Reflection principles and the generalized Baire spaces

Miguel Moreno (Joint work with David Asperó, Tapani Hyttinen and Vadim Kulikov)

> Department of Mathematics and Statistics University of Helsinki

6th European Set Theory Conference

Miguel Moreno (UH)

6th European Set Theory Conference 1 / 29

1 Classifying First-order countable Theories

2 The Main Gap Theorem

3 Reflection principles

Classifying First-order countable Theories

Outline

1 Classifying First-order countable Theories

2 The Main Gap Theorem

3 Reflection principles

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

- Löwenheim-Skolem Theorem: $\exists \alpha \ge \omega \ I(T, \alpha) \ne 0 \Rightarrow \forall \beta \ge \omega \ I(T, \beta) \ne 0.$
- Morley's categoricity: $\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1$
- Shelah's Main Gap Theorem: Either, for every uncountable cardinal α, *I*(*T*, α) = 2^α, or ∀α > 0 *I*(*T*, ℵ_α) < □_{ω1}(| α |).

Classifying First-order countable Theories

Approaches

• Shelah's stability theory.

Classify the models of T by cardinal invariants and clearly differentiate between the theories that can be classified and those that cannot.

• Descriptive set theory.

It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.

The topology

 κ is an uncountable cardinal that satisfies $\kappa^{<\kappa}=\kappa.$

We equip the set κ^κ with the bounded topology. For every $\zeta\in\kappa^{<\kappa},$ the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

 κ -Borel

The collection of κ -Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

A function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ is *Borel*, if for every open set $A \subseteq \kappa^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of κ^{κ} .

Reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *Borel* reducible to E_2 , if there is a Borel function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq_B^{\kappa} E_2$.

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure \mathcal{A}_f with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are \cong_T^{κ} equivalent if

•
$$\mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

Classifying First-order countable Theories

The complexity

We can define a partial order on the set of all first-order complete countable theories

$$T \leqslant_{\kappa}^{\kappa} T'$$
 iff $\cong_{T}^{\kappa} \leqslant_{B}^{\kappa} \cong_{T'}^{\kappa}$

The subspace 2^{κ}

In the subspace $2^\kappa,$ we can define the following notions in the same way:

- The bounded topology (the relative subspace topology).
- $E_1 \leqslant^2_B E_2$.
- $f \cong^2_T g$.
- $T \leq^2_{\kappa} T'$.

Reductions

For $X, Y \in {\kappa^{\kappa}, 2^{\kappa}}$, we say that a function $f: X \to Y$ is *Borel*, if for every open set $A \subseteq Y$ the inverse image $f^{-1}[A]$ is a Borel subset of X.

Let E_1 and E_2 be equivalence relations on X and Y respectively. We say that E_1 is *Borel reducible* to E_2 , if there is a Borel function $f: X \to Y$ that satisfies $(\eta, \xi) \in E_1 \Leftrightarrow (f(\eta), f(\xi)) \in E_2$. It is denoted by $E_1 \leq_B E_2$. The Main Gap Theorem

Outline

Classifying First-order countable Theories

2 The Main Gap Theorem

3 Reflection principles

The Main Gap Theorem

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem in the spaces κ^{κ} and $2^{\kappa}?$

A Borel reducibility counterpart of the Main Gap

Theorem (Hyttinen, Kulikov, M.)

Suppose that $\kappa = \kappa^{<\kappa} = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$. Then the following statements are consistent:

If T_1 is classifiable and T_2 is not, then there is an embedding of $(\mathcal{P}(\kappa), \subseteq)$ to $(B^*(T_1, T_2), \leq_B)$, where $B^*(T_1, T_2)$ is the set of all Borel^{*}-equivalence relations strictly between $\cong_{T_1}^2$ and $\cong_{T_2}^2$.

Theorem (Hyttinen, Kulikov, M.)

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. If T is a classifiable theory and T' is a stable unsuperstable theory, then $\cong_T^2 \leq_B \cong_{T'}^2$.

