Consistency of Filter Reflection

Miguel Moreno University of Vienna Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters

Bogotá Seminario Flotante

May 2020

Miguel Moreno (BSF)

May 2020 1 / 32

This is a joint work with Gabriel Fernandes and Assaf Rinot at BIU.

Our paper, entitled **Fake Reflection** is available at https://arxiv.org/abs/2003.08340

Motivation

Outline

1 Motivation

- 2 Filter Reflection
- 3 Fake Reflection
- 4 Sakai's Forcing

Stationary reflection

Let α be a not ω cofinal ordinal. A set $C \subseteq \alpha$ is a club if it is closed and unbounded. A set $S \subseteq \alpha$ is stationary if for all club $C \subset \alpha$, $C \cap S \neq \emptyset$.

Definition

Let κ be a regular uncountable cardinal $\alpha \in \kappa$ be a not ω -cofinal ordinal, and a stationary $S \subseteq \kappa$, we say that S reflects at α if $S \cap \alpha$ is stationary in α

If κ is a weakly compact cardinal, every stationary subset of κ reflects at a regular cardinal $\alpha < \kappa.$

Motivation

Generalised descriptive set theory

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The generalised Baire space is the space κ^{κ} endowed with the bounded topology, for every $\eta \in \kappa^{<\kappa}$ the following set

$$N_{\eta} = \{\xi \in \kappa^{\kappa} \mid \eta \subseteq \xi\}$$

is a basic open set.

Motivation

Equivalence modulo nonstationary

Definition

For every stationary set $S \subseteq \kappa$ and $\theta \in [2, \kappa]$, the equivalence relation $=_{S}^{\theta}$ over the subspace θ^{κ} is defined via

$$\eta =_{\mathcal{S}}^{\theta} \xi$$
 iff $\{\alpha \in \mathcal{S} \mid \eta(\alpha) \neq \xi(\alpha)\}$ is non-stationary.

Definition

The quasi-order \leq^{S} over κ^{κ} is defined via

 $\eta \leq^{\mathsf{S}} \xi$ iff $\{\alpha \in \mathsf{S} \mid \eta(\alpha) > \xi(\alpha)\}$ is non-stationary.

The quasi-order \subseteq^{S} over 2^{κ} is nothing but $\leq^{S} \cap (2^{\kappa} \times 2^{\kappa})$.

Reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

Definition

A function $f : X_0 \to X_1$ is said to be a reduction of R_0 to R_1 iff, for all $\eta, \xi \in X_0$, $\eta R_0 \xi$ iff $f(\eta) R_1 f(\xi)$.

The existence of a function f satisfying this is denoted by $R_0 \hookrightarrow R_1$.

Motivation

Lipschitz reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

For all $\eta, \xi \in \kappa^{\kappa}$, denote

$$\Delta(\eta,\xi) := \min(\{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cup \{\kappa\}).$$

A reduction f of R_0 to R_1 is said to be 1-Lipschitz iff for all $\eta, \xi \in X_0$,

$$\Delta(\eta,\xi) \leq \Delta(f(\eta),f(\xi)).$$

The existence of a 1-Lipschitz reduction f is denoted by $R_0 \hookrightarrow_1 R_1$. We likewise define $R_0 \hookrightarrow_c R_1$, $R_0 \hookrightarrow_B R_1$ and $R_0 \hookrightarrow_{BM} R_1$ once we replace 1-Lipschitz by a continuous, Borel, or Baire measurable map, respectively.

Motivation

Comparing $=_{S}^{\kappa}$ and $=_{S}^{2}$

Fact (Asperó-Hyttinen-Kulikov-M)

If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=_X^{\kappa} \hookrightarrow_c =_Y^{\kappa}$.

Fact (Friedman-Hyttinen-Kulikov)

Suppose V = L, and $X \subseteq \kappa$ and $Y \subseteq reg(\kappa)$ are stationary. If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=_X^2 \hookrightarrow_c =_Y^2$.

Limitations

Let λ be a regular cardinal and denote by S_{λ} the set $\{\alpha < \kappa \mid cf(\alpha) = \lambda\}$.

- For all regular cardinals $\gamma < \lambda < \kappa$, any $X \subseteq S_{\lambda}$, X does not reflect at any $\alpha \in S_{\gamma}$.
- If $\kappa = \lambda^+$ and \Box_{λ} holds, then for all $X \subseteq \kappa$ there is a stationary $Y \subseteq X$ such that Y does not reflect at any $\alpha < \kappa$. This happens in L.
- For all regular cardinal $\lambda < \kappa$, any $X \subseteq S_{\lambda}$, X does not reflect at any $\alpha \in S_{\lambda}$.
- Full stationary reflection usually requires large cardinals.

