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Geometry

▶ Independence of Euclid’s fifth postulate, the parallel postulate.

▶ Khayyám (1077) and Saccheri (1733) considered the three
different cases of the Khayyám-Saccheri quadrilateral (right,
obtuse, and acute).

▶ Euclidean geometry, Elliptic geometry, Hyperbolic geometry.
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The spectrum fuction

Let T be a countable theory over a countable language.

Let
I(T , α) denote the number of non-isomorphic models of T with
cardinality α.

What is the behavior of I(T , α)?
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Categoricity

▶ 1904: Veble introduced categorical theories.

▶ 1915 - 1920: Löwenheim-Skolem Theorem.

▶ 1929: Gödel’s completeness theorem.

▶ 1954:  Loś and Vaught introduced κ-categorical theories.

▶ 1965: Morley’s categoricity theorem.
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Morley’s conjecture

1960’s: Let T be a first-order countable theory over a countable
language.

For all ℵ0 < λ < κ,

I(T , λ) ≤ I(T , κ).

1990: Shelah proved Morley’s conjecture.
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Shelah’s Main Gap Theorem

Theorem (Shelah 1990)
Either, for every uncountable cardinal α, I(T , α) = 2α; or ∀α > 0,
I(T , ℵα) < ℶω1(| α |).

If T is classifiable and T ′ is not, then T is less complex than T ′

and their complexity are not close.

Miguel Moreno (UH) HLS
On the Borel reducibility Main Gap 6 of 77



History GDST Lines Classifiable Non-classifiable The idea The order Trees Models The Gap

Shelah’s Main Gap Theorem

Theorem (Shelah 1990)
Either, for every uncountable cardinal α, I(T , α) = 2α; or ∀α > 0,
I(T , ℵα) < ℶω1(| α |).

If T is classifiable and T ′ is not, then T is less complex than T ′

and their complexity are not close.

Miguel Moreno (UH) HLS
On the Borel reducibility Main Gap 6 of 77



History GDST Lines Classifiable Non-classifiable The idea The order Trees Models The Gap

Descriptive Set Theory

▶ 1989: Friedman and Stanley introduced the Borel reducibility
between classes of countable structures.

▶ 1993: Mekler-Väänänen κ-separation theorem.

▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a
systematic comparison between the Main Gap dividing lines
and the complexity given by Borel reducibility.
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The bounded topology

Let κ be an uncountable cardinal that satisfies κ<κ = κ.

We equip the set κκ with the bounded topology. For every
ζ ∈ κ<κ, the set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set.
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The Generalised Baire spaces

The generalised Baire space is the space κκ endowed with the
bounded topology.

The generalised Cantor space is the subspace 2κ.
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Coding structures

Let ω ≤ µ ≤ κ be a cardinal. Fix a relational language
L = {Pn|n < ω} and a bijection πµ between µ<ω and µ.

Definition
For every η ∈ κκ define the structure Aη↾µ with domain µ as
follows: For every tuple (a1, a2, . . . , an) in µn

(a1, a2, . . . , an) ∈ PAη↾µ
m ⇔ η(πµ(m, a1, a2, . . . , an)) > 0.
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The isomorphism relation

Definition
Let ω ≤ µ ≤ κ be a cardinal and T a first-order theory in a
relational countable language, we say that f , g ∈ κκ are ∼=µ

T
equivalent if one of the following holds:

▶ Aη↾µ |= T , Aξ↾µ |= T , Aη↾µ
∼= Aξ↾µ

▶ Aη↾µ ̸|= T , Aξ↾µ ̸|= T
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Reductions

Let E1 and E2 be equivalence relations on κκ.

We say that E1 is
reducible to E2, if there is a function f : κκ → κκ that satisfies
(x , y) ∈ E1 ⇔ (f (x), f (y)) ∈ E2. We write E1 ↪→r E2.