Theorem (M.)

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, $\lambda \geq 2^{\omega}$, and κ an inaccessible cardinal. Then $\cong_T^{\kappa} \leq_B \cong_{T'}^{\kappa}$

Outline

1 Classifying First-order countable Theories

2 The Main Gap Theorem

3 Reflection principles

$$m{E}^\kappa_{\lambda ext{-club}}$$
 and $m{E}^2_{\lambda ext{-club}}$

For every regular cardinal $\lambda < \kappa$, the relations $E_{\lambda-\text{club}}^{\kappa}$ and $E_{\lambda-\text{club}}^{2}$ are defined as follow.

Definition

- On the space κ^κ, we say that f, g ∈ κ^κ are E^κ_{λ-club} equivalent if the set {α < κ|f(α) = g(α)} contains an unbounded set closed under λ-limits.
- On the space 2^κ, we say that f, g ∈ 2^κ are E²_{λ-club} equivalent if the set {α < κ|f(α) = g(α)} contains an unbounded set closed under λ-limits.

◇-reflection

Definition

Let X, Y be subsets of κ and suppose Y consists of ordinals of uncountable cofinality. We say that X \diamond -reflects to Y if there exists a sequence $\langle D_{\alpha} \rangle_{\alpha \in Y}$ such that:

- $D_{\alpha} \subset \alpha$ is stationary in α .
- if $Z \subset X$ is stationary, then $\{\alpha \in Y | D_{\alpha} = Z \cap \alpha\}$ is stationary.

Theorem (Friedman, Hyttinen, Kulikov) $E_{\lambda-club}^2 \leq_B E_{\lambda^+-club}^2$ is consistently true.

Full reflection

Definition

For stationary subsets *S* and *A* of κ , we say that *S* reflects fully in *A* if the set $\{\alpha \in A \mid S \cap \alpha \text{ is nonstationary in } \alpha\}$ is nonstationary.

Proposition

If every stationary set $S \subset S_{\gamma}^{\kappa}$ reflects fully in S_{λ}^{κ} , then $E_{\gamma-club}^{\kappa} \leqslant_{B} E_{\lambda-club}^{\kappa}$.

Miguel Moreno (UH)

6th European Set Theory Conference 20 / 29

Proof

Definition

For every $\alpha < \kappa$ with $\gamma < cf(\alpha)$ define $E_{\gamma-club}^{\kappa} \upharpoonright \alpha$ by:

 $\mathsf{E}^{\kappa}_{\gamma\text{-club}} \restriction \alpha = \{(\eta, \xi) \in \kappa^{\kappa} \times \kappa^{\kappa} \mid \exists \mathsf{C} \subseteq \alpha \text{ a } \gamma\text{-club}, \forall \beta \in \mathsf{C}, \eta(\beta) = \xi(\beta)\}.$

$$F(\eta)(\alpha) = \begin{cases} f_{\alpha}(\eta), \text{ if } cf(\alpha) = \lambda \\ 0, \text{ otherwise.} \end{cases}$$

where $f_{\eta}(\alpha)$ is a code in $\kappa \setminus \{0\}$ for the $(E_{\gamma-\text{club}}^{\kappa} \upharpoonright \alpha)$ -equivalence class of η .

6th European Set Theory Conference 21 / 29

Full reflection

Theorem (Jech, Shelah)

Let $\kappa_2 < \kappa_3 < \cdots < \kappa_n < \cdots$ be a sequence of supercompact cardinals. There is a generic extension V[G] in which $\kappa_n = \aleph_n$ for all $n \ge 2$ and such that:

- **1** Every stationary set $S \subset S_{\omega}^{\omega_2}$ reflects fully in $S_{\omega_1}^{\omega_2}$.
- 2 For every 2 < n and every $0 \le k \le n-3$, every stationary set $S \subset S_{\omega_k}^{\omega_n}$ reflects fully in $S_{\omega_{n-1}}^{\omega_n}$.

