The Equivalence Modulo Non-stationary Ideals and Shelah's Main Gap Theorem

Miguel Moreno (Joint work with Tapani Hyttinen and Vadim Kulikov)

> Department of Mathematics and Statistics University of Helsinki

> Bonn Set Theory Workshop 2016

Miguel Moreno (UH)

Bonn Set Theory Workshop 2016 1 / 18

2 The Equivalence Modulo Non-stationary Ideals

Outline

1 Classifying First-order countable Theories

2 The Equivalence Modulo Non-stationary Ideals

Miguel Moreno (UH)

Bonn Set Theory Workshop 2016 3 / 18

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

- Löwenheim-Skolem Theorem: $\exists \alpha \ge \omega \ I(T, \alpha) \neq 0 \Rightarrow \forall \beta \ge \omega \ I(T, \beta) \neq 0.$
- Morley's categoricity: $\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1$
- Shelah's Main Gap Theorem: Either, for every uncountable cardinal α, *I*(*T*, α) = 2^α, or ∀α > 0 *I*(*T*, ℵ_α) < □_{ω1}(| α |).

Approaches

• Shelah's stability theory.

Classify the models of T by cardinal invariants and clearly differentiate between the theories that can be classified and those that cannot.

• Descriptive set theory:

It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.

The topology

 κ is an uncountable cardinal that satisfies $\kappa^{<\kappa}=\kappa.$

We equip the set κ^κ with the bounded topology. For every $\zeta\in\kappa^{<\kappa},$ the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

Reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *continuous reducible* to E_2 , if there is a continuous function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq_c^{\kappa} E_2$.

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure \mathcal{A}_f with domain κ by: for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are \cong_{T}^{κ} equivalent if

•
$$\mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

The complexity

We can define a partial order on the set of all first-order complete countable theories

$$T \leqslant_{\kappa}^{\kappa} T'$$
 iff $\cong_{T}^{\kappa} \leqslant_{c}^{\kappa} \cong_{T'}^{\kappa}$

The subspace 2^{κ}

In the subspace 2^{κ} , we can define the following notions in the same way:

- $E_1 \leqslant^2_c E_2$.
- $f \cong^2_T g$.
- $T \leq^2_{\kappa} T'$.

The Equivalence Modulo Non-stationary Ideals

Outline

Classifying First-order countable Theories

2 The Equivalence Modulo Non-stationary Ideals

The Equivalence Modulo Non-stationary Ideals

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem in the spaces κ^{κ} and $2^{\kappa}?$

 $E^{\kappa}_{\lambda-{
m club}}$ and $E^2_{\lambda-{
m club}}$

For every regular cardinal $\lambda < \kappa$, the relations $E_{\lambda-\text{club}}^{\kappa}$ and $E_{\lambda-\text{club}}^{2}$ are defined as follow.

Definition

- On the space κ^κ, we say that f, g ∈ κ^κ are E^κ_{λ-club} equivalent if the set {α < κ|f(α) = g(α)} contains an unbounded set that is closed under λ-limits.
- On the space 2^κ, we say that f, g ∈ 2^κ are E²_{λ-club} equivalent if the set {α < κ|f(α) = g(α)} contains an unbounded set that is closed under λ-limits.

Looking above the Gap

Theorem (Friedman, Hyttinen, Kulikov)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$.

- If T is an unstable or superstable with OTOP, then $E^2_{\lambda-club} \leq^2_c \cong^2_T$.
- If $\lambda \ge 2^{\omega}$ and T is a superstable with DOP, then $E^2_{\lambda-club} \leqslant^2_c \cong^2_T$.

Theorem (Friedman, Hyttinen, Kulikov)

Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and T is a stable unsuperstable. Then $E^2_{\omega\text{-club}} \leqslant^2_c \cong^2_T$

Looking below the Gap

Theorem (Friedman, Hyttinen, Kulikov) If T is a classifiable theory, then for all regular cardinal $\lambda < \kappa$, $E_{\lambda-club}^2 \not\leq_c^2 \cong_T^2$

Theorem (Hyttinen, Moreno)

Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. Then $\cong_T^{\kappa} \leq_c^{\kappa} E_{\lambda-club}^{\kappa}$.

Theorem (Hyttinen, Kulikov, Moreno)

Denote by S_{λ}^{κ} the set $\{\alpha < \kappa | cf(\alpha) = \lambda\}$. Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. If $\Diamond(S_{\lambda}^{\kappa})$ holds, then $\cong_{T}^{2} \leqslant_{c}^{2} E_{\lambda-\text{club}}^{2}$.

The Gap in ZFC

Theorem (Hyttinen, Moreno)

Suppose T is a classifiable theory, T' is an stable theory with the OCP, and κ an inaccessible cardinal. Then $\cong_T^{\kappa} \leq_c^{\kappa} E_{\omega-club}^{\kappa} \leq_c^{\kappa} \cong_{T'}^{\kappa}$

Theorem (Moreno)

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, $\lambda \geq 2^{\omega}$, and κ an inaccessible cardinal. Then $\cong_{T}^{\kappa} \leq_{c}^{\kappa} E_{\lambda-club}^{\kappa} \leq_{c}^{\kappa} \cong_{T'}^{\kappa}$

Theorem (Hyttinen, Kulikov, Moreno)

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. If T is a classifiable theory and T' is a stable unsuperstable theory, then $\cong_T^2 \leq_c^2 E_{\omega-club}^2 \leq_c^2 \cong_{T'}^2$.

Consistency

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq_{\kappa}^{2} T'$ and $T' \leq_{\kappa}^{2} T$.

Theorem

Suppose
$$\kappa = \lambda^+$$
, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$.

- 1 If V = L, then $H(\kappa)$ holds.
- It is consistent that H(κ) holds and there are 2^κ equivalence relations strictly between ≅²_{T1} and ≅²_{T2}.

References

- S.D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory, Memoirs of the Amer. Math. Soc. Vol. 230/1081 (American Mathematical Society, 2014).
- T. Hyttinen, and M. Moreno, *On the reducibility of isomorphism relations*, Mathematical Logic Quarterly. To appear.
- T. Hyttinen, V. Kulikov, and M. Moreno, A Generalized Borel-reducibility Counterpart of Shelah's Main Gap Theorem, (arXiv:1602.00605).
- M. Moreno, *The isomorphism relation of theories with S-DOP*, in preparation.
- S. Shelah, *Classification theory*, Stud. Logic Found. Math. Vol. 92, (North-Holland, Amsterdam, 1990).