Finding the main gap in the generalised descriptive set theory

Miguel Moreno University of Vienna FWF Meitner-Programm

Canadian Mathematical Society Winter Meeting 2022

4 December, 2022

< 口 > < 同 >

Miguel Moreno (UV)

Finding the main gap in the generalised descriptive set theory

The spectrum problem

Let T be a countable theory over a countable language. Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

Löwenheim-Skolem Theorem:

$$\exists \alpha \geq \omega \ I(T, \alpha) \neq \mathbf{0} \Rightarrow \forall \beta \geq \omega \ I(T, \beta) \neq \mathbf{0}.$$

Morley's categoricity:

$$\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1.$$

< 口 > < 同 >

< ∃ >

Finding the main gap in the generalised descriptive set theory

GDST 00000 The division lines

Borel reducibility

Image: Image:

Shelah's Main Gap Theorem

Theorem (Shelah)

Let T be a countable theory.

- If T is not superstable or (is superstable) deep or with the DOP or the OTOP, then for every uncountable α, I(T, α) = 2^α.
- If T is shallow superstable without the DOP and without the OTOP, then for every α > 0, I(T, ℵ_α) < □_{ω1}(| α |).

Finding the main gap in the generalised descriptive set theory

GDST 00000 The division lines

Borel reducibility

< 口 > < 同 >

References 000

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;
- ► *T* is superstable with DOP;
- ► *T* is superstable with OTOP.

The topology

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set $[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$

Finding the main gap in the generalised descriptive set theory

CMSWM 2022

Image: A math a math

< 口 > < 同 >

The Generalised Baire spaces

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

The generalised Cantor space is the subspace 2^{κ} .

Miguel Moreno (UV)

Finding the main gap in the generalised descriptive set theory

CMSWM 2022

7 of 30

Coding structures

Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}.$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure \mathcal{A}_f with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Finding the main gap in the generalised descriptive set theory

CMSWM 2022

Image: A math a math

Image: A math a math

The isomorphism relation

Definition

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are $\cong_{\mathcal{T}}$ equivalent if $\mathcal{A}_f \models \mathcal{T}, \mathcal{A}_g \models \mathcal{T}, \mathcal{A}_f \cong \mathcal{A}_g$ or $\mathcal{A}_f \nvDash \mathcal{T}, \mathcal{A}_g \nvDash \mathcal{T}$

Miguel Moreno (UV)

Finding the main gap in the generalised descriptive set theory

CMSWM 2022 9 of 30

Question

Question. What can we say about the division lines using the isomorphism relation?

Miguel Moreno (UV) Finding the main gap in the generalised descriptive set theory CMSWM 2022

10 of 30

κ -Borel sets

The κ -Borel space of κ^{κ} is the smallest set, which contains the basic open sets, and is closed under unions and intersections, both of length κ , and complements.

A κ -Borel set, is any element of the κ -Borel space.

A set X is a κ - Σ_1^1 if it is a projection of a closed set $C \subseteq (\kappa^{\kappa})^2$.

A set X is a κ - Π_1^1 if it is the complement of a κ - Σ_1^1 set.

A set X is a κ - Δ_1^1 if it is a κ - Σ_1^1 and κ - Π_1^1 set.

Finding the main gap in the generalised descriptive set theory

CMSWM 2022

イロト イボト イヨト イヨト

Classifiable theories

Theorem (Friedman - Hyttinen - Kulikov)

If $\kappa > 2^{\omega}$ is a succesor cardinal, then T is classifiable and shallow if and only if \cong_{T} is κ -Borel.

Theorem (Friedman - Hyttinen - Kulikov) If T is classifiable not shallow, then \cong_T is κ - Δ_1^1 and not κ -Borel.

Finding the main gap in the generalised descriptive set theory

CMSWM 2022

< 口 > < 同 >

• = • •

Shelah's Main Gap Theorem 0000	GDST 00000	The division lines 00●00	Borel reducibility 00000000000	References 000

κ -Borel rank

If A is a κ -Borel set, the smallest ordinal $1 \le \alpha \le \kappa^+$ such that $A \in \Sigma^0_{\alpha}(\kappa) \cup \Pi^0_{\alpha}(\kappa)$ is called the κ -Borel rank of A and denoted by $rk_B(A)$.

