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Motivation

Stationary reflection

Let α be an ordinal of uncountable cofinality. A set C ⊆ α is a club if it is
closed and unbounded. A set S ⊆ α is stationary if for all club C ⊂ α,
C ∩ S 6= ∅.

Definition
Let κ be a regular uncountable cardinal α ∈ κ be an ordinal of
uncountable cofinality, and a stationary S ⊆ κ, we say that S reflects at α
if S ∩ α is stationary in α

If κ is a weakly compact cardinal, every stationary subset of κ reflects at a
regular cardinal α < κ.
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Motivation

Generalised descriptive set theory

Suppose κ is an uncountable cardinal such that κ<κ = κ.

The generalised Baire space is the space κκ endowed with the bounded
topology, for every η ∈ κ<κ the following set

Nη = {ξ ∈ κκ | η ⊆ ξ}

is a basic open set.
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Motivation

Equivalence modulo nonstationary

Definition
For every stationary set S ⊆ κ and θ ∈ [2, κ], the equivalence relation =θ

S
over the subspace θκ is defined via

η =θ
S ξ iff {α ∈ S | η(α) 6= ξ(α)} is non-stationary.

Definition
The quasi-order ≤S over κκ is defined via

η ≤S ξ iff {α ∈ S | η(α) > ξ(α)} is non-stationary.

The quasi-order ⊆S over 2κ is nothing but ≤S ∩ (2κ × 2κ).

Miguel Moreno (HU) October 2020 7 / 46



Motivation

Model Theory and =θ
S

In model theory, Shelah’s main gap theorem can be understood as:
Classifiable theories are less complex than non-classifiable theories. In
generalized descriptive set theory, the complexity of a theory can be study
by studying the complexity of the isomorphism relation of the theory. Let
λ be a regular cardinal and denote by Sκλ the set {α < κ | cf (α) = λ}. Let
us denote by =θ

λ the relation =θ
S when S = Sκλ .

Fact (Hyttinen-M)
The isomorphism relation of any classifiable theory is less complex than
=κ
λ for all λ.

Under some cardinal arithmetic assumptions the following can be proved:

Fact (Friedman-Hyttinen-Kulikov)
Suppose T is a non-classifiable theory. There is a regular cardinal λ < κ
such that =2

λ is as most as complex as the isomorphism relation of T .
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Motivation

Reductions

For i < 2, let Xi be some space from the collection {θκ | θ ∈ [2, κ]}. Let
R0 and R1 be binary relations over X0 and X1, respectively.

Definition
A function f : X0 → X1 is said to be a reduction of R0 to R1 iff, for all
η, ξ ∈ X0,

η R0 ξ iff f (η) R1 f (ξ).

The existence of a function f satisfying this is denoted by R0 ↪→ R1.
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Motivation

Lipschitz reductions

For i < 2, let Xi be some space from the collection {θκ | θ ∈ [2, κ]}. Let
R0 and R1 be binary relations over X0 and X1, respectively.

For all η, ξ ∈ κκ, denote

∆(η, ξ) := min({α < κ | η(α) 6= ξ(α)} ∪ {κ}).

A reduction f of R0 to R1 is said to be 1-Lipschitz iff for all η, ξ ∈ X0,

∆(η, ξ) ≤ ∆(f (η), f (ξ)).

The existence of a 1-Lipschitz reduction f is denoted by R0 ↪→1 R1. We
likewise define R0 ↪→c R1, R0 ↪→B R1 and R0 ↪→BM R1 once we replace
1-Lipschitz by a continuous, Borel, or Baire measurable map, respectively.
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Motivation

Comparing =κ
S and =2

S

Fact (Asperó-Hyttinen-Kulikov-M)
If every stationary subset of X reflects at stationary many α ∈ Y , then
=κ

X ↪→c=κ
Y .

Fact (Friedman-Hyttinen-Kulikov)
Suppose V = L, and X ⊆ κ and Y ⊆ reg(κ) are stationary. If every
stationary subset of X reflects at stationary many α ∈ Y , then =2

X ↪→c=2
Y .
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Motivation

Limitations

Let λ be a regular cardinal and denote by Sκλ the set {α < κ | cf (α) = λ}.

• For all regular cardinals γ 6 λ < κ, any X ⊆ Sκλ , X does not reflect
at any α ∈ Sκγ .

• If κ = λ+ and �λ holds, then for all X ⊆ κ there is a stationary
Y ⊆ X such that Y does not reflect at any α < κ. This happens in L.

