$\kappa\text{-colorable}$ linear orders and unsuperstable theories

Miguel Moreno University of Vienna FWF Meitner-Programm

Minisymposium University of Helsinki

23 February, 2022

< 口 > < 同 >

Miguel Moreno (UV)

 κ -colorable linear orders and unsuperstable theories

The topology

 κ is an uncountable cardinal that satisfies $\kappa^{<\kappa}=\kappa.$

We equip the set 2^κ with the bounded topology. For every $\zeta \in 2^{<\kappa},$ the set

$$[\zeta] = \{\eta \in 2^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

< 口 > < 同 >

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Recall

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in 2^{\kappa}$ define the structure \mathcal{A}_f with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in 2^{\kappa}$ are \cong_T^{κ} equivalent if $\mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$ or $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

Reductions

Recall

Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is Borel reducible to E_2 , if there is a Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We write $E_1 \hookrightarrow_b^{\kappa} E_2$.

If the function is continuous, then we say that E_1 is continuous reducible to E_2 and we denote it by $E_1 \hookrightarrow_c^{\kappa} E_2$.

Question. For any classifiable theory T and nonclassifiable theory T', is the isomorphism relation of T Borel reducible to the isomorphism relation of T'?

Minisymposium 2022

・ロト ・回ト ・ヨト

Equivalence modulo ω cofinality

Definition

We define the equivalence relation $=_{\omega}^{2} \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let $S = \{\alpha < \kappa \mid cf(\alpha) = \omega\}$, $\eta =_{\omega}^{2} \xi$ if and only if $\{\alpha < \kappa \mid \eta(\alpha) = \xi(\alpha)\} \cap S$ contains a set that is unbounded and closed under ω -limits.

Theorem (Hyttinen - Kulikov - Moreno) Assume T is a countable complete classifiable theory over a countable vocabulary. Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. Then $\cong_T^{\kappa} \hookrightarrow_c^{\kappa} =_{\omega}^2$.

Image: A math a math

Main result

Theorem

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{\omega} = \lambda$. If T is a countable complete unsuperstable theory, then $=^2_{\omega} \hookrightarrow^{\kappa}_c \cong_T$.

Miguel Moreno (UV)

Minisymposium 2022

< 口 > < 同 >

Ordered trees

Definition

- Let K_{tr}^{ω} be the class of models $(A, \prec, (P_n)_{n \leq \omega}, <, h)$, where:
 - ▶ there is a linear order $(I, <_I)$ such that $A \subseteq I^{\leq \omega}$;
 - A is closed under initial segment;
 - ► ≺ is the initial segment relation;
 - $h(\eta, \xi)$ is the maximal common initial segment of η and ξ ;
 - ▶ let $lg(\eta)$ be the length of η (i.e. the domain of η) and $P_n = \{\eta \in A \mid lg(\eta) = n\}$ for $n \leq \omega$;

Minisymposium 2022

< ∃ >

Ordered trees

Definition (continuation)

Let K_{tr}^{ω} be the class of models $(A, \prec, (P_n)_{n \leq \omega}, <, h)$, where:

- ▶ for every $\eta \in A$ with $lg(\eta) < \omega$, define $Suc_A(\eta)$ as $\{\xi \in A \mid \eta \prec \xi \land lg(\xi) = lg(\eta) + 1\}$. If $\xi < \zeta$, then there is $\eta \in A$ such that $\xi, \zeta \in Suc_A(\eta)$;
- For every η ∈ A\P_ω, <↾ Suc_A(η) is the induced linear order from *I*, i.e.

 $\eta^{\frown}\langle x\rangle < \eta^{\frown}\langle y\rangle \Leftrightarrow x <_I y;$

• If η and ξ have no immediate predecessor and $\{\zeta \in A \mid \zeta \prec \eta\} = \{\zeta \in A \mid \zeta \prec \xi\}$, then $\eta = \xi$.

Image: A math a math

Coloring orders

Definition

Let *I* be a linear order of size κ . We say that *I* is κ -colorable if there is a function $F : I \to \kappa$ such that for all $B \subseteq I$, $|B| < \kappa$, $b \in I \setminus B$, and $p = tp_{bs}(b, B, I)$ such that the following hold: For all $\alpha \in \kappa$, $|\{a \in I \mid a \models p \& F(a) = \alpha\}| = \kappa$.

