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Classifying First-order countable Theories

The spectrum problem

Let I(T , α) denote the number of non-isomorphic models of T with
cardinality α.

What is the behavior of I(T , α)?

• Löwenheim-Skolem Theorem:
∃α ≥ ω I(T , α) 6= 0⇒ ∀β ≥ ω I(T , β) 6= 0.

• Morley’s categoricity: ∃α > ω I(T , α) = 1⇒ ∀β > ω I(T , β) = 1
• Shelah’s Main Gap Theorem: Either, for every uncountable

cardinal α, I(T , α) = 2α, or ∀α > 0 I(T ,ℵα) < iω1(| α |).
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Classifying First-order countable Theories

Approaches

• Shelah’s stability theory.
Classify the models of T by cardinal invariants and clearly differentiate
between the theories that can be classified and those that cannot.

• Descriptive set theory:
It uses Borel-reducibility and the isomorphism relation to define a
partial order on the set of all first-order complete countable theories.
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Classifying First-order countable Theories

The topology

κ is an uncountable cardinal that satisfies κ<κ = κ.

We equip the set κκ with the bounded topology. For every ζ ∈ κ<κ, the
set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set.
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Classifying First-order countable Theories

Reductions

Let E1 and E2 be equivalence relations on κκ. We say that E1 is
continuous reducible to E2, if there is a continuous function f : κκ → κκ

that satisfies (x , y) ∈ E1 ⇔ (f (x), f (y)) ∈ E2.

We write E1 6κ
c E2.
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Classifying First-order countable Theories

Coding structures
Fix a language L = {Pn|n < ω}

Definition
Let π be a bijection between κ<ω and κ. For every f ∈ κκ define the
structure Af with domain κ by: for every tuple (a1, a2, . . . , an) in κn

(a1, a2, . . . , an) ∈ PAf
m ⇔ f (π(m, a1, a2, . . . , an)) > 0

Definition (The isomorphism relation)
Given T a first-order complete countable theory in a countable vocabulary,
we say that f , g ∈ κκ are ∼=κ

T equivalent if
• Af |= T ,Ag |= T ,Af ∼= Ag

or
• Af 2 T ,Ag 2 T
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Classifying First-order countable Theories

The complexity

We can define a partial order on the set of all first-order complete
countable theories

T 6κ
κ T ′ iff ∼=κ

T 6κ
c
∼=κ

T ′
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Classifying First-order countable Theories

The subspace 2κ

In the subspace 2κ, we can define the following notions in the same way:
• E1 62

c E2.
• f ∼=2

T g .
• T 62

κ T ′.
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The Equivalence Modulo Non-stationary Ideals

Shelah’s Main Gap Theorem

Theorem (Shelah)
If T is classifiable and T ′ is not, then T is less complex than T ′ and their
complexity are not close.

Question:
Is there a Borel reducibility counterpart of the Main Gap Theorem in the
spaces κκ and 2κ?

Miguel Moreno (UH)
Bonn Set Theory Workshop 2016 12 /

18



The Equivalence Modulo Non-stationary Ideals

Eκ
λ-club and E 2

λ-club

For every regular cardinal λ < κ, the relations Eκ
λ-club and E 2

λ-club are
defined as follow.
Definition

• On the space κκ, we say that f , g ∈ κκ are Eκ
λ-club equivalent if the

set {α < κ|f (α) = g(α)} contains an unbounded set that is closed
under λ-limits.

• On the space 2κ, we say that f , g ∈ 2κ are E 2
λ-club equivalent if the

set {α < κ|f (α) = g(α)} contains an unbounded set that is closed
under λ-limits.
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The Equivalence Modulo Non-stationary Ideals

Looking above the Gap

Theorem (Friedman, Hyttinen, Kulikov)
Suppose κ = λ+ = 2λ and λ<λ = λ.

• If T is an unstable or superstable with OTOP, then E 2
λ-club 62

c
∼=2

T .
• If λ ≥ 2ω and T is a superstable with DOP, then E 2

λ-club 62
c
∼=2

T .

Theorem (Friedman, Hyttinen, Kulikov)
Suppose that for all γ < κ, γω < κ and T is a stable unsuperstable.
Then E 2

ω-club 62
c
∼=2

T
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The Equivalence Modulo Non-stationary Ideals

Looking below the Gap

Theorem (Friedman, Hyttinen, Kulikov)
If T is a classifiable theory, then for all regular cardinal λ < κ,
E 2
λ-club 662

c
∼=2

T

Theorem (Hyttinen, Moreno)
Suppose T is a classifiable theory and λ < κ is a regular cardinal.
Then ∼=κ

T 6κ
c Eκ

λ-club.

Theorem (Hyttinen, Kulikov, Moreno)

Denote by Sκλ the set {α < κ|cf (α) = λ}.
Suppose T is a classifiable theory and λ < κ is a regular cardinal. If
♦(Sκλ ) holds, then ∼=2

T 62
c E 2

λ-club.
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The Equivalence Modulo Non-stationary Ideals

The Gap in ZFC

Theorem (Hyttinen, Moreno)
Suppose T is a classifiable theory, T ′ is an stable theory with the OCP,
and κ an inaccessible cardinal. Then ∼=κ

T 6κ
c Eκ

ω-club 6κ
c
∼=κ

T ′

Theorem (Moreno)
Suppose T is a classifiable theory, T ′ is a superstable theory with the
S-DOP, λ ≥ 2ω, and κ an inaccessible cardinal. Then
∼=κ

T 6κ
c Eκ

λ-club 6κ
c
∼=κ

T ′

Theorem (Hyttinen, Kulikov, Moreno)
Suppose κ = λ+ and λω = λ. If T is a classifiable theory and T ′ is a
stable unsuperstable theory, then ∼=2

T 62
c E 2

ω-club 62
c
∼=2

T ′ .
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The Equivalence Modulo Non-stationary Ideals

Consistency

Let H(κ) be the following property: If T is classifiable and T ′ is not, then
T 62

κ T ′ and T ′ 662
κ T .

Theorem
Suppose κ = λ+, 2λ > 2ω and λ<λ = λ.

1 If V = L, then H(κ) holds.
2 It is consistent that H(κ) holds and there are 2κ equivalence relations

strictly between ∼=2
T1

and ∼=2
T2

.
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The Equivalence Modulo Non-stationary Ideals
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