Strong DOP and the Borel hierarchy

Miguel Moreno

Department of Mathematics and Statistics University of Helsinki

Set-theoretical aspects of the model theory of strong logics

Miguel Moreno (UH)

Set-theoretical aspects of the model theory of / 40 $^{\prime}$

1 Classifying First-order countable Theories

2 The Main Gap in the Borel hierarchy

3 The Generalized Baire Space

Classifying First-order countable Theories

Outline

1 Classifying First-order countable Theories

2 The Main Gap in the Borel hierarchy

3 The Generalized Baire Space

Miguel Moreno (UH)

Set-theoretical aspects of the model theory of /40

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

- Löwenheim-Skolem Theorem: $\exists \alpha \ge \omega \ I(T, \alpha) \neq 0 \Rightarrow \forall \beta \ge \omega \ I(T, \beta) \neq 0.$
- Morley's categoricity: $\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1$
- Shelah's Main Gap Theorem: Either, for every uncountable cardinal α, *I*(*T*, α) = 2^α, or ∀α > 0 *I*(*T*, ℵ_α) < □_{ω1}(| α |).

Classifying First-order countable Theories

Approaches

• Shelah's stability theory.

Classify the models of T by cardinal invariants and clearly differentiate between the theories that can be classified and those that cannot.

• Descriptive set theory:

It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.

The topology

 κ is a cardinal that satisfies $\kappa^{<\kappa}=\kappa.$

We equip the set 2^{κ} with the bounded topology. For every $\zeta \in 2^{<\kappa}$, the set

$$[\zeta] = \{\eta \in 2^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

The collection of Borel subsets of 2^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

Reductions

A function $f: 2^{\kappa} \to 2^{\kappa}$ is *Borel*, if for every open set $A \subseteq 2^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^{κ} .

Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is Borel reducible to E_2 , if there is a Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq B E_2$.

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in 2^{\kappa}$ define the structure \mathcal{A}_f with domain κ by: for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) = 1$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in 2^{\kappa}$ are \cong_T^{κ} equivalent if

•
$$\mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

Classifying First-order countable Theories

The complexity

We can define a partial order on the set of all first-order complete countable theories

$$T \leqslant^{\kappa} T'$$
 iff $\cong^{\kappa}_{T} \leqslant_{B} \cong^{\kappa}_{T'}$

Outline

1 Classifying First-order countable Theories

2 The Main Gap in the Borel hierarchy

3 The Generalized Baire Space

Miguel Moreno (UH)

Set-theoretical aspects of the model theory of /40

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem in the space 2^{κ} ?

Miguel Moreno (UH)

Set-theoretical aspects of the model theory of / 40 $^{\prime}$

ENI-DOP

For every $L_{\omega_1,\omega}$ -sentence, φ , denote by iso_{φ}^{ω} the isomorphism relation of the models of φ with universe ω .

Definition

An ω -stable theory T has ENI-NDOP if the primary model over any independent triple of ω -saturated models is ω -saturated. We say T has ENI-DOP if it fails to have ENI-NDOP.

Definition

We call a theory T Borel complete if $iso_{\varphi}^{\omega} \leq_B \cong_T^{\omega}$ for every $L_{\omega_1,\omega}$ -sentence φ .

Theorem (Laskowski, Shelah)

If T is ω -stable with ENI-DOP, then T is Borel complete.

Countable

 $T = Th(\mathbb{Q}, \leq).$ T', the theory of vector space over the field of rational numbers.

By the Borel-reducibility hierarchy:

 $T \leqslant^{\omega} T'$ $T' \nleq^{\omega} T$

By the stability theory T' is simpler than T.

Uncountable

Theorem (Shelah)

If T is classifiable, then T is Δ_1^1 .

Theorem (Friedman, Hyttinen, Kulikov) If T is unstable then T is not Δ_1^1 .

Theorem (Friedman, Hyttinen, Kulikov)

If T is unstable and T' is classifiable, then $T \leq \kappa T'$.

The Equivalence Modulo Non-stationary Ideals

Definition

For every $X \subset \kappa$ stationary, we define E_X as the relation

 $E_X = \{(\eta, \xi) \in 2^{\kappa} \times 2^{\kappa} \mid (\eta^{-1}[1] \triangle \xi^{-1}[1]) \cap X \text{ is not stationary}\}$

where \triangle denotes the symmetric difference.

When
$$X = \{ \alpha < \kappa | cf(\alpha) = \lambda \}$$
, we will denote E_X by E_{λ} .

Looking above the Gap

Theorem (Friedman, Hyttinen, Kulikov)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$.

