alpha < \kappa(\eta \upharpoonright \alpha \in T)\}$ is equal to F.

A subset $A \subseteq \kappa^{\kappa}$ is *analytic* iff there is a closed subset F of the product space $\kappa^{\kappa} \times \kappa^{\kappa}$ such that its projection $pr(F) := \{\eta \in \kappa^{\kappa} \mid \exists \xi \in \kappa^{\kappa} \ (\eta, \xi) \in F\}$ is equal to A.

The Generalized Cantor Space

The generalized Cantor space is the subspace 2^{κ} of κ^{κ} endowed with the induced topology.

The notions of open, closed and analytic subsets of 2^{κ} , $2^{\kappa} \times 2^{\kappa}$ and $\kappa^{\kappa} \times \kappa^{\kappa}$ are then defined in the obvious way.

Definition

The restriction of the quasi-order \leq^{S} to 2^{κ} is denoted by \subseteq^{S} .

Lipschitz Reduction

Let Q_1 and Q_2 be quasi-orders on $X, Y \in \{2^{\kappa}, \kappa^{\kappa}\}$ respectively. We say that Q_1 is 1-*Lipschitz reducible* to Q_2 iff there is a function $f: X \to Y$ that satisfies for all $a, b \in X$:

•
$$(a, b) \in Q_1 \iff (f(a), f(b)) \in Q_2;$$

• $\forall \alpha \le \kappa \ (a \upharpoonright \alpha = b \upharpoonright \alpha) \implies (f(a) \upharpoonright \alpha = f(b) \upharpoonright \alpha).$
We write $Q_1 \hookrightarrow_1 Q_2.$

The Universality of \subseteq^{S}

Theorem

Assume that κ is a regular uncountable cardinal and GCH holds. Then there exists a cofinality-preserving GCH-preserving forcing extension in which, for every analytic quasi-order Q over κ^{κ} and every stationary $S \subseteq \kappa, \ Q \hookrightarrow_1 \subseteq^S$.

The universality statement under consideration is optimal, as $Q \hookrightarrow_1 \subseteq^S$ implies that Q analytic.

A Diamond reflecting second-order formulas

Outline

- 1 Motivation
- 2 Another Kind of Universality
- 3 A Diamond reflecting second-order formulas
- 4 Universality of Inclusion Modulo Nonstationarity

A Diamond reflecting second-order formulas

The Universality Implications

Before we define the principle $Dl_{S}^{*}(\Pi_{2}^{1})$, let us see the universality implications of it and the history behind the abstract definition of $Dl_{S}^{*}(\Pi_{2}^{1})$.

Theorem

Suppose S is a stationary subset of a regular uncountable cardinal κ . If $\text{Dl}_{S}^{*}(\Pi_{2}^{1})$ holds, then, for every analytic quasi-order Q over κ^{κ} , $Q \hookrightarrow_{1} \subseteq^{S}$.

Time Line

- Friedman, Hyttinen, and Kulikov (2014) identified a reflection principle while working on the question *"Is every analytic set a Borel" set?"*. They found a positive answer under the assumption "V = L".
- (2) Hyttinen and Kulikov (2015) used this principle to show the universality of the symmetric version =^S of ≤^S for S = {α < κ | cf(α) = ω}, assuming "V = L".
- (3) Hyttinen, Kulikov, and Moreno (2019) merged the principle of (1) with a diamond sequence to answer, under the assumption "V = L", the question "Is it consistently true that ⊆^S is universal for S = {α < κ | cf(α) = ω}".

Time Line

(4) At the level of large cardinals, working on the consistency of "Every Borel^{*} set is analytic and co-analytic", Asperó, Hyttinen, Kulikov, and Moreno (2019) proved: If κ is a Π¹₂-indescribable cardinal, and S = {α < κ | cf(α) = α}, then the symmetric version =^S of ≤^S is universal.

Questions

- Can the assumption V = L exchange for Π¹₂-reflection in Hyttinen-Kulikov-Moreno (2019)?
- How can we merge the diamond principle in Hyttinen-Kulikov-Moreno (2019) with Π¹₂-reflection?