We can define a partial order on the set of all first-order complete
countable theories

T ≤κ T ′ iff ∼=T ↪→C ∼=T ′
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Non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory
that satisfies one of the following:
▶ T is unstable;

▶ T is stable unsuperstable;
▶ T is superstable with DOP;
▶ T is superstable with OTOP.
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Classifiable theories

Classifiable are divided into:
▶ shallow,

I(T , ℵα) < ℶω1(| α |);

▶ non-shallow,
I(T , α) = 2α.
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First dividing lines

Fact (Friedman-Hyttinen-Kulikov 2014)

1. Let κ<κ = κ > 2ω. If T is classifiable and shallow, then ∼=T is
κ-Borel.

2. If T is classifiable non-shallow, then ∼=T is ∆1
1(κ) not κ-Borel.

3. If T is unstable or stable with the OTOP or superstable with
the DOP and κ > ω1, then ∼=T is not ∆1

1(κ).
4. If T is stable unsuperstable, then ∼=T is not κ-Borel.
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Question

Question: What can we say about the Borel-reducibility between
different dividing lines?
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Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)
Let κ be such that κ > 2ω. If T is classifiable and shallow with
depth α, then rkB(∼=T ) ≤ 4α.

Theorem (Mangraviti - Motto Ros 2020)
Let κ = ℵγ be such that κ<κ = κ and ℶω1(|γ|) ≤ κ. Let T , T ′ be
countable complete first-order theories, and suppose T is
classifiable and shallow, while T ′ is not. Then

∼=T ↪→B ∼=T ′
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General reduction

Fact (Mangraviti-Motto Ros)
Let E1 be a Borel equivalence relation with γ ≤ κ equivalence
classes and E2 be an equivalence relation with θ equivalence
classes. If γ ≤ θ, then E1 ↪→B E2.

Miguel Moreno (UH) HLS
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Counting α-classes relation

Let α < κ be an ordinal and 0 < ϱ ≤ κ. η αϱ ξ if and only if one
of the following holds:

▶ ϱ is finite:
▶ η(α) = ξ(α) < ϱ − 1;
▶ η(α), ξ(α) ≥ ϱ − 1.

▶ ϱ is infinite:
▶ η(α) = ξ(α) < ϱ;
▶ η(α), ξ(α) ≥ ϱ.

Miguel Moreno (UH) HLS
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Few equivalence classes

Lemma (M. 2023)
Suppose κ > 2ω and T is a countable first-order theory in a
countable vocabulary (not necessarily complete) such that ∼=T has
ϱ ≤ κ equivalence classes. Then for all α < κ

∼=T ↪→B αϱ and αϱ ↪→L ∼=T .

Even more, if T is not categorical then ∼=T ̸↪→C αϱ.
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Proof

▶ ∼=T ↪→B αϱ follows from Mangraviti-Motto Ros.

▶ η ↾ α + 1 determines the equivalence class of η. So
αϱ ↪→L ∼=T .

▶ αϱ is open, so ∼=T ↪→C αϱ implies ∼=T is open.
▶ ∼=T is open iff T is categorical (Mangraviti-Motto Ros), so if

T is not categorical then ∼=T ̸↪→C αϱ.
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Gap: Shallow and Non-shallow

Theorem (M. 2023)
Suppose ℵµ = κ = λ+ = 2λ is such that ℶω1(| µ |) ≤ κ.

Let T1 be
a countable complete classifiable shallow theory with ϱ = I(κ, T1),
T2 be a countable complete theory not classifiable shallow. If T is
classifiable shallow such that 1 < I(κ, T ) < I(κ, T1), then

∼=T ↪→B 0ϱ ↪→L ∼=T1 ↪→B 0κ ↪→L ∼=T2 .

In particular

∼=T2 ̸↪→r 0κ ̸↪→r ∼=T1 ̸↪→C 0ϱ ̸↪→r ∼=T .
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Consistency

Theorem (Hyttinen - Kulikov - M. 2017)
Suppose κ = λ+, 2λ > 2ω, and λ<λ = λ. There is a κ-closed
κ+-cc forcing which forces:

If T is classifiable and T ′ is
non-classifiable, then T ≤κ T ′ and T ′ ̸≤κ T.
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Unsuperstable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Suppose κ = λ+, 2λ > 2ω, and λω = λ. If T is classifiable and T ′

is stable unsuperstable, then T ≤κ T ′ and T ′ ̸≤κ T.

