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Classifying First-order countable Theories

The spectrum problem

Let I(T , α) denote the number of non-isomorphic models of T with
cardinality α.

What is the behavior of I(T , α)?

• Löwenheim-Skolem Theorem:
∃α ≥ ω I(T , α) 6= 0⇒ ∀β ≥ ω I(T , β) 6= 0.

• Morley’s categoricity: ∃α > ω I(T , α) = 1⇒ ∀β > ω I(T , β) = 1
• Shelah’s Main Gap Theorem: Either, for every uncountable

cardinal α, I(T , α) = 2α, or ∀α > 0 I(T ,ℵα) < iω1(| α |).
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Classifying First-order countable Theories

Approaches

• Shelah’s stability theory.
Classify the models of T by cardinal invariants and clearly differentiate
between the theories that can be classified and those that cannot.

• Descriptive set theory.
It uses Borel-reducibility and the isomorphism relation to define a
partial order on the set of all first-order complete countable theories.
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Classifying First-order countable Theories

The topology

κ is an uncountable cardinal that satisfies κ<κ = κ.

We equip the set κκ with the bounded topology. For every ζ ∈ κ<κ, the
set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set.
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Classifying First-order countable Theories

κ-Borel

The collection of κ-Borel subsets of κκ is the smallest set which contains
the basic open sets and is closed under unions and intersections, both of
length κ.

A function f : κκ → κκ is Borel, if for every open set A ⊆ κκ the inverse
image f −1[A] is a Borel subset of κκ.
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Classifying First-order countable Theories

Reductions

Let E1 and E2 be equivalence relations on κκ. We say that E1 is Borel
reducible to E2, if there is a Borel function f : κκ → κκ that satisfies
(x , y) ∈ E1 ⇔ (f (x), f (y)) ∈ E2.

We write E1 6κB E2.
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Classifying First-order countable Theories

Coding structures
Fix a language L = {Pn|n < ω}

Definition
Let π be a bijection between κ<ω and κ. For every f ∈ κκ define the
structure Af with domain κ and for every tuple (a1, a2, . . . , an) in κn

(a1, a2, . . . , an) ∈ PAf
m ⇔ f (π(m, a1, a2, . . . , an)) > 0

Definition (The isomorphism relation)
Given T a first-order complete countable theory in a countable vocabulary,
we say that f , g ∈ κκ are ∼=κ

T equivalent if
• Af |= T ,Ag |= T ,Af ∼= Ag

or
• Af 2 T ,Ag 2 T
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Classifying First-order countable Theories

The complexity

We can define a partial order on the set of all first-order complete
countable theories

T 6κκ T ′ iff ∼=κ
T 6

κ
B
∼=κ

T ′
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Classifying First-order countable Theories

The subspace 2κ

In the subspace 2κ, we can define the following notions in the same way:
• The bounded topology (the relative subspace topology).
• E1 62

B E2.
• f ∼=2

T g .
• T 62

κ T ′.
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Classifying First-order countable Theories

Reductions

For X ,Y ∈ {κκ, 2κ}, we say that a function f : X → Y is Borel, if for
every open set A ⊆ Y the inverse image f −1[A] is a Borel subset of X .

Let E1 and E2 be equivalence relations on X and Y respectively. We say
that E1 is Borel reducible to E2, if there is a Borel function f : X → Y
that satisfies (η, ξ) ∈ E1 ⇔ (f (η), f (ξ)) ∈ E2. It is denoted by E1 6B E2.
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The Main Gap Theorem

Shelah’s Main Gap Theorem

Theorem (Shelah)
If T is classifiable and T ′ is not, then T is less complex than T ′ and their
complexity are not close.

Question:
Is there a Borel reducibility counterpart of the Main Gap Theorem in the
spaces κκ and 2κ?
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The Main Gap Theorem

A Borel reducibility counterpart of the Main Gap

Theorem (Hyttinen, Kulikov, M.)
Suppose that κ = κ<κ = λ+, 2λ > 2ω and λ<λ = λ. Then the following
statements are consistent:
If T1 is classifiable and T2 is not, then there is an embedding of (P(κ),⊆)
to (B∗(T1,T2),6B), where B∗(T1,T2) is the set of all Borel∗-equivalence
relations strictly between ∼=2

T1
and ∼=2

T2
.
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The Main Gap Theorem

Theorem (Hyttinen, Kulikov, M.)
Suppose κ = λ+ and λω = λ. If T is a classifiable theory and T ′ is a
stable unsuperstable theory, then ∼=2

T 6B ∼=2
T ′ .