• Usual stationary reflection requires large cardinals.
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Filter Reflection

The case of L

Recall: =θ
λ is the relation =θ

S when S = Sκλ .

Fact (Hyttinen-Kulikov-M)
Suppose V = L. Let λ be a regular cardinal below κ. Then for all
stationary X ⊆ κ, =κ

X ↪→c=2
λ.

Question
How is this possible if there are sets in L that do not reflect at any α < κ?
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Filter Reflection

Capturing clubs

Suppose S is stationary subset of κ, and ~F = 〈Fα | α ∈ S〉 is a sequence
such that, for each α ∈ S, Fα is a filter over α.

Definition
We say that ~F captures clubs iff, for every club C ⊆ κ, the set {α ∈ S |
C ∩ α /∈ Fα} is non-stationary;

For any ordinal α < κ of uncountable cofinality, denote by CUB(α) the
club filter of subsets of α. The sequence ~F = 〈Fα | α ∈ Sκω1〉 define by
Fα = CUB(α), capture clubs.
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Filter Reflection

Filter reflection

Suppose X and S are stationary subsets of κ, and ~F = 〈Fα | α ∈ S〉 is a
sequence such that, for each α ∈ S, Fα is a filter over α.

Definition
We say that X ~F-reflects to S iff ~F captures clubs and, for every
stationary Y ⊆ X, the set {α ∈ S | Y ∩ α ∈ F+

α } is stationary

Definition
We say that X f-reflects to S iff there exists a sequence of filters ~F over a
stationary subset S ′ of S such that X ~F-reflects to S ′.
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Filter Reflection

Some comments

• Suppose X ,S ⊆ κ are stationary sets such that every ordinal α ∈ S
has uncountable cofinality and every stationary Y ⊆ X reflects at
stationary many β ∈ S. Define the sequence ~F = 〈Fα | α ∈ S〉 by
Fα = CUB(α). Clearly X ~F-reflects to S.

• We call fake reflection the case when X f-reflects to S and for all
α ∈ S, Fα 6⊇ CUB(α).

• Suppose S ⊆ κ is stationary and {Sβ | β < κ} a partition of S.
Define the sequence ~F = 〈Fα | α ∈ S〉 by: For all α ∈ Sβ let Fα be
the filter generated by {β} if β < α, and {α} otherwise. Clearly for
all Y ⊆ X , {α ∈ S | Y ∩ α ∈ F+

α } is stationary.

Miguel Moreno (HU) October 2020 17 / 46



Filter Reflection

Strong forms of filter reflection

Definition
We say that X strongly ~F-reflects to S iff ~F captures clubs and, for every
stationary Y ⊆ X, the set {α ∈ S | Y ∩ α ∈ Fα} is stationary.

Definition
We say that X ~F-reflects with ♦ to S iff ~F captures clubs and there exists
a sequence 〈Yα | α ∈ S〉 such that, for every stationary Y ⊆ X, the set
{α ∈ S | Yα = Y ∩ α & Y ∩ α ∈ F+

α } is stationary.
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Applications of Filter Reflection

Properties

Fact

For stationary subsets X and S of κ, (1) =⇒ (2) =⇒ (3):
1 X f-reflects with ♦ to S;
2 X strongly f-reflects to S;
3 X f-reflects to S.

Fact (Monotonicity)
For stationary sets Y ⊆ X ⊆ κ and S ⊆ T ⊆ κ:

1 If X f-reflects to S, then Y f-reflects to T ;
2 If X strongly f-reflects to S, then Y strongly f-reflects to T ;
3 If X f-reflects with ♦ to S, then Y f-reflects with ♦ to T .

Miguel Moreno (HU) October 2020 20 / 46



Applications of Filter Reflection

Strong Filter Reflection

Proposition
Suppose X strongly f-reflects to S. If ♦X holds, then so does ♦S .

Corollary
Assuming the consistency of a weakly compact cardinal, it is consistent
that the two hold together:
• Every stationary subset of Sω2

ω reflects in Sω2
ω1 ;

• There exists no stationary subset of Sω2
ω that strongly f-reflects to Sω2

ω1 .
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Applications of Filter Reflection

Fake reflection and reductions
Lemma
If X f-reflects to S, then =κ

X ↪→1 =κ
S .