Theorem (M. 2023)
Suppose κ = λ+ = 2λ and λω = λ. If T is a classifiable theory,
and T ′ is an unsuperstable theory, then T ≤κ T ′ and T ′ ̸≤κ T.
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Equivalence modulo γ cofinality

Definition
We define the equivalence relation =2

γ ⊆ 2κ × 2κ, as follows: let
S = {α < κ | cf (α) = γ},

η =2
γ ξ ⇐⇒ {α < κ | η(α) ̸= ξ(α)} ∩ S is non-stationary.
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Borel-reducibility Main Gap

Theorem (M. 2023)
Let c = 2ω. Suppose κ = λ+ = 2λ and 2c ≤ λ = λω1 .

If T is a
classifiable theory, and T ′ is a non-classifiable theory, then there is
γ < κ such that

∼=T ↪→C =2
γ ↪→C ∼=T ′ and =2

γ ̸↪→B ∼=T .

In particular
T ≤κ T ′ and T ′ ̸≤κ T .
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Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Assume T is a classifiable theory and let
S = {α < κ | cf (α) = γ}. If ♢S holds, then ∼=T ↪→C =2

γ .
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The reductions

Theorem (M. 2023)
Let κ be inaccessible or κ = λ+ = 2λ. Suppose T is a
non-classifiable theory.

1. If T is stable unsuperstable, then let θ = γ = ω.

2. If T is unstable, or superstable with OTOP, then let θ = ω
and ω ≤ γ < κ.

3. If T is superstable with DOP, then let θ = 2ω = c and
ω1 ≤ γ < κ.

If θ, γ, and κ satisfy that ∀α < κ, αγ < κ, and (2θ)+ ≤ κ, then

=2
γ ↪→C ∼=T .
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Blue print of the proof

▶ Construct an ε-dense, (κ, ε)-nice, (< κ)-stable, and
κ-colorable linear order.

▶ Construct ordered trees from the linear order.

▶ Construct skeletons from ordered trees, to construct
Ehrenfeucht-Mostowski models.

▶ Prove the isomorphism theorem.

▶ Construct the reductions.
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ε-dense

Definition
Let I be a linear order of size κ and ε a regular cardinal smaller
than κ. We say that I is ε-dense if the following holds.

If A, B ⊆ I are subsets of size less than ε such that for all a ∈ A
and b ∈ B, a < b, then there is c ∈ I, such that for all a ∈ A and
b ∈ B, a < c < b.
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κ-representation

Definition
Let A be an arbitrary set of size κ.

The sequence
A = ⟨Aα | α < κ⟩ is a κ-representation of A, if ⟨Aα | α < κ⟩ is an
increasing continuous sequence of subsets of A, for all α < κ,
|Aα| < κ, and

⋃
α<κ Aα = A.
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(κ, ε)-nice

Definition
Let ε < κ be a regular cardinal, A be a linear order of size κ and
⟨Aα | α < κ⟩ a κ-representation.

Then A is (κ, ε)-nice if there is a
club C ⊆ κ, such that for all limit δ ∈ C with cf (δ) ≥ ε, for all
x ∈ A there is β < δ such that one of the following holds:
▶ ∀σ ∈ Aδ[σ ≥ x ⇒ ∃σ′ ∈ Aβ (σ ≥ σ′ ≥ x)]
▶ ∀σ ∈ Aδ[σ ≤ x ⇒ ∃σ′ ∈ Aβ (σ ≤ σ′ ≤ x)]
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(< κ)-stable

Definition
A linear order I is (< κ)-stable if for every B ⊆ I of size smaller
than κ,

κ > |{tpbs(a, B, I) | a ∈ I}|.
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κ-colorable

Definition
Let I be a linear order of size κ. We say that I is κ-colorable if
there is a function F : I → κ such that for all B ⊆ I, |B| < κ,
b ∈ I\B, and p = tpbs(b, B, I) such that the following hold: For all
α ∈ κ,

|{a ∈ I | a |= p & F (a) = α}| = κ.