- If T is an unstable or superstable with OTOP, then $E_{\lambda} \leq_{B} \cong_{T}^{\kappa}$.
- If $\lambda \geq 2^{\omega}$ and T is a superstable with DOP, then $E_{\lambda} \leq B \cong_{T}^{\kappa}$.

Theorem (Friedman, Hyttinen, Kulikov)

Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and T is a stable unsuperstable. Then $E_{\omega} \leq_{B} \cong_{T}^{\kappa}$

Looking below the Gap

Theorem (Friedman, Hyttinen, Kulikov)

If T is a classifiable theory, then for all regular cardinal $\lambda < \kappa$, $E_{\lambda} \notin_{B} \cong_{T}^{\kappa}$

Theorem (Hyttinen, Kulikov, Moreno)

Denote by S_{λ}^{κ} the set $\{\alpha < \kappa | cf(\alpha) = \lambda\}$. Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. If $\diamondsuit(S_{\lambda}^{\kappa})$ holds, then $\cong_{T}^{\kappa} \leq_{B} E_{\lambda}$.

The stable unsuperstable theories

Theorem (Hyttinen, Kulikov, Moreno)

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. If T is a classifiable theory and T' is a stable unsuperstable theory, then $\cong_T^{\kappa} \leq_B E_{\omega} \leq_B \cong_{T'}^{\kappa}$ and $E_{\omega} \leq_B \cong_T^{\kappa}$.

Proof.

Shelah proved that if $\kappa = \lambda^+ = 2^{\lambda}$ and S is a stationary subset of $\{\alpha < \kappa \mid cf(\alpha) \neq cf(\lambda)\}$, then $\Diamond(S)$ holds. So, in this case $\Diamond(S_{\omega}^{\kappa})$ holds and $\cong_{T}^{\kappa} \leq_{B} E_{\omega}$. The other reduction is [FHK] theorem.

Consistency

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq^{\kappa} T'$ and $T' \leq^{\kappa} T$.

Theorem (Hyttinen, Kulikov, Moreno)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$.

- 1 If V = L, then $H(\kappa)$ holds.
- It is consistent that H(κ) holds and there are 2^κ equivalence relations strictly between ≅^κ_T and ≅^κ_{T'}.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem that does not need to force diamonds?

It can be studied in two ways:

- Does it holds E_ω ≤_B ≅^κ_T for every theory T non-classifiable under some cardinal assumptions that imply ◊(S^κ_ω)?
- Is there a Borel reducibility counterpart of the Main Gap Theorem in another space?

The Generalized Baire Space

Outline

1 Classifying First-order countable Theories

2 The Main Gap in the Borel hierarchy

3 The Generalized Baire Space

Miguel Moreno (UH)

Set-theoretical aspects of the model theory of /40

The generalized Baire space

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^κ with the bounded topology. For every $\zeta\in\kappa^{<\kappa},$ the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

The collection of Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

Reductions in GBS

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *Borel* reducible to E_2 , if there is a continuous function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq B E_2$.

Coding structures in GBS

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure \mathcal{A}_f with domain κ by: for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are \cong_T^{κ} equivalent if

•
$$\mathcal{A}_f \models \mathcal{T}, \mathcal{A}_g \models \mathcal{T}, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

The Equivalence Modulo Non-stationary Ideals in GBS

We say that $f, g \in \kappa^{\kappa}$ are E_{λ} equivalent if the set $\{\alpha < \kappa | f(\alpha) = g(\alpha)\}$ contains an unbounded set that is closed under λ -limits.

Theorem (Hyttinen, Moreno)

Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. Then $\cong_T^{\kappa} \leq_B E_{\lambda}$.

Proof

Let \mathcal{A} and \mathcal{B} be structures with domain κ , and $\{X_{\gamma}\}_{\gamma < \kappa}$ an enumeration of the elements of $\mathcal{P}_{\kappa}(\kappa)$ and $\{f_{\gamma}\}_{\gamma < \kappa}$ an enumeration for all the functions with domain in $\mathcal{P}_{\kappa}(\kappa)$ and range in $\mathcal{P}_{\kappa}(\kappa)$. The game $\text{EF}_{\omega}^{\kappa}(\mathcal{A}, \mathcal{B})$ is played by I and II as follows. In the *n*-th turn I choose an ordinal $\beta_n < \kappa$ such that $X_{\beta_{n-1}} \subset X_{\beta_n}$, and II an ordinal $\theta_n < \kappa$ such that $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subset f_{\theta_n}$, the game starts with X_{β_0} and f_{θ_0} as empty sets. The game finish after ω moves.

The player **II** wins if $\cup_{i < \omega} f_{\theta_i} : A \to B$ is a partial isomorphism, otherwise the player **I** wins.