Diamond Sharp

For sets N and x, we say that N sees x iff N is transitive, p.r.-closed, and $x \cup \{x\} \subseteq N$

Definition (Devlin, 1982)

Let κ be a regular and uncountable cardinal. $\Diamond_{\kappa}^{\sharp}$ asserts the existence of a sequence $\langle N_{\alpha} \mid \alpha < \kappa \rangle$ such that:

- **1** for every infinite $\alpha < \kappa$, N_{α} is a set of cardinality $|\alpha|$ that sees α ;
- 2 for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C$, $X \cap \alpha, C \cap \alpha \in N_{\alpha}$;
- 3 for every Π₂¹-sentence φ valid in a structure (κ, ∈, (A_n)_{n<ω}), there exists α < κ, such that

$$N_{\alpha} \models "\phi \text{ is valid in } \langle \alpha, \in, (A_n \upharpoonright \alpha)_{n < \omega} \rangle."$$

Good and Bad News

The good news

Devlin proved that $\diamondsuit_{\kappa}^{\sharp}$ holds in *L* for every regular uncountable cardinal κ that is not ineffable.

The bad news

For every ineffable cardinal κ , $\diamondsuit_{\kappa}^{\sharp}$ fails. Even a restricted version $\diamondsuit_{S}^{\sharp}$ for $S \subseteq \kappa$ will still fail for any ineffable S.

Conclusion

We need a finer principle.

A finer principle

Definition

Let κ be a regular and uncountable cardinal and $S \subseteq \kappa$ a stationary set. $\mathsf{Dl}_{S}^{*}(\Pi_{2}^{1})$ asserts the existence of a sequence $\langle N_{\alpha} \mid \alpha \in S \rangle$ such that:

- **1** for every $\alpha \in S$, N_{α} is a set of cardinality $< \kappa$ that sees α ;
- 2 for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $X \cap \alpha \in N_{\alpha}$;
- 3 for every Π_2^1 -sentence ϕ valid in a structure $\langle \kappa, \in, (A_n)_{n < \omega} \rangle$, there exists $\alpha \in S$, such that $|N_{\alpha}| = |\alpha|$ and

$$N_{\alpha} \models ``\phi \text{ is valid in } \langle \alpha, \in, (A_n \upharpoonright \alpha)_{n < \omega} \rangle."$$

Always on the good side

In L, $\mathsf{Dl}^*_S(\Pi^1_2)$ holds for every $\kappa = \mathsf{cf}(\kappa) > \aleph_0$ and every stationary $S \subseteq \kappa$.

A Diamond reflecting second-order formulas

Local Club Condensation

The Local Club Condensation (LCC) principle was defined and used by Friedman and Holy (2011) to study comparability of large cardinals with inner-type models. LCC provides us with tools to study $DI_S^*(\Pi_2^1)$. Friedman and Holy proved that the LCC can be obtained everywhere by a class forcing. A set-forcing was then devised by Holy, Welch and Wu:

Theorem (Holy-Welch-Wu, 2015)

Assume GCH. For every regular cardinal κ , there is a (set-size) notion of forcing \mathbb{P} which is ($<\kappa$)-directed-closed and has the κ^+ -cc such that, in $V^{\mathbb{P}}$, the two holds:

- 1 there is \vec{M} such that $\langle H_{\kappa^+}, \in, \vec{M} \rangle \models \mathsf{LCC}(\kappa, \kappa^+]$, and
- 2 there is a Δ₁-formula Θ and a parameter a ⊆ κ such that the order defined by x <_Θ y ↔ H_{κ+} ⊨ Θ(x, y, a) is a global well-order of H_{κ+}.

Forcing $DI_S^*(\Pi_2^1)$

Theorem

Suppose that κ is a regular uncountable cardinal, and \vec{M} is such that $\langle H_{\kappa^+}, \in, \vec{M} \rangle \models \text{LCC}(\kappa, \kappa^+]$. Suppose further that there is a subset $a \subseteq \kappa$ and a formula $\Theta \in \Sigma_{\omega}$ which defines a well-order $<_{\Theta}$ in H_{κ^+} via $x <_{\Theta} y$ iff $H_{\kappa^+} \models \Theta(x, y, a)$. Then, for every stationary $S \subseteq \kappa$, $\text{DI}^*_S(\Pi^1_2)$ holds.