Miguel Moreno (UH) HLS
On the Borel reducibility Main Gap 34 of 77



History GDST Lines Classifiable Non-classifiable The idea The order Trees Models The Gap

Hyttinen - Tuuri’s order

Definition (Hyttinen - Tuuri 1991)
Let R be the set of functions f : ω → κ, for which
|{n ∈ ω | f (α) ̸= 0}| is finite.

If f , g ∈ R, then f < g if and only if f (n) < g(n), where n is the
least number such that f (n) ̸= g(n).

Fact (Hyttinen-Tuuri 1991)
The linear order R is (κ, ω)-nice and (< κ)-stable.
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The F φ
ω isolation

Definition
Let φ(x , y) := “y > x”, we define F φ

ω in the following way. Let
|B| < κ and p ∈ Sbs(B), (p, A) ∈ F φ

ω if and only if A ⊆ B, A is
finite, and there is a ∈ A such that

{a > x , x = a} ∩ p ̸= ∅ & a |= p ↾ B\{a}.
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F φ
ω -construction

Definition
A sequence (A, (ai , Bi )i<α) is an F φ

ω -construction over A if for all
i < α, (tpbs(ai , Ai ), Bi ) ∈ F φ

ω where Ai = A ∪
⋃

j<i aj .

C is F φ
ω -constructible over A if there is an F φ

ω -construction over A
such that C = A ∪

⋃
j<α aj .
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(F φ
ω , κ)-primary

Definition
C is (F φ

ω , κ)-saturated if for all B ⊆ C of size smaller than κ, and
p ∈ Sbs(B), (p, A) ∈ F φ

ω implies that p is realized in C .

Definition
C is (F φ

ω , κ)-primary over A if it is F φ
ω -constructible over A and

(F φ
ω , κ)-saturated.
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(F φ
ω , κ)-primary

Lemma (M. 2023)
There is an (F φ

ω , κ)-primary over R

and it is an ω-dense,
(κ, ω)-nice, (< κ)-stable, and κ-colorable linear order.
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Existence

Let θ < κ be the smallest cardinal such that there is a ε-dense
model of DLO of size θ.

Theorem (M. 2023)
Suppose κ is inaccessible, or κ = λ+, 2θ ≤ λ = λ<ε. There is a
ε-dense, (κ, ε)-nice, (< κ)-stable, and κ-colorable linear order.
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Construction

Let Q be a model of DLO of size θ < κ, that is ε-dense.

Definition
Let κ × Q be ordered by the lexicographic order,

I0 be the set of
functions f : ε → κ × Q such that f (α) = (f1(α), f2(α)), for which
|{α ∈ ε | f1(α) ̸= 0}| is smaller than ε.
If f , g ∈ I0, then f < g if and only if f (α) < g(α), where α is the
least number such that f (α) ̸= g(α).
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Construction

Let us fix τ ∈ Q. Let I be the set of functions
f : ε → ({0} × I0) ∪ (κ × Q) such that the following hold:

▶ f ↾ {0} : {0} → {0} × I0.
▶ f ↾ ε\{0} : ε\{0} → κ × Q.
▶ There is α < ε ordinal such that ∀β > α, f (β) = (0, τ). We

say that the least α with such property is the depth of f and
we denote it by dp(f );

▶ There are functions f1 : ε → κ and f2 : ε → I0 ∪ Q such that
f (β) = (f1(β), f2(β)) and f1 ↾ dp(f ) + 1 is strictly increasing.
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Construction

We say that f < g if and only if one of the following holds:

▶ f (0) ̸= g(0) and f2(0) < g2(0);
▶ let α = dp(g), ∀β ≤ α, f (β) = g(β) and f1(α + 1) ̸= 0;
▶ exists α > 0 such that ∀β < α, f (β) = g(β), and

f1(α), g1(α) ̸= 0 and g(α) > f (α).
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Generators

Definition
For all f ∈ I with depth α, define the generator of f , Gen(f ), by

Gen(f ) = {g ∈ I | f ↾ α + 1 = g ↾ α + 1}.
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Generators

▶ If f ̸= g and g ∈ Gen(f ), then f > g .