Filter Reflection

Outline

- 1 Motivation
- 2 Filter Reflection
- 3 Fake Reflection
- 4 Sakai's Forcing

Filter Reflection

The case of L

Let us denote by $=_{\lambda}^{\theta}$ the relation $=_{S}^{\theta}$ when $S = S_{\lambda}$.

Fact (Hyttinen-Kulikov-M)

Suppose V = L. Let λ be a regular cardinal below κ . Then for all stationary $X \subseteq \kappa$, $=_X^{\kappa} \hookrightarrow_c =_{\lambda}^2$.

Question

How is this possible if there are sets in L that do not reflect at any $\alpha < \kappa$?

Capturing clubs

Suppose S is stationary subset of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is non-stationary;

For any $\alpha < \kappa$ not ω -cofinal, denote by $CUB(\alpha)$ the club filter of subsets of α . The sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S_{\omega_1} \rangle$ define by $\mathcal{F}_{\alpha} = CUB(\alpha)$, capture clubs.

Filter reflection

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that X $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary

Definition

We say that X f-reflects to S iff there exists a sequence of filters $\vec{\mathcal{F}}$ over a stationary subset S' of S such that X $\vec{\mathcal{F}}$ -reflects to S'.

Filter Reflection

Some comments

- Suppose $X, S \subseteq \kappa$ are stationary sets such that every $\alpha \in S$ is not ω -cofinal and every stationary $Y \subseteq X$ reflects at stationary many $\beta \in S$. Define the sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ by $\mathcal{F}_{\alpha} = CUB(\alpha)$. Clearly $X \vec{\mathcal{F}}$ -reflects to S.
- We call fake reflection the case when X f-reflects to S and for all $\alpha \in S$, $\mathcal{F}_{\alpha} \not\supseteq CUB(\alpha)$.
- Suppose S ⊆ κ is stationary and {S_β | β < κ} a partition of S. Define the sequence *F* = ⟨*F*_α | α ∈ S⟩ by: For all α ∈ S_β let *F*_α be the filter generated by {β} if β < α, and {α} otherwise. Clearly for all Y ⊆ X, {α ∈ S | Y ∩ α ∈ *F*⁺_α} is stationary.

Strong forms of filter reflection

Definition

We say that X strongly $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}\}$ is stationary.

Definition

We say that X $\vec{\mathcal{F}}$ -reflects with \diamondsuit to S iff $\vec{\mathcal{F}}$ captures clubs and there exists a sequence $\langle Y_{\alpha} \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y_{\alpha} = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary.

Fake Reflection

Outline

- 1 Motivation
- 2 Filter Reflection
- 3 Fake Reflection
- 4 Sakai's Forcing

Properties

Fact (Monotonicity)

For stationary sets $Y \subseteq X \subseteq \kappa$ and $S \subseteq T \subseteq \kappa$:

- **1** If X \mathfrak{f} -reflects to S, then Y \mathfrak{f} -reflects to T;
- 2 If X strongly f-reflects to S, then Y strongly f-reflects to T;
- 3 If X f-reflects with \diamond to S, then Y f-reflects with \diamond to T.

Proposition

Suppose X strongly f-reflects to S. If \Diamond_X holds, then so does \Diamond_S .

Fake reflection and reductions

Lemma

If X
$$\mathfrak{f}$$
-reflects to S, then $=_X^{\kappa} \hookrightarrow_1 =_S^{\kappa}$.

Proof.

Suppose that $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S' \rangle$ witnesses that X f-reflects to S. For every $\alpha \in S'$, define an equivalence relation \sim_{α} over κ^{α} by letting $\eta \sim_{\alpha} \xi$ iff there is $W \in \mathcal{F}_{\alpha}$ such that $W \cap X \subseteq \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\}$. As there are at most $|\kappa^{\alpha}|$ many equivalence classes and as $\kappa^{<\kappa} = \kappa$, we may attach to each equivalence class $[\eta]_{\sim_{\alpha}}$ a unique ordinal (a *code*) in κ , which we shall denote by $\lceil \eta \rceil_{\sim_{\alpha}} \rceil$. Next, define a map $f : \kappa^{\kappa} \to \kappa^{\kappa}$ by letting for all $\eta \in \kappa^{\kappa}$ and $\alpha < \kappa$:

$$f(\eta)(lpha):=egin{cases} \lceil \eta \restriction lpha
ceil_{\sim_lpha} \urcorner, & ext{if } lpha \in S'; \ 0, & ext{otherwise}. \end{cases}$$

What happens in L

Suppose V = L. For $\kappa = \lambda^+$, it is known that for all stationary sets $X \subseteq \kappa$ there is a stationary $Y \subseteq X$ that does not reflect at any $\alpha < \kappa$.