Theorem

Suppose *I* is a κ -colorable linear order. Then for any $f \in 2^{\kappa}$, there is an ordered coloured tree $A_f(I)$ that satisfies: For all $f, g \in 2^{\kappa}$,

$$f =^2_{\omega} g \Leftrightarrow A_f(I) \cong A_g(I),$$

Initial order

Definition

Let \mathbb{Q} be the linear order of the rational numbers. Let $\kappa \times \mathbb{Q}$ be ordered by the lexicographic order, I^0 be the set of functions $f: \omega \to \kappa \times \mathbb{Q}$ such that $f(n) = (f_1(n), f_2(n))$, for which $\{n \in \omega \mid f_1(n) \neq 0\}$ is finite. If $f, g \in I^0$, then f < g if and only if f(n) < g(n), where *n* is the least number such that $f(n) \neq g(n)$.

Initial order

Lemma

There is a continuous increasing sequence $\langle I^0_{\alpha} | \alpha < \kappa \rangle$ of sets of size smaller than κ , such that for all limit $\delta < \kappa$ and $\nu \in I^0$ there is $\beta < \delta$ which satisfies the following:

$$\forall \sigma \in I^{\mathbf{0}}_{\delta}[\sigma > \nu \Rightarrow \exists \sigma' \in I^{\mathbf{0}}_{\beta} \ (\sigma \ge \sigma' \ge \nu)]$$

In particular

There is a κ -representation $\langle I^0_{\alpha} | \alpha < \kappa \rangle$ such that for all limit $\delta < \kappa$ and $\nu \in I^0$, if $\nu \notin I^0_{\delta}$ there is $\beta < \delta$ which satisfies the following:

$$\forall \sigma \in I^0_{\delta}[\sigma > \nu \Rightarrow \exists \sigma' \in I^0_{\beta} \ (\sigma > \sigma' > \nu)]$$

Proof

For all $\gamma < \kappa$, let us define $\langle I^0_{\alpha} \mid \alpha < \kappa \rangle$ by

$$\mathit{I}^{\mathsf{0}}_{\gamma} = \{
u \in \mathit{I}^{\mathsf{0}} \mid
u_1(\mathit{n}) < \gamma ext{ for all } \mathit{n} < \omega \}$$

it is clear that $\langle I_{\alpha}^{0} \mid \alpha < \kappa \rangle$ is a κ -representation. Suppose $\delta < \kappa$ is a limit and $\nu \in I^{0}$. If $\nu \in I_{\delta}^{0}$, then there is $\beta < \delta$ such that $\nu \in I_{\beta}^{0}$ and the result follows. Let us take care of the case $\nu \notin I_{\delta}^{0}$. Let $\beta < \delta$ be the least ordinal such that for all $n < \omega$, $\nu_{1}(n) < \delta$ implies $\nu_{1}(n) < \beta$.

Proof

Claim: For all $\sigma \in I_{\delta}^{0}$. If $\sigma > \nu$, then there is $\sigma' \in I_{\beta}^{0}$ such that $\sigma \neq \sigma'$ and $\sigma > \sigma' > \delta$.

Proof of the claim: Let us suppose $\sigma \in I_{\delta}^{0}$ is such that $\sigma \geq \nu$. By the definition of I^{0} , there is $n < \omega$ such that $\sigma(n) > \nu(n)$ and n is the minimum number such that $\sigma(n) \neq \nu(n)$. Since $\sigma \in I_{\delta}^{0}$, for all $m \leq n, \nu_{1}(m) \leq \sigma_{1}(m) < \delta$. Thus for all $m \leq n, \nu_{1}(m) < \beta$. Let us divide the proof in two cases, $\sigma_{1}(n) = \nu_{1}(n)$ and $\sigma_{1}(n) > \nu_{1}(n)$.