Theorem (M.)
Suppose T is a classifiable theory, T ′ is a superstable theory with the
S-DOP, λ ≥ 2ω, and κ an inaccessible cardinal. Then ∼=κ

T 6B ∼=κ
T ′
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Reflection principles

Eκ
λ-club and E 2

λ-club

For every regular cardinal λ < κ, the relations Eκ
λ-club and E 2

λ-club are
defined as follow.
Definition

• On the space κκ, we say that f , g ∈ κκ are Eκ
λ-club equivalent if the

set {α < κ|f (α) = g(α)} contains an unbounded set closed under
λ-limits.

• On the space 2κ, we say that f , g ∈ 2κ are E 2
λ-club equivalent if the

set {α < κ|f (α) = g(α)} contains an unbounded set closed under
λ-limits.
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Reflection principles

�-reflection

Definition
Let X ,Y be subsets of κ and suppose Y consists of ordinals of
uncountable cofinality. We say that X � -reflects to Y if there exists a
sequence 〈Dα〉α∈Y such that:

• Dα ⊂ α is stationary in α.
• if Z ⊂ X is stationary, then {α ∈ Y |Dα = Z ∩ α} is stationary.

Theorem (Friedman, Hyttinen, Kulikov)
E 2
λ-club 6B E 2

λ+-club is consistently true.
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Reflection principles

Full reflection

Definition
For stationary subsets S and A of κ, we say that S reflects fully in A if the
set {α ∈ A | S ∩ α is nonstationary in α} is nonstationary.

Proposition
If every stationary set S ⊂ Sκγ reflects fully in Sκλ , then Eκ

γ-club 6B Eκ
λ-club.
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Reflection principles

Proof

Definition
For every α < κ with γ < cf (α) define Eκ

γ-club � α by:

Eκ
γ-club � α = {(η, ξ) ∈ κκ × κκ | ∃C ⊆ α a γ–club, ∀β ∈ C , η(β) = ξ(β)}.

F (η)(α) =

{
fα(η), if cf (α) = λ

0, otherwise.

where fη(α) is a code in κ\{0} for the (Eκ
γ-club � α)–equivalence class of η.
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Reflection principles

Full reflection
Theorem (Jech, Shelah)
Let κ2 < κ3 < · · · < κn < · · · be a sequence of supercompact cardinals.
There is a generic extension V [G ] in which κn = ℵn for all n ≥ 2 and such
that:

1 Every stationary set S ⊂ Sω2
ω reflects fully in Sω2

ω1 .
2 For every 2 < n and every 0 6 k 6 n − 3, every stationary set

S ⊂ Sωn
ωk reflects fully in Sωn

ωn−1 .

Corollary
Let κ2 < κ3 < · · · < κn < · · · be a sequence of supercompact cardinals.
There is a generic extension V [G ] in which

1 Eω2
ω-club 6B Eω2

ω1-club.
2 For every 2 < n and every 0 6 k 6 n − 3, Eωn

ωk -club 6B Eωn
ωn−1-club.
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Reflection principles

Indescribable Cardinals

Theorem
Suppose κ is a Πλ+

1 -indescribable cardinal and that V = L. Then there is a
forcing extension where κ is collapsed to λ++ and Eλ++

λ-club 6B E 2
λ+-club.
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Reflection principles

Σ1
1-completeness

Definition
An equivalence relation E on X ∈ {κκ, 2κ} is Σ1

1 if E is the projection of a
closed set in κκ ×X and it is Σ1

1-complete, if every Σ1
1 equivalence relation

is Borel reducible to it.

Theorem (Hyttinen, Kulikov)
Suppose V = L and κ > ω. Then Eκ

µ-club is Σ1
1-complete for every regular

µ < κ.
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Reflection principles

Σ1
1-completeness

Definition
For κ a Mahlo cardinal, the relation Eκ

reg is defined in the space κκ×κκ by:

(η, ξ) ∈ Eκ
reg ⇔ {α ∈ reg(κ) | η(α) 6= ξ(α)} is not stationary .

Definition
For κ a Mahlo cardinal, the relation E 2

reg is defined in the space 2κ× 2κ by:

(η, ξ) ∈ E 2
reg ⇔ {α ∈ reg(κ) | η(α) 6= ξ(α)} is not stationary .
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Reflection principles

Σ1
1-completeness

Theorem
If κ is a Π1

2-indescribable cardinal, then Eκ
reg is Σ1

1-complete.

Theorem
Suppose κ is a supercompact cardinal. There is a generic extension V [G ]
in which Eκ

reg 6B E 2
reg holds and κ is still supercompact in the extension.
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Reflection principles

Corollary
Suppose κ is a supercompact cardinal. There is a generic extension V [G ]
in which E 2

reg is Σ1
1-complete.

Corollary
Let DLO be the theory of dense linear orderings without end points. If κ is
a Π1

2–indescribable cardinal, then ∼=DLO is Σ1
1-complete.
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