Theorem (Mangraviti - Motto Ros)

Let κ be such that $\kappa > 2^{\omega}$. If T is classifiable and shallow with depth α , then $rk_B(\cong_T) \leq 4\alpha$.

Image: Image:

A B M A B M

Finding the main gap in the generalised descriptive set theory

Non-Classifiable theories

Theorem (Friedman - Hyttinen - Kulikov)

- If T is unstable, then \cong_T is κ - Σ_1^1 and not κ - Δ_1^1 .
- If T is superstable with OTOP, then \cong_T is κ - Σ_1^1 and not κ - Δ_1^1 .
- If T is superstable with DOP and κ > ω₁, then ≃_T is κ-Σ¹₁ and not κ-Δ¹₁.

CMSWM 2022

< □ > < 同 > < Ξ > <</p>

< 口 > < 同 >

3

Non-classifiableable theories

Question. Is consistent that there is a stable unsuperstable theory for which \cong_T is κ - Δ_1^1 ?

Miguel Moreno (UV)

CMSWM 2022

Finding the main gap in the generalised descriptive set theory

Shelah's Main Gap Theorem	GDST 00000	The division lines	Borel reducibility ●00000000000	References 000

Reductions

Let E_1 and E_2 be equivalence relations on θ^{κ} , $\theta \in \{2, \kappa\}$. We say that E_1 is *Borel reducible* to E_2 , if there is a Borel function $f: \theta^{\kappa} \to \theta^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We write $E_1 \hookrightarrow_B^{\theta} E_2$.

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\theta} T' \text{ iff } \cong_T \hookrightarrow^{\theta}_B \cong_{T'}$$

Finding the main gap in the generalised descriptive set theory

CMSWM 2022

イロト イポト イヨト イヨト

Classifiable theories

Theorem (Mangraviti - Motto Ros)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \le \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$T \leq^{\kappa} T'$$

Finding the main gap in the generalised descriptive set theory

Consistency of the Main Gap

Theorem (Hyttinen - Kulikov - M.)

Let $H(\kappa)$ be the property: If T is classifiable and T' is not, then $T \leq^{\kappa} T'$ and $T' \not\leq^{\kappa} T$. Suppose that $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, $\lambda^{<\lambda} = \lambda$.

- $\Diamond(E_{\lambda}^{\kappa})$ implies $H(\kappa)$.
- There is a κ -closed κ^+ -cc which forces $H(\kappa)$.

Completeness

Theorem (Fernandes - M. - Rinot)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. Let T be a non-classifiable theory. There is a κ -closed κ^+ -cc forcing which forces: If T' is a countable complete first-order theory, then $T' \leq^{\kappa} T$.

A dichotomy

Theorem (Hyttinen - Kulikov - M.)

The following is consistent: For all first-order countable theory T one of the following holds:

- 1. \cong_T is κ - Δ_1^1
- 2. If T' is a countable complete first-order theory, then $T' \leq^{\kappa} T$.

< 口 > < 同 >

< ∃ >

GDST 00000 The division lines 00000 Borel reducibility

< 口 > < 同 >

References

Stable unsuperstable theories

Theorem (Hyttinen - Kulikov - M.) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. If T is classifiable and T' is stable unsuperstable, then $T \leq^{\kappa} T'$.

< □ > < 同 > < Ξ > <</p>

The orthogonal chain property

A stable theory T has the orthogonal chain property (OCP), if there exists $\lambda_r(T)$ -saturated models of T of power $\lambda_r(T)$, $\{\mathcal{A}_i\}_{i < \omega}$, and $a \notin \bigcup_{i < \omega} \mathcal{A}_i$, such that:

For all
$$i < j$$
, $A_i \subseteq A_j$;

• $t(a, \cup_{i < \omega} A_i)$ is not algebraic;

< □ > < 同 > < Ξ > <</p>

The orthogonal chain property

A stable theory T has the orthogonal chain property (OCP), if there exists $\lambda_r(T)$ -saturated models of T of power $\lambda_r(T)$, $\{\mathcal{A}_i\}_{i < \omega}$, and $a \notin \bigcup_{i < \omega} \mathcal{A}_i$, such that:

- ▶ For all i < j, $A_i \subseteq A_j$;
- $t(a, \cup_{i < \omega} A_i)$ is not algebraic;

• for all
$$j < \omega$$
, $t(a, \cup_{i < \omega} A_i) \perp A_j$.