Question

What about fake reflection? Suppose V = L. Does X f-reflects to κ , for all stationary $X \subseteq \kappa$?

A diamond reflection principle

For sets N and x, we say that N sees x iff N is transitive, p.r.-closed, and $x \cup \{x\} \subseteq N$

Definition

For a stationary $S \subseteq \kappa$ and a positive integer n, $DI_S^*(\Pi_n^1)$ asserts the existence of a sequence $\vec{N} = \langle N_\alpha \mid \alpha \in S \rangle$ satisfying the following:

- **1** for every $\alpha \in S$, N_{α} is a set of cardinality $< \kappa$ that sees α ;
- 2 for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $X \cap \alpha \in N_{\alpha}$;
- 3 for every Π_n^1 -sentence ϕ valid in a structure $\langle \kappa, \in, (A_m)_{m \in \omega} \rangle$, there are stationarily many $\alpha \in S$ such that $|N_{\alpha}| = |\alpha|$ and

$$N_{\alpha} \models "\phi \text{ is valid in } \langle \alpha, \in, (A_m \upharpoonright \alpha)_{m \in \omega} \rangle ".$$

$Dl_{S}^{*}(\Pi_{1}^{1})$ and fake reflection

Lemma

Suppose $S \subseteq \kappa$ is stationary for which $Dl_S^*(\Pi_1^1)$ holds. Then for all stationary $X \subseteq \kappa$, X f-reflects to S.

Proof.

Idea: Let Φ be a Π_1^1 -sentence such that for all α , $\langle \alpha, \in \rangle \models \Phi$ if and only if α is regular. Let $S' \subseteq S$ be the set of ordinals such that $N_{\alpha} \models ``\Phi$ is valid in $\langle \alpha, \in \rangle$ ''. For all $\alpha \in S'$, define \mathcal{F}_{α} as the set of $D \in N_{\alpha}$ such that $N_{\alpha} \models ``D$ is a club''.

Fake reflection in L

Theorem

Suppose V = L. For all $n < \omega$ and any stationary set $S \subseteq \kappa$, $DI_S^*(\Pi_n^1)$ holds.

Corollary

Suppose V = L. Then for every stationary set $S \subseteq \kappa$, κ f-reflects to S.

Remark

By monotonicity, suppose V = L, then for all stationary sets $X, S \subseteq \kappa, X$ f-reflects to S.

In particular S f-reflects to S and S_{ω_1} f-reflects to S_{ω} .

Over the limits

- Full stationary reflection is a special case of filter reflection.
- For all regular cardinals $\gamma < \lambda < \kappa$, any $X \subseteq S_{\lambda}$, X does not reflect at any $\alpha \in S_{\gamma}$. S_{λ} f-reflects to S_{γ} is consistently true.
- If κ = λ⁺ and □_λ holds, then for all X ⊆ κ there is a stationary
 Y ⊆ X such that Y does not reflect at any α < κ. Fake reflection is consistent with □_λ.
- For all regular cardinal λ < κ, any X ⊆ S_λ, X does not reflect at any α ∈ S_λ. S_λ f-reflects to S_λ is consistently true.
- Fake reflection does not requires large cardinals. This is the case of L.

Sakai's Forcing

Outline

- 1 Motivation
- 2 Filter Reflection
- 3 Fake Reflection
- 4 Sakai's Forcing

The next step

Question

Can we force filter reflection?

Easy answer: Yes. Just force full reflection (collapse a weakly compact cardinal).

Question Can we force fake reflection?