Corollary

Assume GCH. For every regular cardinal κ , there is a (set-size) notion of forcing \mathbb{P} which is $(<\kappa)$ -directed-closed and has the κ^+ -cc such that, in $V^{\mathbb{P}}$, for every stationary $S \subseteq \kappa$, $\mathsf{Dl}^*_S(\Pi^1_2)$ holds.

Universality of Inclusion Modulo Nonstationarity

Outline

- 1 Motivation
- 2 Another Kind of Universality
- 3 A Diamond reflecting second-order formulas
- 4 Universality of Inclusion Modulo Nonstationarity

The Universality

Recall

Suppose S is a stationary subset of a regular uncountable cardinal κ . If $\text{Dl}_{S}^{*}(\Pi_{2}^{1})$ holds, then, for every analytic quasi-order Q over κ^{κ} , $Q \hookrightarrow_{1} \subseteq^{S}$.

Corollary

Assume that κ is a regular uncountable cardinal and GCH holds. Then there is a $(<\kappa)$ -directed-closed, κ^+ -cc notion of forcing \mathbb{P} such that, in $V^{\mathbb{P}}$, GCH holds and for every analytic quasi-order Q over κ^{κ} and every stationary $S \subseteq \kappa$, $Q \hookrightarrow_1 \subseteq^S$.

Σ_1^1 -completeness

Definition

A quasi-order \leq over a space $X \in \{2^{\kappa}, \kappa^{\kappa}\}$ is said to be Σ_1^1 -complete iff it is analytic and, for every analytic quasi-order Q over X, there exists a κ -Borel function $f : X \to X$ reducing Q to \leq .

Remark

As Lipschitz \implies continuous $\implies \kappa$ -Borel, each \subseteq^S is a Σ_1^1 -complete quasi-order. Such a consistency was previously only known for S's of one of two specific forms, and the witnessing maps were not Lipschitz.

More on Universality

By the use of canonical functions coding (Friedman) or Kurepa tree coding (Lücke): For any given quasi-order R over κ^{κ} , there is a forcing extension in which:

- $\mathbf{1}$ R is an analytic quasi-order, and
- 2 for every analytic quasi-order Q over κ^{κ} and every stationary $S \subseteq \kappa$, $Q \hookrightarrow_1 \subseteq^S$.

So the main advantage of going outside of L is that we can change the quasi-orders that belong to the class of analytic sets.

Conclusions

Suppose $\mathsf{Dl}^*_{\kappa\cap\operatorname{cof}\lambda}(\Pi^1_2)$ holds and \mathcal{T} is a first-order countable relational theory (not necessarily complete).

- If $\lambda = \aleph_0$, then Borel^{*} = Σ_1^1 .
- If $\lambda = \aleph_0$, κ is \aleph_0 -inaccessible, then the embedability of linear orders is Σ_1^1 -complete.
- If λ = ℵ₀, κ is ℵ₀-inaccessible, and T is complete stable unsuperstable, then ≅_T is Σ¹₁-complete.
- If $\lambda = 2^{\aleph_0}$, κ is inaccessible, and T is complete superstable with S-DOP, then \cong_T is Σ_1^1 -complete.
- If $\kappa = \lambda^+$, $\lambda^{<\lambda} = \lambda$, and T is complete unstable or superstable with OTOP, then \cong_T is Σ_1^1 -complete.
- If $\kappa = \lambda^+ > \aleph_1$, $\lambda^{<\lambda} = \lambda$, and T is complete superstable with DOP, then \cong_T is Σ_1^1 -complete.
- If $\kappa = \lambda^+$, $\lambda^{<\lambda} = \lambda > \aleph_0$, and $\mathsf{Dl}^*_{\kappa \cap \mathsf{cof} \, \aleph_0}(\Pi^1_2)$, then $\cong_{\mathcal{T}}$ is either Δ^1_1 or Σ^1_1 -complete.

We thus feel that we have identified the correct combinatorial principle behind a line of results that were previously obtained under the heavy hypothesis of "V = L".

Thank you