

Borel sets and the generalized Baire spaces

Miguel Moreno
University of Helsinki
(joint work with Tapani Hyttinen and Jouko Väänänen)

Finnish Mathematical Days 2026

9 January, 2026

The bounded topology

Let κ be an uncountable cardinal.

We equip the set κ^κ with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{\eta \in \kappa^\kappa \mid \zeta \subset \eta\}$$

is a basic open set.

κ -Borel sets

The κ -Borel space of κ^κ is the smallest set, which contains the open sets, and is closed under unions and intersections, both of length κ , and complements.

A κ -Borel set, is any element of the κ -Borel space.

A set X is a κ - Σ_1^1 if it is a projection of a κ -Borel set $C \subseteq (\kappa^\kappa)^2$.

A set X is a κ - Π_1^1 if it is the complement of a κ - Σ_1^1 set.

A set X is a κ - Δ_1^1 if it is a κ - Σ_1^1 and κ - Π_1^1 set.

Classifiable theories

Theorem (Friedman - Hyttinen - Kulikov)

If $\kappa > 2^\omega$ is a successor cardinal, then T is classifiable and shallow if and only if \cong_T is κ -Borel.

Theorem (Friedman - Hyttinen - Kulikov)

If T is classifiable not shallow, then \cong_T is κ - Δ_1^1 and not κ -Borel.

Some non-Classifiable theories

Theorem (Friedman - Hyttinen - Kulikov)

- ▶ If T is unstable, then \cong_T is κ - Σ_1^1 and not κ - Δ_1^1 .
- ▶ If T is superstable with OTOP, then \cong_T is κ - Σ_1^1 and not κ - Δ_1^1 .
- ▶ If T is superstable with DOP and $\kappa > \omega_1$, then \cong_T is κ - Σ_1^1 and not κ - Δ_1^1 .

Borel-reducibility Main Gap

Theorem (M.)

Let $\mathfrak{c} = 2^\omega$. Suppose $\kappa = \lambda^+ = 2^\lambda$ and $2^\mathfrak{c} \leq \lambda = \lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then

$$\cong_T \hookrightarrow_C \cong_{T'} \text{ and } \cong_{T'} \not\hookrightarrow_B \cong_T .$$

A dead end

Lemma (Hyttinen - M - Väänänen.)

Suppose $2^\lambda = 2^\kappa$, $\kappa > \lambda$. Then for all $A \subseteq \kappa^\kappa$ there is a closed $C \subseteq \kappa^\kappa \times 2^\kappa$ such that A is the first projection of C i.e.

$$A = \{f \in \kappa^\kappa : \exists g \in 2^\kappa ((f, g) \in C)\}.$$

Ideal topologies

Let \mathcal{I} be a κ -complete proper ideal on κ that extends the ideal of bounded sets.

For any set $I \subseteq \kappa$, let $Fn_I = \{f \mid f: D \rightarrow \kappa, \text{ where } D \in I\}$.

For $\eta \in Fn_I$, we define

$$N_\eta = \{\xi \in \kappa^\kappa \mid \eta \subseteq \xi\}.$$

More issues

Lemma (M - Pitton.)

If \mathcal{I} contains an unbounded subset of κ . Then for all $A \subseteq \kappa^\kappa$ there is a closed $C \subseteq \kappa^\kappa \times \kappa^\kappa$ such that A is the first projection of C .

Definition

Basic κ -open sets are the sets of the form

$$N_\eta = \{\zeta \in \kappa^\kappa \mid \eta \subseteq \zeta\}$$

where $\eta : X \rightarrow \kappa$ and $X \subseteq \kappa$ has size less than κ ; and the empty set. A set is κ -open if it is a κ -union of basic κ -open sets.

The class of κ -Borel sets is the smallest class that contains all the basic κ -open sets and is closed under complements and κ -unions and κ -intersections.

Independency

Lemma (M - Pitton.)

The class of κ -Borel sets is the same over all the ideal topologies.

κ -analytic

We say that a set is κ - Σ_1^1 if it is the projection of a κ -Borel set.

Notice that there are only 2^κ many κ - Σ_1^1 sets, but there are 2^{2^κ} subsets of κ^κ . Most subsets of κ^κ are not κ - Σ_1^1 .

Lemma (Hyttinen - M - Väänänen.)

Every κ -Borel set is a κ - Σ_1^1 set.

κ -Borel hierarchy

- ▶ κ - Σ_0 is the set of basic κ -open sets of the form N_η , $|\eta| = 1$.
- ▶ If α is even, then κ - $\Sigma_{\alpha+1}$ is the set of all κ -unions of κ - Σ_α -sets.
- ▶ If α is odd, then κ - $\Sigma_{\alpha+1}$ is the set of all κ -intersections of κ - Σ_α -sets.
- ▶ If α is limit, then κ - $\Sigma_\alpha = \bigcup_{\beta < \alpha} \kappa$ - Σ_β .

Good news

Theorem (Hyttinen - M - Väänänen.)

The sets κ - Σ_α form a proper hierarchy.

Theorem (Hyttinen - M - Väänänen.)

For all $\alpha < \kappa^+$, there is a universal κ - Σ_α set.

Theorem (Hyttinen - M - Väänänen.)

There is a universal κ -Borel set.

The classifiable case

Theorem (Hyttinen - M - Väänänen.)

Let \mathcal{T} be a countable ω -stable NDOP shallow. Suppose κ is a regular cardinal such that $\kappa^\omega = \kappa$. If the number of isomorphism classes is at most κ , then $\cong_{\mathcal{T}}$ is κ -Borel.

The non-classifiable case

Theorem (Hyttinen - M - Väänänen.)

Suppose \mathcal{T} is a countable non-classifiable theory (i.e. \mathcal{T} is not a superstable stable theory without DOP and without OTOP) and $\kappa > \omega$ is regular, then the isomorphism relation of \mathcal{T} , $\cong_{\mathcal{T}}$, is not κ -Borel on the Generalized Baire Space κ^κ .

Thank you

Article at: <https://arxiv.org/abs/2507.15427>