Proof.
Suppose that ~F = 〈Fα | α ∈ S ′〉 witnesses that X f-reflects to S. For
every α ∈ S ′, define an equivalence relation ∼α over κα by letting η ∼α ξ
iff there is W ∈ Fα such that W ∩ X ⊆ {β < α | η(β) = ξ(β)}. As there
are at most |κα| many equivalence classes and as κ<κ = κ, we may attach
to each equivalence class [η]∼α a unique ordinal (a code) in κ, which we
shall denote by p[η]∼α

q. Next, define a map f : κκ → κκ by letting for all
η ∈ κκ and α < κ:

f (η)(α) :=
{
p[η � α]∼α

q, if α ∈ S ′;
0, otherwise.
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Applications of Filter Reflection

Fake reflection and reductions

Lemma
If X strongly f-reflects to S, then for all θ ∈ [2, κ], =θ

X ↪→1 =θ
S .

Proof.
We may assume that θ ∈ [2, κ). Suppose ~F = 〈Fα | α ∈ S ′〉 is a sequence
witnessing that X strongly f-reflects to S. Define a map f : θκ → θκ as
follows. For every α ∈ S ′ and η ∈ θκ, if there exists W ∈ Fα and i < θ
such that W ∩ X ⊆ {β < α | η(β) = i}, then it is unique (since Fα is a
filter), and so we let f (η)(α) := i . If there is no such i or if α /∈ S ′, then
we simply let f (η)(α) := 0.
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Applications of Filter Reflection

Fake reflection and reductions

Lemma
If X f-reflects with ♦ to S, then 6X ↪→1 ⊆S .

Proof.
Let ~F = 〈Fα | α ∈ S ′〉 and 〈Yα | α ∈ S ′〉 witness together that X
f-reflects with ♦ to S. Let S ′′ := {α ∈ S ′ | Yα ∈ F+

α }. For each α ∈ S ′′,
let F̄α be the filter over α generated by Fα ∪ {Yα}.
Claim: There exists a sequence 〈ηα | α ∈ S ′′〉 such that, for every
stationary Y ⊆ X and every η ∈ κκ, the set {α ∈ S ′′ |
ηα = η � α & Y ∩ α ∈ F̄α} is stationary.
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Applications of Filter Reflection

Fake reflection and reductions
Lemma
If X f-reflects with ♦ to S, then 6X ↪→1 ⊆S .

Proof.
Let ~F = 〈Fα | α ∈ S ′〉 and 〈Yα | α ∈ S ′〉 witness together that X
f-reflects with ♦ to S. Let S ′′ := {α ∈ S ′ | Yα ∈ F+

α }. For each α ∈ S ′′,
let F̄α be the filter over α generated by Fα ∪ {Yα}. Let 〈ηα | α ∈ S ′′〉 be
given by the preceding claim. For every α ∈ S ′′, define a quasi-order 4α
over κα by letting η 4α ξ iff there is W ∈ F̄α such that
W ∩ X ⊆ {β < α | η(β) 6 ξ(β)}. Define a map f : κκ → 2κ by letting for
all η ∈ κκ and α < κ:

f (η)(α) :=
{

1, if α ∈ S ′′ & ηα 4α η � α;
0, otherwise.
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Applications of Filter Reflection

Not Σ1
1-complete

Question (Aspero-Hyttinen-Kulikov-M, Question 4.3)
Is it consistent that κ is inaccessible and =2

S is not Σ1
1-complete for some

stationary S ⊆ κ?

Theorem
If κ is an inaccessible cardinal, then there exists a cofinality-preserving
forcing extension in which (κ is inaccessible, and) for every stationary
co-stationary S ⊆ κ, =2

S is not a Σ1
1-complete equivalence relation.
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Applications of Filter Reflection

Not reduction

Question (M, Question 4.16)
Is it consistent that

=µ 6↪→B =ν

holds for all infinite regular cardinals µ 6= ν below κ?

Theorem
There is a cofinality-preserving forcing extension, in which, for all infinite
regular cardinals µ 6= ν below κ, =µ 6↪→BM=ν .
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Applications of Filter Reflection

Question (Aspero-Hyttinen-Kulikov-M, Question 2.12)
Is it consistent that, for all infinite regular µ < ν < κ, the following hold?

=µ ↪→B =2
ν & =2

ν 6↪→B =µ.