 $\kappa\text{-colorable}$ linear orders and unsuperstable theories

<<p>< □ ト < 同 ト < 三 ト</p>

Proof

Case 1. $\sigma_1(n) = \nu_1(n)$. By the density of \mathbb{Q} there is r such that $\sigma_2(n) > r > \nu_2(n)$. Let us define σ' by:

$$\sigma'(m) = egin{cases}
u(m) & ext{if } m < n \\
(
u_1(n), r) & ext{if } m = n \\
0 & ext{in other case}. \end{cases}$$

Case 2. $\sigma_1(n) > \nu_1(n)$. Let us define σ' by:

$$\sigma'(m) = egin{cases}
u(m) & ext{if } m < n \ (
u_1(n),
u_2(n) + 1) & ext{if } m = n \ 0 & ext{in other case} \end{cases}$$

Clearly $\sigma > \sigma' > \nu$. Since $\nu_1(m) < \beta$ for all $m \leq n_{\mathcal{B}} \sigma' \in l^0_{\beta}$, $z \in \mathcal{A}_{\beta}$

Miguel Moreno (UV)

Minisymposium 2022

 κ -colorable linear orders and unsuperstable theories

The orders

Suppose $i<\kappa$ is such that I^i has been defined. For all $\nu\in I^i$ let ν^{i+1} be such that

$$\nu^{i+1} \models tp_{bs}(\nu, l^i \setminus \{\nu\}, l^i) \cup \{\nu > x\}.$$

Notice that ν^{i+1} is a copy of ν that is smaller than ν . Let $I^{i+1} = I^i \cup \{\nu^{i+1} \mid \nu \in I^i\}$. Suppose $i < \kappa$ is a limit ordinal such that for all j < i, I^j has been defined, we define I^i by $I^i = \bigcup_{i < i} I^j$.

Minisymposium 2022

The representations

Suppose $i < \kappa$ is such that $\langle I^i_\alpha \mid \alpha < \kappa \rangle$ has been defined. For all $\alpha < \kappa$,

$$I_{\alpha}^{i+1} = I_{\alpha}^{i} \cup \{\nu^{i+1} \mid \nu \in I_{\alpha}^{i}\}.$$

Suppose $i < \kappa$ is a limit ordinal such that for all j < i, $\langle I_{\alpha}^{j} \mid \alpha < \kappa \rangle$ has been defined, we define $\langle I_{\alpha}^{i} \mid \alpha < \kappa \rangle$ by

$$I^i_{\alpha} = \bigcup_{j < i} I^j_{\alpha}.$$

Miguel Moreno (UV)

 κ -colorable linear orders and unsuperstable theories

Image: Image:

The order

Let us define I as

$$I = \bigcup_{j < \kappa} I^j$$

and the $\kappa\text{-representation }\langle \textit{I}_{\alpha}\mid\alpha<\kappa\rangle$ as

$$I_{\alpha} = \bigcup_{\alpha < \kappa} I_{\alpha}^{\alpha}.$$

Miguel Moreno (UV)

 κ -colorable linear orders and unsuperstable theories

Nice property *Iⁱ*

Lemma

For all $i < \kappa$, $\delta < \kappa$ a limit ordinal, and $\nu \in I^i$, there is $\beta < \delta$ that satisfies the following:

$$\forall \sigma \in I^i_{\delta} \ [\sigma > \nu \Rightarrow \exists \sigma' \in I^i_{\beta} \ (\sigma \ge \sigma' \ge \nu)]$$

In particular. If $\nu \notin I_{\delta}^{i}$ there is $\beta < \delta$ which satisfies the following:

$$\forall \sigma \in I^i_{\delta}[\sigma > \nu \Rightarrow \exists \sigma' \in I^0_{\beta} \ (\sigma > \sigma' > \nu)]$$

Miguel Moreno (UV)

Minisymposium 2022

Image: A mathematical states and a mathem

 κ -colorable linear orders and unsuperstable theories

Nice property I

Lemma

For all $\delta < \kappa$ a limit ordinal, and $\nu \in I$, there is $\beta < \delta$ that satisfies the following:

$$\forall \sigma \in I_{\delta} \ [\sigma > \nu \Rightarrow \exists \sigma' \in I_{\beta} \ (\sigma \ge \sigma' \ge \nu)]$$

Miguel Moreno (UV)

Minisymposium 2022

Image: Image:

A different perspective

Definition (Generator)

For all $\nu \in I$ let us denote by $o(\nu)$ the least ordinal $\alpha < \kappa$ such that $\nu \in I^{\alpha}$. Let us denote the generator of ν by $Gen(\nu)$ and define it by induction as follows:

•
$$Gen^i(\nu) = \emptyset$$
, for all $i < o(\nu)$;
• $Gen^i(\nu) = \{\nu\}$, for $i = o(\nu)$;
• for all $i \ge o(\nu)$,

$$\operatorname{Gen}^{i+1}(\nu) = \operatorname{Gen}^{i}(\nu) \cup \{ \sigma \in I^{i+1} \mid \exists \tau \in \operatorname{Gen}^{i}(\nu) \ [\tau^{i+1} = \sigma] \};$$

• for all $i < \kappa$ limit,

$$Gen^{i}(\nu) = \bigcup_{j < i} Gen^{j}(\nu).$$

Miguel Moreno (UV)

Minisymposium 2022

 κ -colorable linear orders and unsuperstable theories

A different perspective

Finally, let

$$Gen(\nu) = \bigcup_{i < \kappa} Gen^i(\nu).$$

Suppose $\nu \in I$. For all $\sigma \in Gen(\nu)$, $\sigma \neq \nu$, there is $n < \omega$ and a sequence $\{\sigma_i\}_{i \leq n}$ such that the following holds:

•
$$\sigma_0 = \nu$$
;
• for all $j < n$,
• $\sigma_{j+1} = (\sigma_j)^{o(\sigma_{j+1})}$;
• $\sigma = \sigma_n = (\sigma_{n-1})^{o(\sigma)}$

Miguel Moreno (UV)

 κ -colorable linear orders and unsuperstable theories

Minisymposium 2022

< 口 > < 同 >

$$(<\kappa,$$
 $bs)$ -stable I^0

Definition

 $A \in K_{tr}^{\omega}$ is $(<\kappa, bs)$ -stable if for every $B \subseteq A$ of size smaller than κ ,

 $\kappa > |\{tp_{bs}(a, B, A) \mid a \in A\}|.$

Theorem (Hyttinen - Tuuri)

Let \mathcal{R} be the set of functions $f : \omega \to \kappa$ for which $\{n \in \omega \mid f(n) \neq 0\}$ is finite. If $f, g \in \mathcal{R}$, then f < g if and only if f(n) < g(n), where n is the least number such that $f(n) \neq g(n)$. If $\lambda^{\omega} = \lambda$, then the linear order \mathcal{R} is $(< \kappa, bs)$ -stable.

Miguel Moreno (UV)

Minisymposium 2022

Image: A math a math

Lemma

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. I^0 is $(< \kappa, bs)$ -stable.

Proof For all
$$A \subseteq I^0$$
 define $Pr(A)$ as the set $\{f_1 \mid f \in A\}$. Let $A \subseteq I^0$ be such that $|A| < \kappa$. Since $|\mathbb{Q}| = \omega$, $|\{tp_{bs}(a, A, I^0) \mid a \in I^0\}| \le |\{tp_{bs}(a, Pr(A), \mathcal{R}) \mid a \in \mathcal{R}\} \times 2^{\omega}|$. Since $\lambda^{\omega} = \lambda$, $|\{tp_{bs}(a, A, I^0) \mid a \in I\}| < \kappa$.

Miguel Moreno (UV)

 $\kappa\text{-colorable}$ linear orders and unsuperstable theories

Minisymposium 2022

$$(<\kappa,\mathit{bs}) ext{-stable}$$
 I

Lemma

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. I is $(< \kappa, bs)$ -stable.

Theorem *I* is a ($< \kappa$, bs)-stable (κ , bs, bs)-nice κ -colorable linear order.

Miguel Moreno (UV)

 κ -colorable linear orders and unsuperstable theories

The isomorphism

Theorem (Shelah)

Suppose T is a countable complete unsuperstable theory in a countable vocabulary.

If κ is a regular uncountable cardinal, $A_1, A_2 \in K_{tr}^{\omega}$ have size κ , A_1 , A_2 are locally (κ , bs, bs)-nice and ($< \kappa$, bs)-stable, EM(A_1, Φ) is isomorphic to EM(A_2, Φ), then $S(A_1) =_{\omega}^2 S(A_2)$.

In our construction, $S(A_f(I)) =_{\omega}^2 S(A_g(I))$ is equivalent $f =_{\omega}^2 g$.

 κ -colorable linear orders and unsuperstable theories

<<p>< □ ト < 同 ト < 三 ト</p>

Thank you

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ▶ ④ � ♥

Miguel Moreno (UV) κ -colorable linear orders and unsuperstable theories

Minisymposium 2022

26 of 26