▶ Let f ∈ Gen(ν). If g /∈ Gen(ν), then g < ν if and only if
g < f .

▶ If f ∈ Gen(ν)

f |= tpbs(ν, I\Gen(ν), I) ∪ {ν > x}.

▶ Let f ∈ Gen(ν). If σ ∈ I is such that ν ≥ σ ≥ f , then
σ ∈ Gen(ν).
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Iterations
For all f ∈ I with depth α, define o(f ) = f1(α) the complexity of f .

Let
I0 = {f ∈ I | f : ε → ({0} × I0) ∪ ({0} × {τ})}.

Suppose i is such that I i is defined. Let

I i+1 = {f ∈ I | o(f ) ≤ i + 1}.

Suppose i is a limit ordinal such that for all j < i , I j is defined, let

I i =
⋃
j<i

I j .
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κ-representation
Define ⟨I0

α | α < κ⟩ by

I0
α = {ν ∈ I0 | ν1(n) < α for all n < ε},

and ⟨I0
α | α < κ⟩ in the canonical way.

Suppose i < κ is such that ⟨I i
α | α < κ⟩ has been defined. For all

α < κ let

I i+1
α = {f ∈ I | o(f ) ≤ i + 1 & f2(0) ∈ I0

α},

for i < κ is a limit ordinal so

I i
α =

⋃
j<i

I j
α.
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κ-representation

Let ν ∈ I i
δ. For all f ∈ Gen(ν), f ∈ Io(f )

δ .

Let us define the κ-representation ⟨Iα | α < κ⟩ by

Iα = Iα
α .
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Roads

Definition
For all ν ∈ I with dp(ν) = α, there is a maximal sequence
⟨νi | i ≤ α⟩ such that ν0 ∈ I0, να = ν, and for all i < j ,
νi ∈ Gen(νi ).
We call this sequence the road from I0 to ν.

Fact
Let ⟨νj | j ≤ α⟩ be the road from I0 to να. For all i < α

να |= tpbs(νi , Io(νi+1)\(Gen(νi+1) ∪ {νi}), I) ∪ {νi > x}
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The properties

Theorem (M. 2023)
Suppose κ is inaccessible, or κ = λ+, 2θ ≤ λ = λ<ε. Then I is
ε-dense, (< κ)-stable, (κ, ε)-nice, and κ-colorable.
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Proof

▶ I is ε-dense.

▶ For all δ < κ limit with cf (δ) ≥ ε, and ν ∈ I, there is β < δ
that satisfies the following:

∀σ ∈ Iδ [σ > ν ⇒ ∃σ′ ∈ Iβ (σ ≥ σ′ ≥ ν)]

▶ Suppose κ = λ+ and 2θ ≤ λ = λ<ε. I is (< κ)-stable.

▶ I is a κ-colorable linear order.
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κ+, (γ + 2)-tree∗

Let γ < κ be a regular cardinal. A κ+, (γ + 2)-tree∗ t is a tree
with the following properties:
▶ t has a unique root.

▶ Every element of t has less than κ+ immediate successors.

▶ All the branches of t have order type γ or γ + 1.

▶ Every chain of length less than γ has a unique limit.
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Isomorphism of κ+, (γ + 2)-tree∗

Lemma (Hyttinen - Kulikov - M.)
Suppose γ < κ is such that for all ϵ < κ, ϵγ < κ. For every
f , g ∈ 2κ there are κ+, (γ + 2)-trees∗ Jf and Jg such that

f =2
γ g ⇔ Jf ∼=ct Jg

where ∼=ct is the isomorphism of κ+, (γ + 2)-tree∗.
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Ordered trees

Definition
Let γ < κ be a regular cardinal and I a linear order. (A, ≺, <) is
an ordered tree if the following holds:
▶ (A, ≺) is a κ+, (γ + 2)-tree∗.