Theorem
Suppose MM holds. After forcing with Add(ω2, ω3), MM still holds, and
so are all of the following:

1 =ω2
ω ↪→1 =2

ω1 ;
2 For every stationary X ⊆ Sω2

ω1 , =2
X 6↪→BM =ω2

ω ;
3 There are stationary subsets X ⊆ Sω2

ω and Y ⊆ Sω2
ω1 such that

=2
X 6↪→BM =ω2

Y ;
4 There is a stationary Y ⊆ Sω2

ω1 such that =2
ω1 6↪→BM =ω2

Y ;
5 =ω2

ω ↪→1 =2
ω1 and =2

ω1 6↪→BM =ω2
ω .
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Applications of Filter Reflection

Over the limits

• Usual stationary reflection is a special case of filter reflection.

• For all regular cardinals γ 6 λ < κ, any X ⊆ Sκλ , X does not reflect
at any α ∈ Sκγ . Sκλ f-reflects to Sκγ is consistently true.

• If κ = λ+ and �λ holds, then for all X ⊆ κ there is a stationary
Y ⊆ X such that Y does not reflect at any α < κ. Fake reflection is
consistent with �λ.

• Fake reflection does not require large cardinals. This is the case of L.
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Consistency of Filter reflection

What happens in L

Suppose V = L. For κ = λ+, it is known that for all stationary sets X ⊆ κ
there is a stationary Y ⊆ X that does not reflect at any α < κ.

Question
What about fake reflection?
Suppose V = L. Does X f-reflects to κ, for all stationary X ⊆ κ?

Miguel Moreno (HU) October 2020 31 / 46



Consistency of Filter reflection

A diamond reflection principle

For sets N and x , we say that N sees x iff N is a transitive model of ZF−
and x ∪ {x} ⊆ N

Definition
For a stationary S ⊆ κ and a positive integer n, Dl∗S(Π1

n) asserts the
existence of a sequence ~N = 〈Nα | α ∈ S〉 satisfying the following:

1 for every α ∈ S, Nα is a set of cardinality < κ that sees α;
2 for every X ⊆ κ, there exists a club C ⊆ κ such that, for all
α ∈ C ∩ S, X ∩ α ∈ Nα;

3 for every Π1
n-sentence φ valid in a structure 〈κ,∈, (Am)m∈ω〉, there

are stationarily many α ∈ S such that |Nα| = |α| and

Nα |= “φ is valid in 〈α,∈, (Am � α)m∈ω〉”.
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Consistency of Filter reflection

Dl∗S(Π1
1) and fake reflection

Lemma
Suppose S ⊆ κ is stationary for which Dl∗S(Π1

1) holds. Then for all
stationary X ⊆ κ, X f-reflects to S.

Proof.
Idea: Let Φ be a Π1

1-sentence such that for all α, 〈α,∈〉 |= Φ if and only if
α is regular. Let S ′ ⊆ S be the set of ordinals such that
Nα |= “Φ is valid in 〈α,∈〉”. For all α ∈ S ′, define Fα as the set of
D ∈ Nα such that Nα |= “D is a club”.
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Consistency of Filter reflection

Fake reflection in L

Theorem
Suppose V = L. For any stationary set S ⊆ κ, Dl∗S(Π1

2) holds.

Corollary
Suppose V = L. Then for every stationary set S ⊆ κ, κ f-reflects to S.

Remark
By monotonicity, suppose V = L, then for all stationary sets X , S ⊆ κ, X
f-reflects to S.

In particular S f-reflects to S and Sκω1 f-reflects to Sκω .
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Consistency of Filter reflection

The next step

Question
Can we force filter reflection?

Easy answer: Yes. Just force usual stationary reflection (collapse a
weakly compact cardinal).

Question
Can we force fake reflection without using large cardinals?

Miguel Moreno (HU) October 2020 35 / 46



Consistency of Filter reflection

Sakai’s forcing

Definition
Let S be the poset of all pairs (k,B) with the following properties:

1 k is a function such that dom(k) < κ;
2 for each α ∈ dom(k), k(α) is a transitive model of ZF− of size
≤ max{ℵ0, |α|}, with k � α ∈ k(α);

3 B is a subset of P(κ) of size ≤ dom(k);
(k ′,B′) 6 (k,B) in S if the following holds:

(i) k ′ ⊇ k, and B′ ⊇ B;
(ii) for any B ∈ B and any α ∈ dom(k ′)\dom(k), B ∩ α ∈ k ′(α).