Proof

For every $\alpha < \kappa$, structures \mathcal{A} and \mathcal{B} with domain κ , the game $\mathsf{EF}^{\kappa}_{\omega}(\mathcal{A}\restriction_{\alpha}, \mathcal{B}\restriction_{\alpha})$ is played by I and II as follows. In the *n*-th turn I choose an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha$, $X_{\beta_{n-1}} \subset X_{\beta_n}$, and II an ordinal $\theta_n < \alpha$ such that $dom(f_{\theta_n}), rang(f_{\theta_n}) \subset \alpha$, $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap rang(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$. The game starts with X_{β_0} and f_{θ_0} as empty sets, and finishes after ω moves. The player II wins if $\cup_{i < \omega} f_{\theta_i} : \mathcal{A} \upharpoonright_{\alpha} \to \mathcal{B} \upharpoonright_{\alpha}$ is a partial isomorphism, otherwise the player I wins.

Proof

Lemma

For every pair of structures, A and B with domain κ , the following holds:

- $\mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathbf{II} \uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .
- $I \uparrow EF^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff I \uparrow EF^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Definition

Given T a first order complete countable theory in a countable vocabulary and $\alpha \leq \kappa$. Define the relation $R_{EF}^{\alpha} \subseteq \kappa^{\kappa} \times \kappa^{\kappa}$ as $\eta \; R_{EF}^{\alpha} \notin I$, $\beta_{\alpha} \not\models T$ and $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \not\models T$, or $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \not\models T$, $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \not\models T$ and the player **II** has a winning strategy for the restricted game $EF_{\omega}^{\kappa}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\xi} \upharpoonright_{\alpha})$.

The Generalized Baire Space

Proof

Lemma

For every T first order complete countable theory in a countable vocabulary, there are club many α such that R_{EF}^{α} is an equivalence relation.

Define the reduction as follows.

For every $\eta \in \kappa^{\kappa}$ define the function f_{η} , as $f_{\eta}(\alpha)$ a code in $\kappa \setminus \{0\}$ for the R_{EF}^{α} equivalence class for $\mathcal{A}_{\eta} \upharpoonright_{\alpha}$, when $cf(\alpha) = \lambda$, $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T$, and R_{EF}^{α} is an equivalence relation; $f_{\eta}(\alpha) = 0$ in other case.

s-isolation

Definition

Denote by F_{λ}^{s} the set of pairs (p, A) with $|A| < \lambda_{r}(T)$, such that for some $B \supseteq A$, $p \in S(B)$, and $p \upharpoonright_{A} \vdash p$.

- 1 We say that C is s-constructible over A if there is a sequence $(a_i, B_i)_{i < \alpha}$ such that $C = A \cup \bigcup_{i < \alpha} a_i$, and for all $i < \alpha$, $(t(a_i, A_i), B_i) \in F^s_{\lambda}$, where $A_i = A \cup \bigcup_{j < i} a_j$.
- 2 We say that C is s-primary over A if it is s-constructible over A and $\lambda_r(T)$ -saturated.

The Generalized Baire Space

The Orthogonal Chain Property

Definition

Given $p \in S(A)$ and $B \subseteq A$, we say $p \perp B$ if for every $q \in S(A)$ that doesn't fork over B the following holds; for every a, b, and $B' \supseteq A$, if a realizes p, b realizes q, $a \downarrow_A B'$ and $b \downarrow_A B'$ then $a \downarrow_{B'} b$.

Definition

A theory T has the property OCP if there exist $\lambda_r(T)$ -saturated models of T of power $\lambda_r(T)$, $\{A_i\}_{i < \omega}$, such that for every $i \leq j$, $A_i \subseteq A_j$ and $a \notin \bigcup_{i < \omega} A_i$ such that $t(a, \bigcup_{i < \omega} A_i) \perp A_i$.

Define $T_{\omega} = Th((\omega^{\omega}, R_n)_{n < \omega})$, where $\eta R_n \xi$ holds if $\eta \upharpoonright_n = \xi \upharpoonright_n$. T_{ω} has the OCP.

OCP and superstable

Lemma

If a theory T has the OCP, then T is not superstable.

Theorem (Hyttinen, Moreno)

Suppose T is a classifiable theory, T' is an stable theory with the OCP, and κ an inaccessible cardinal. Then $\cong_T^{\kappa} \leq_B E_{\omega} \leq_B \cong_{T'}^{\kappa}$

Miguel Moreno (UH)

Set-theoretical aspects of the model theory of / 40 $^{\prime}$

a-isolation

Definition

Denote by F_{ω}^{a} the set of pairs (p, A) with $|A| < \omega$, such that for some $B \supseteq A$, $p \in S(B)$, $a \models p$ and $stp(a, A) \vdash p$.