▶ for all x ∈ A, (succ(x), <) is isomorphic to I.
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Isomorphism of ordered trees

Theorem (M. 2023)
Suppose γ < κ is such that for all ϵ < κ, ϵγ < κ, and there is a
κ-colorable linear order I.

For all f ∈ 2κ there is an ordered tree Af
such that for all f , g ∈ 2κ,

f =2
γ g ⇔ Af ∼= Ag .
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κ-colorable

Definition
Let I be a linear order of size κ. We say that I is κ-colorable if
there is a function F : I → κ such that for all B ⊆ I, |B| < κ,
b ∈ I\B, and p = tpbs(b, B, I) such that the following hold: For all
α ∈ κ,

|{a ∈ I | a |= p & F (a) = α}| = κ.
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The models

Suppose κ is inaccessible, or κ = λ+, 2c ≤ λ = λ<ω1 . Let γ < κ
be such that for all ϵ < κ, ϵγ < κ.

Lemma
Suppose T is superstable with DOP in a countable relational
vocabulary τ . Let τ1 be a Skolemization of τ , and T 1 be a
complete theory in τ1 extending T and with Skolem-functions in τ .
Then for every f ∈ 2κ there is Mf

1 |= T 1 with the following
properties.
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The models

Lemma
1. There is a map H : Af → (dom Mf

1)n for some n < ω,
η 7→ aη, such that Mf

1 is the Skolem hull of {aη | η ∈ Af }.
Let us denote {aη | η ∈ Af } by Sk(Mf

1).

2. Mf = Mf
1 ↾ τ is a model of T .

3. Sk(Mf
1) is indiscernible in Mf

1 relative to Lω1ω1 , i.e. if
tpat(s̄, ∅, Af ) = tpat(s̄ ′, ∅, Af ), then
tp∆(ās̄ , ∅, Mf

1) = tp∆(ās̄′ , ∅, Mf
1), where ∆ = Lω1ω1 .

4. There is a formula φ ∈ Lω1ω1(τ) such that for all η, ν ∈ Af
and m < γ, if Af |= Pm(η) ∧ Pγ(ν), then Mf |= φ(aν , aη) if
and only if Af |= η ≺ ν.
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1 is the Skolem hull of {aη | η ∈ Af }.
Let us denote {aη | η ∈ Af } by Sk(Mf

1).
2. Mf = Mf

1 ↾ τ is a model of T .
3. Sk(Mf

1) is indiscernible in Mf
1 relative to Lω1ω1 , i.e. if

tpat(s̄, ∅, Af ) = tpat(s̄ ′, ∅, Af ), then
tp∆(ās̄ , ∅, Mf

1) = tp∆(ās̄′ , ∅, Mf
1), where ∆ = Lω1ω1 .

4. There is a formula φ ∈ Lω1ω1(τ) such that for all η, ν ∈ Af
and m < γ, if Af |= Pm(η) ∧ Pγ(ν), then Mf |= φ(aν , aη) if
and only if Af |= η ≺ ν.
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Coding trees

For every f ∈ 2κ let us define the order KD(f ) by:
I. dom KD(f ) = (dom Af × {0}) ∪ (dom Af × {1}).

II. For all η ∈ Af , (η, 0) <KD(f ) (η, 1).

III. If η, ξ ∈ Af , then η ≺ ξ if and only if

(η, 0) <KD(f ) (ξ, 0) <KD(f ) (ξ, 1) <KD(f ) (η, 1).