Fact
For every stationary S ⊆ κ, V S |= Dl∗S(Π1

n).
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Consistency of Filter reflection

Conclusion

Corollary
For all stationary subsets X and S of κ, there exists a <κ-closed κ+-cc
forcing extension, in which X f-reflects to S.
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Killing Filter Reflection

The Failure

Question
Is the failure of filter reflection consistently true?

• Weakly compact: clearly the failure cannot be forced.
• Usual stationary reflection: force �λ.
• Fake reflection: forcing �λ is not enough.

Question
What do we need to kill fake reflection?
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Killing Filter Reflection

I [κ− X ]

Definition
Let X ⊆ κ. We define a collection I[κ− X ], as follows.
A set Y is in I[κ− X ] iff Y ⊆ κ and there exists a sequence 〈aβ | β < κ〉
of elements of [κ]<κ along with a club C ⊆ κ such that, for every
δ ∈ Y ∩ C, there is a cofinal subset A ⊆ δ of order-type cf(δ) such that

1 {A ∩ γ | γ < δ} ⊆ {aβ | β < δ}, and
2 acc+(A) ∩ X = ∅.

Shelah’s approachability ideal I[κ] is equal to I[κ− ∅] � Sing
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Killing Filter Reflection

Add(κ, 1)

Theorem
Suppose X , S are stationary subsets of κ, with S ∈ I[κ− X ]. For every
~F = 〈Fα | α ∈ S〉, V Add(κ,1) |= X does not ~F-reflect to S.

Proof: Towards a contradiction, suppose that ~F is a counterexample.

Let R denote the set of all pairs (p, q) ∈ 2<κ × 2<κ such that:
• dom(p) = dom(q) is in nacc(κ);
• {α ∈ dom(p) | p(α) = q(α) = 1} is disjoint from X ;
• {α ∈ dom(q) | q(α) = 1} is a closed set of ordinals.

We let R := (R,≤) where (p′, q′) ≤ (p, q) iff p′ ⊇ p and q′ ⊇ q.
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Killing Filter Reflection

continuation of the proof

R is <κ-closed of size κ, R is forcing equivalent to Add(κ, 1).

Let P := {p | ∃q (p, q) ∈ R}. It is easy to see that P := (P,⊇) is
<κ-closed, so that P is forcing equivalent to Add(κ, 1).

Let G be R-generic over V . Let G0 denote the projection of G to the first
coordinate, so that G0 is P-generic over V .

In V [G0], let Q := {q ∈ 2<κ | ∃p ∈ G0 (p, q) ∈ R}. Clearly, Q := (Q,⊇)
is isomorphic to the quotient forcing R/G0.

It follows that, in V [G ], we may read a Q-generic set G1 over V [G0] such
that, in particular, V [G ] = V [G0][G1].

Denote η :=
⋃

G0 and let Y := {α ∈ X | η(α) = 1}.
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Killing Filter Reflection

continuation of the proof

Recall: η :=
⋃

G0 and Y := {α ∈ X | η(α) = 1}. Define T := {α ∈ S\Y |
Y ∩ α ∈ F+

α }.
We will prove the following claim:

1 In V [G0], Y and T are stationary.
2 In V [G0][G1], T is stationary.
3 In V [G0][G1], Y is nonstationary.

The last two claims contradict that ~F capture clubs.
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Killing Filter Reflection

Killing fake reflection

Corollary
Suppose X , S are stationary subsets of κ, with S ∈ I[κ− X ]. After forcing
with Add(κ, κ+), X does not f-reflect to S.

By doing a preliminary forcing to enlarge I[κ− X ] for all X , we obtain:

Corollary (Dense non-reflection)
There exists a cofinality-preserving forcing extension in which for all two
stationary subsets X ,S of κ, X does not f-reflect to S.

Miguel Moreno (HU) October 2020 44 / 46



Killing Filter Reflection

Killing fake reflection

Lemma
Suppose that κ is strongly inaccessible or κ = λ+ with λ<λ = λ. For every
stationary X ,Y ⊆ κ such that Tr(X ) ∩ Y is non-stationary, Y ∈ I[κ− X ].

Corollary
If κ is strongly inaccessible (e.g., κ Laver-indestructible supercompact),
then in the forcing extension by Add(κ, κ+), for all two stationary subsets
X ,S of κ, the following are equivalent:

1 X f-reflects to S;
2 every stationary subset of X reflects in S.
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Killing Filter Reflection

Thank you
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