- 1 We say that C is a-constructible over A if there is a sequence $(a_i, B_i)_{i < \alpha}$ such that $C = A \cup \bigcup_{i < \alpha} a_i$, and for all $i < \alpha$, $(t(a_i, A_i), B_i) \in F_{\omega}^a$, where $A_i = A \cup \bigcup_{j < i} a_j$.
- 2 We say that C is a-saturated if for all $B \subseteq C$ of power less than $|C|^+$ and $p \in S(B)$ the following holds: if for some A, $(p, A) \in F_{\omega}^a$, then p is realized in C.
- **3** We say that C is a-primary over A if it is a-constructible over A and a-saturated.
- We say that C is a-atomic over A if for every c ∈ C, there is B ⊆ A such that (t(c, A), B) ∈ F^a_ω

DOP

Definition

A theory T has the dimensional order property (DOP) if there are a-saturated models $(M_i)_{i<3}$, $M_0 \subset M_1 \cap M_2$, $M_1 \downarrow_{M_0} M_2$, and the a-primary model over $M_1 \cup M_2$ is not a-minimal over $M_1 \cup M_2$.

Lemma (Shelah)

Let $M_0 \subset M_1 \cap M_2$ be a-saturated models, $M_1 \downarrow_{M_0} M_2$, M a-atomic over $M_1 \cup M_2$ and a-saturated. Then the following conditions are equivalent:

- **1** *M* is not a-minimal over $M_1 \cup M_2$.
- 2 There is a type $p \in S(M)$ orthogonal to M_1 and to M_2 , p not algebraic.

Strong DOP

Definition

We say that a theory T has the strong dimensional order property (S-DOP) if the following holds: There are a-saturated models $(M_i)_{i<3}$, $M_0 \subset M_1 \cap M_2$, such that $M_1 \downarrow_{M_0} M_2$, and for every M_3 a-primary model over $M_1 \cup M_2$, there is a non-algebraic type $p \in S(M_3)$ orthogonal to M_1 and to M_2 , that does not fork over $M_1 \cup M_2$.

S-DOP

The following theory in the language $\{P_0, P_1, P_2, f_0, f_1\}$ has the S-DOP. Let P_0 , P_1 and P_2 be disjoint unary relations such that for every a, $a \in P_0 \cup P_1 \cup P_2$.

The functions f_0 and f_1 satisfy:

- $f_i(a) = a$ for every i < 2 and $a \notin P_2$.
- $f_i(a) \in P_i$ for every i < 2 and $a \in P_2$.
- ∀a ∈ P₀, ∀b ∈ P₁, exists infinitely many c ∈ P₂ such that f₀(c) = a and f₁(c) = b.

The Generalized Baire Space

S-DOP

Lemma

If a theory T has the S-DOP, then T has the DOP.

Theorem

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, $\lambda \geq 2^{\omega}$, and κ an inaccessible cardinal. Then $\cong_T^{\kappa} \leq_B E_{\lambda} \leq_B \cong_{T'}^{\kappa}$

Sum up

• When $\kappa = \omega$ the classifications are different.

 It is consistent that there is a generalized Borel reducibility counterpart of the Main Gap Theorem in the space 2^κ.

• For κ inaccessible, the classifiable theories are at most as complex as the theories with OCP or S-DOP.

Questions

1 Denote by E_{λ}^{κ} and E_{λ}^{2} the relation E_{λ} in the spaces κ^{κ} and 2^{κ} respectively. For which λ holds $E_{\lambda}^{\kappa} \leq_{B} E_{\lambda}^{2}$?

2 For which λ holds $E_{\lambda} \leq_B \cong_T^{\kappa}$ in the space κ^{κ} for every theory T non-classifiable?

3 For which λ holds $E_{\omega} \leq_B \cong_T^{\kappa}$ in the space 2^{κ} for every theory T non-classifiable?

References

- S.D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory, Memoirs of the Amer. Math. Soc. Vol. 230/1081 (American Mathematical Society, 2014).
- T. Hyttinen, and M. Moreno, *On the reducibility of isomorphism relations*, Mathematical Logic Quarterly. To appear.
- T. Hyttinen, V. Kulikov, and M. Moreno, A Generalized Borel-reducibility Counterpart of Shelah's Main Gap Theorem, (arXiv:1602.00605).
- M. Laskowski, and S. Shelah, Borel completeness of some ℵ₀-stable theories, Fundamenta Mathematicae. 229(1) 1–46, 2015.
- S. Shelah, *Classification theory*, Stud. Logic Found. Math. Vol. 92, (North-Holland, Amsterdam, 1990).