IV. If η, ξ ∈ Af , then η < ξ if and only if (η, 1) <KD(f ) (ξ, 0).
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EM-models

Lemma (Shelah, Hyttinen-Tuuri)
Suppose T is a countable superstable theory with the DOP in a
countable vocabulary τ . Then there exists a vocabulary τ1 ⊇ τ ,
|τ1| = ω1, such that for every linear order l we can find a τ1-model
N which is an Ehrenfeucht-Mostowski model of T for l , where the
order is definable by an Lω1ω1-formula.
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Homogenicity

Let υ ≤ κ be a regular cardinal, a tree A is υ-homogeneous with
respect to quantifier free formulas if the following holds:

For every
partial isomorphisms F : X → A, where |X | < ε is a subset of A,
and a in A; there is a partial isomorphisms g : X ∪ a → A that
extends F .

Fact
For all f ∈ 2κ, Af is ε-homogeneous with respect to quantifier free
formulas.

Fact
If tpat(s̄, ∅, Af ) = tpat(s̄ ′, ∅, Af ), then
tp∆(ās̄ , ∅, Mf

1) = tp∆(ās̄′ , ∅, Mf
1), where ∆ = Lω1ω1 .
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The isomorphism theorem
Theorem (M. 2023)
Suppose T is a non-classifiable first order theory in a countable
relational vocabulary τ .

1. If T is unstable or superstable with OTOP, ω ≤ γ < κ is such
that for all α < κ, αγ < κ, then for all f , g ∈ 2κ

f =2
γ g iff Mf ∼= Mg .

2. If T is superstable with DOP, κ is inaccessible or κ = λ+ and
2c ≤ λ, and ω1 ≤ γ < κ is such that for all α < κ, αγ < κ,
then for all f , g ∈ 2κ,

f =2
γ g iff Mf ∼= Mg .
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Proof

There is a κ-representation A = {(Af )α}α<κ and
Bf (η, α) = SuccaF (η) ∩ (Af )α.

Such that there is a club C f for all
δ ∈ C f with cf (δ) ≥ ε, η ∈ Af , Af ̸|= Pγ(η), and ν ∈ SucAf (η),

∀σ ∈ Bf (η, δ) [σ > ν ⇒ ∃σ′ ∈ Bf (η, β) (σ ≥ σ′ ≥ ν)].
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Proof

Suppose f , g ∈ 2κ are such that f ̸=2
γ g , and Mf are Mg

isomorphic. Let F : Mf → Mg be an isomorphism between Mf

and Mg .

Let us denote by āη and b̄ξ the elements of Sk(Mf
1) and

Sk(Mg
1 ). For each η ∈ Af let

F (aη) = (µ0
η(b̄v̄η ), . . . , µm

η (b̄v̄η )) = µ̄η(b̄v̄η ),
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Proof

Let v̄η = (v i
η)i<lg(v̄η). Let

▶ C1 = {δ ∈ C0 | ∀η ∈ Af (η ∈ (Af )δ implies v̄η ⊆ (Ag )δ)};

▶ C ′
2 = {δ ∈ C1 | ∀α < δ ∀η ∈ (Af )δ ∀σ1 ∈ Bf (η, κ) ∃σ2 ∈

Bf (η, δ)

[v̄σ1 , v̄σ2 realizes the same atomic type over (Ag )α and µ̄σ1 = µ̄σ2 ]}

▶ C2 = {δ ∈ C ′
2 | cf (δ) ≥ γ}

▶ C = {δ ∈ C2 | δ ∈ C2 & δ is a limit point of C2}.
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Proof

Let δ ∈ S ∩ C , so there is η ∈ Af , such that:
1. Af |= Pγ(η).

2. For all n < γ, η ↾ n ∈ (Af )δ.
3. For all α < δ, there is m < γ such that η ↾ m /∈ (Af )α.
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Proof

For each n < lg(v̄η) there is αn ∈ C2 ∩ δ such that one of the
following holds

I. vn
η ∈ (Ag )αn .

II. There is mn < lg(vn
η ) such that for w0 = vn

η ↾ mn and
w1 = vn

η ↾ (mn + 1) the following hold
▶ w0 ∈ (Ag )αn and w1 /∈ (Ag )δ.
▶ ∀σ ∈ Bg (w0, δ) [σ > w1 ⇒ ∃σ′ ∈ Bg (w0, αn) (σ ≥ σ′ ≥ w1)].
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Proof

tpL(b̄v̄⌢
ζ1

v̄η , ∅, M) = tpL(b̄v̄⌢
ζ2

v̄η , ∅, M)