Sakai's \diamondsuit^{++}

Definition

For a stationary $S \subseteq \kappa$, \diamondsuit_{S}^{++} asserts the existence of a sequence $\langle K_{\alpha} | \alpha \in S \rangle$ satisfying the following:

- **1** for every infinite $\alpha \in S$, K_{α} is a set of size $|\alpha|$;
- 2 for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $C \cap \alpha, X \cap \alpha \in K_{\alpha}$;
- 3 the following set is stationary in $[H_{\kappa^+}]^{<\kappa}$:

 $\{M \in [H_{\kappa^+}]^{<\kappa} \mid M \cap \kappa \in S \& \operatorname{clps}(M, \in) = (K_{M \cap \kappa}, \in)\}.$

\diamondsuit^{++} and $DI^*_S\Pi^1_n$

Lemma

For every stationary $S \subseteq \kappa$, \diamondsuit_{S}^{++} implies $Dl_{S}^{*}(\Pi_{2}^{1})$.

Proof (sketch): Suppose $\langle K_{\alpha} \mid \alpha \in S \rangle$ is a \Diamond_{S}^{++} -sequence. Define a sequence $\vec{N} = \langle N_{\alpha} \mid \alpha \in S \rangle$ by letting N_{α} be the p.r.-closure of $K_{\alpha} \cup (\alpha + 1)$. Let $\phi = \forall X \exists Y \varphi$ be a Π_{2}^{1} -sentence and $(A_{m})_{m \in \omega}$ be such that $\langle \kappa, \in, (A_{m})_{m \in \omega} \rangle \models \phi$. Given an arbitrary club $C \subseteq \kappa$, we consider the following set

$$\mathcal{C} := \{ M \prec H_{\kappa^+} \mid M \cap \kappa \in C \& (A_m)_{m \in \omega} \in M \}.$$

 \mathcal{C} is a club in $[H_{\kappa^+}]^{<\kappa}$.

\diamondsuit^{++} and $DI_S^*\Pi_n^1$

Lemma

For every stationary $S \subseteq \kappa$, \diamondsuit_S^{++} implies $Dl_S^*(\Pi_2^1)$.

Proof continuation (sketch): By \diamondsuit_S^{++} the set

 $\mathcal{C} \cap \{ M \in [H_{\kappa^+}]^{<\kappa} \mid M \cap \kappa \in S \And \mathsf{clps}(M, \in) = (K_{M \cap \kappa}, \in) \}$

is stationary, pick M in this set. Since $\langle \kappa, \in, (A_m)_{m \in \omega} \rangle \models \phi$, by definition

$$H_{\kappa^+}\models ``\forall X\subseteq \kappa^{m(\mathbb{X})} \exists Y\subseteq \kappa^{m(\mathbb{Y})} \langle \kappa, \in, (A_m)_{m\in\omega}\rangle\models \varphi".$$

$$M\models ``\forall X\subseteq \kappa^{m(\mathbb{X})}\exists Y\subseteq \kappa^{m(\mathbb{Y})}(\langle\kappa,\in,(A_m)_{m\in\omega}\rangle\models\varphi)".$$

Let $\pi: M \to N_{\alpha}$ denote the transitive collapsing map.

$$N_{\alpha}\models ``\forall X\subseteq \alpha^{m(\mathbb{X})}\exists Y\subseteq \alpha^{m(\mathbb{Y})}(\langle \alpha, \in, (A_m\cap (\alpha^{m(\mathbb{A}_m)}))_{m\in\omega}\rangle\models \varphi)".$$

Miguel Moreno (BSF)

May 2020 29 / 32

Sakai's forcing

Definition

Let S be the poset of all pairs (k, B) with the following properties:

- 1 k is a function such that $dom(k) < \kappa$;
- 2 for each $\alpha \in dom(k)$, $k(\alpha)$ is a transitive model of ZF^- of size $\leq \max\{\aleph_0, |\alpha|\}$, with $k \upharpoonright \alpha \in k(\alpha)$;
- 3 \mathcal{B} is a subset of $\mathcal{P}(\kappa)$ of size $\leq \operatorname{dom}(k)$;

$$(k',\mathcal{B}')\leqslant (k,\mathcal{B})$$
 in $\mathbb S$ if the following holds:

(i)
$$k' \supseteq k$$
, and $\mathcal{B}' \supseteq \mathcal{B}$;

(ii) for any $B \in \mathcal{B}$ and any $\alpha \in dom(k') \setminus dom(k)$, $B \cap \alpha \in k'(\alpha)$.

Fact (Sakai)

For every stationary $S \subseteq \kappa$, $V^{\mathbb{S}} \models \diamondsuit_{S}^{++}$.

Sakai's Forcing

Conclusion

Corollary

For all stationary subsets X and S of κ , there exists a $<\kappa$ -closed κ^+ -cc forcing extension, in which X f-reflects to S.

Sakai's Forcing

Thank you