The division lines 00000

< 口 > < 同 >

< ∃ >

The orthogonal chain property

```
Theorem (Hyttinen - M.)
```

If T has the OCP, then T is stable unsuperstable.

Theorem (Hyttinen - M.)

Let κ be an inaccessible cardinal. If T is a classifiable theory and T' is a theory with OCP, then $T \leq^{\kappa} T'$.

Finding the main gap in the generalised descriptive set theory

イロト イポト イヨト イヨト

The strong dimensional order property

We say that a superstable theory T has the strong dimensional order property (S-DOP) if the following holds:

There are F_{ω}^{a} -saturated models $(M_{i})_{i < 3}$, $M_{0} \subseteq M_{1} \cap M_{2}$, such that $M_{1} \downarrow_{M_{0}} M_{2}$, and for every $M_{3} F_{\omega}^{a}$ -prime model over $M_{1} \cup M_{2}$, there is a non-algebraic type $p \in S(M_{3})$ orthogonal to M_{1} and to M_{2} , such that it does not fork over $M_{1} \cup M_{2}$.

Finding the main gap in the generalised descriptive set theory

< 口 > < 同 >

< ∃ >

The strong dimensional order property

Theorem (M.)

Let κ be an inaccessible cardinal. If T is a classifiable theory and T' is a superstable theory with S-DOP, then $T \leq^{\kappa} T'$.

Unsuperstable

Theorem (M.)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{\omega} = \lambda$. If T is a countable complete classifiable theory, and T' is a countable complete unsuperstable theory, then $T \leq^{\kappa} T'$.

CMSWM 2022

< 口 > < 同 >

Forking sequences

Theorem (Feldman - M.)

Let κ be an inaccessible cardinal. Suppose T is such that there is an increasing sequence A_i , $i \leq \omega + \omega$, and $p \in S(A_{\omega+\omega})$ such that for all $i < \omega + \omega$, $p \upharpoonright A_{i+1}$ forks over A_i . Then for all classifiable theory T', $T' \leq^{\kappa} T$.

< 口 > < 同 >

Finding the main gap in the generalised descriptive set theory

GDST 00000

Thank you

Miguel Moreno (UV) Finding the main gap in the generalised descriptive set theory ・ロト・日本・山田・山田・山口・

CMSWM 2022

28 of 30

References

- S. Shelah, *Classification theory*, Stud. Logic Found. Math.
 92, North-Holland (1990).
- S.D. Friedman, T. Hyttinen, and V. Kulikov, *Generalized* descriptive set theory and classification theory, in Memories of the American Mathematical Society 230 (2014).
- F. Mangraviti, L. Motto Ros, A descriptive Main Gap Theorem, Journal of Mathematical Logic 21, (2021).
- T. Hyttinen, V. Kulikov, and M. Moreno, On Σ₁¹-completeness of Quasi-orders on κ^κ, Fundamenta Mathematicae. 251, 245 268 (2020).
- G. Fernandes, M. Moreno, and A. Rinot, *Fake reflection*, Israel Journal of Mathematics. 245, 295 - 345 (2021).

< □ > < 同 > < 回 > < Ξ > < Ξ

References

- T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. math. Logic. 56, 175 – 185 (2017).
- T. Hyttinen, and M. Moreno, On the reducibility of isomorphism relations, Math Logic Quart. 63, 175–185 (2017).
- M. Moreno, The isomorphism relation of theories with S-DOP in the generalized Baire spaces, Annals of Pure and Applied Logic. 173, (2022).
- M. Moreno, On unsuperstable theories in GDST, (arXiv:2203.14292). Submitted, (2022).
- I. Feldman, and M. Moreno, On Generalized Ehrenfeucht-Mostowski models. In preparation.