Since µ̄ζ1 = µ̄ζ2 ,

Mg
1 |= φ(µ̄η(b̄v̄η ), µ̄ζ1(b̄v̄ζ1

)) ⇔ φ(µ̄η(b̄v̄η ), µ̄ζ2(b̄v̄ζ2
))

so
Mf

1 |= φ(āη, āζ1) ⇔ φ(āη, āζ2).

On the other hand, since ζ1 ≺ η and ζ2 ̸≺ η,

Mf |= φ(āη, āζ1) ∧ ¬φ(āη, āζ2),

a contradiction, since Mf = Mf
1 ↾ τ and φ ∈ L(τ).
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a contradiction, since Mf = Mf
1 ↾ τ and φ ∈ L(τ).

Miguel Moreno (UH) HLS
On the Borel reducibility Main Gap 68 of 77



History GDST Lines Classifiable Non-classifiable The idea The order Trees Models The Gap

Stable unsuperstable theories

Fact (M. 2023)
If T is a countable complete stable unsuperstable theory over a
countable vocabulary, then for all f , g ∈ 2κ, f =2

ω g if and only if
EM(Af , Φ) and EM(Ag , Φ) are isomorphic.
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∼=T ↪→C =2
µ, κ = λ+

Theory λ = λγ ♢λ Dl∗Sκ
γ

(Π1
1)

Classifiable ω ≤ µ ≤
γ

µ = λ µ = γ

Non-
classifiable

Indep Indep µ = γ
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=2
µ ↪→C ∼=T , κ = λ+

Theory λ = λγ 2c ≤ λ =
λγ

2c ≤ λ =
λ<λ

& ♢λ

Stable
Unsuper-

stable

µ = ω µ = ω µ = ω

Unstable ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with

OTOP

ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with DOP

? ω1 ≤ µ ≤
γ

ω1 ≤ µ ≤
λ
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A bigger Gap

Theorem (M. 2023)
Suppose κ is inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λω1 .
There exists a cofinality-preserving forcing extension in which the
following holds:

If T1 is classifiable and T2 is not. Then there is a regular cardinal
γ < κ such that, if X , Y ⊆ Sκ

γ are stationary and disjoint, then
=2

X and =2
Y are strictly in between ∼=T1 and ∼=T2 .
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Main Gap Dichotomy

Theorem (M. 2023)
Let κ be inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 . There
exists a < κ-closed κ+-cc forcing extension in which for any
countable first-order theory in a countable vocabulary (not
necessarily complete), T , one of the following holds:

▶ ∼=T is ∆1
1(κ);

▶ ∼=T is Σ1
1(κ)-complete.
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Non-classifiable theories

Lemma (M. 2023)
Let κ be strongly inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 .
For all cardinals ℵ0 < µ < δ < κ, if T is a non-classifiable theory
then

∼=µ
T ↪→C ∼=δ

T ↪→C id ↪→C ∼=T .
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Classifiable non-shallow

Lemma (M. 2023)
Suppose κ = λ+ = 2λ. The following reduction is strict. Let
2c ≤ λ = λ<ω1 . If T1 is a classifiable non-shallow theory and T2 is
a non-classifiable theory, then

∼=λ
T2 ↪→C ∼=T1 ↪→C ∼=T2 .
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Classifiable shallow

Lemma (M. 2023)
Suppose κ = λ+ = 2λ. The following reductions are strict.
Let κ = ℵγ be such that ℶω1(| γ |) ≤ κ. Suppose T1 is a
classifiable shallow theory, T2 a classifiable non-shallow theory, and
T3 non-classifiable theory. Then

∼=T1 ↪→B ∼=λ
T3 ↪→C ∼=T2 .
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Thank you

Article at: https://arxiv.org/abs/2308.07510
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