Corollary

Let $\kappa_2 < \kappa_3 < \cdots < \kappa_n < \cdots$ be a sequence of supercompact cardinals. There is a generic extension V[G] in which

1
$$E_{\omega-club}^{\omega_2} \leq_B E_{\omega_1-club}^{\omega_2}$$
.
2 For every 2 < n and every 0 $\leq k \leq n-3$, $E_{\omega_k-club}^{\omega_n} \leq_B E_{\omega_n-1-club}^{\omega_n}$.

Indescribable Cardinals

Theorem

Suppose κ is a $\Pi_1^{\lambda^+}$ -indescribable cardinal and that V = L. Then there is a forcing extension where κ is collapsed to λ^{++} and $E_{\lambda-club}^{\lambda++} \leq_B E_{\lambda^+-club}^2$.

Σ^1_1 -completeness

Definition

An equivalence relation E on $X \in {\kappa^{\kappa}, 2^{\kappa}}$ is Σ_1^1 if E is the projection of a closed set in $\kappa^{\kappa} \times X$ and it is Σ_1^1 -complete, if every Σ_1^1 equivalence relation is Borel reducible to it.

Theorem (Hyttinen, Kulikov)

Suppose V = L and $\kappa > \omega$. Then $E_{\mu\text{-club}}^{\kappa}$ is Σ_1^1 -complete for every regular $\mu < \kappa$.

Σ^1_1 -completeness

Definition

For κ a Mahlo cardinal, the relation E_{reg}^{κ} is defined in the space $\kappa^{\kappa} \times \kappa^{\kappa}$ by: $(\eta, \xi) \in E_{\text{reg}}^{\kappa} \Leftrightarrow \{ \alpha \in \text{reg}(\kappa) \mid \eta(\alpha) \neq \xi(\alpha) \}$ is not stationary.

Definition

For κ a Mahlo cardinal, the relation E_{reg}^2 is defined in the space $2^{\kappa} \times 2^{\kappa}$ by:

 $(\eta,\xi) \in E^2_{reg} \Leftrightarrow \{ \alpha \in reg(\kappa) \mid \eta(\alpha) \neq \xi(\alpha) \}$ is not stationary.

Σ_1^1 -completeness

Theorem

If κ is a Π_2^1 -indescribable cardinal, then E_{reg}^{κ} is Σ_1^1 -complete.

Theorem

Suppose κ is a supercompact cardinal. There is a generic extension V[G] in which $E_{reg}^{\kappa} \leq_{B} E_{reg}^{2}$ holds and κ is still supercompact in the extension.

Miguel Moreno (UH)

6th European Set Theory Conference 26 / 29

Corollary

Suppose κ is a supercompact cardinal. There is a generic extension V[G] in which E_{reg}^2 is Σ_1^1 -complete.

Corollary

Let DLO be the theory of dense linear orderings without end points. If κ is a Π_2^1 -indescribable cardinal, then \cong_{DLO} is Σ_1^1 -complete.

References

- D. Asperó, T. Hyttinen, V. Kulikov, and M. Moreno, *On large cardinals and generalized Baires spaces*, in preparation.
- S.D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory, Memoirs of the Amer. Math. Soc. Vol. 230/1081 (American Mathematical Society, 2014).
- T. Hyttinen, and V. Kulikov, On Σ_1^1 -complete equivalence relations on the generalized baire space, Math. Log. Quart. **61**, 66 81 (2015).
- T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. Math. Logic. 56 no.3, 175 – 185 (2017).

References

- M. Moreno, *The isomorphism relation of theories with S-DOP*, in preparation.
- T. Jech and S. Shelah, *Full reflection of stationary sets below* \aleph_{ω} , The Journal of Symbolic Logic. **55** no.2, 822 830 (1990).
- S. Shelah, *Classification theory*, Stud. Logic Found. Math. Vol. 92, (North-Holland, Amsterdam, 1990).