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Motivation

Stationary reflection

Let α be a not ω cofinal ordinal. A set C ⊆ α is a club if it is closed and
unbounded. A set S ⊆ α is stationary if for all club C ⊂ α, C ∩ S 6= ∅.

Definition
Let κ be a regular uncountable cardinal α ∈ κ be a not ω-cofinal ordinal,
and a stationary S ⊆ κ, we say that S reflects at α if S ∩ α is stationary in
α

If κ is a weakly compact cardinal, every stationary subset of κ reflects at a
regular cardinal α < κ.
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Motivation

Generalised descriptive set theory

Suppose κ is an uncountable cardinal such that κ<κ = κ.

The generalised Baire space is the space κκ endowed with the bounded
topology, for every η ∈ κ<κ the following set

Nη = {ξ ∈ κκ | η ⊆ ξ}

is a basic open set.
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Motivation

Equivalence modulo nonstationary

Definition
For every stationary set S ⊆ κ and θ ∈ [2, κ], the equivalence relation =θ

S
over the subspace θκ is defined via

η =θ
S ξ iff {α ∈ S | η(α) 6= ξ(α)} is non-stationary.

Definition
The quasi-order ≤S over κκ is defined via

η ≤S ξ iff {α ∈ S | η(α) > ξ(α)} is non-stationary.

The quasi-order ⊆S over 2κ is nothing but ≤S ∩ (2κ × 2κ).
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Motivation

Reductions

For i < 2, let Xi be some space from the collection {θκ | θ ∈ [2, κ]}. Let
R0 and R1 be binary relations over X0 and X1, respectively.

Definition
A function f : X0 → X1 is said to be a reduction of R0 to R1 iff, for all
η, ξ ∈ X0,

η R0 ξ iff f (η) R1 f (ξ).

The existence of a function f satisfying this is denoted by R0 ↪→ R1.
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Motivation

Lipschitz reductions

For i < 2, let Xi be some space from the collection {θκ | θ ∈ [2, κ]}. Let
R0 and R1 be binary relations over X0 and X1, respectively.

For all η, ξ ∈ κκ, denote

∆(η, ξ) := min({α < κ | η(α) 6= ξ(α)} ∪ {κ}).

A reduction f of R0 to R1 is said to be 1-Lipschitz iff for all η, ξ ∈ X0,

∆(η, ξ) ≤ ∆(f (η), f (ξ)).

The existence of a 1-Lipschitz reduction f is denoted by R0 ↪→1 R1. We
likewise define R0 ↪→c R1, R0 ↪→B R1 and R0 ↪→BM R1 once we replace
1-Lipschitz by a continuous, Borel, or Baire measurable map, respectively.
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Motivation

Comparing =κ
S and =2

S

Fact (Asperó-Hyttinen-Kulikov-M)
If every stationary subset of X reflects at stationary many α ∈ Y , then
=κ

X ↪→c=κ
Y .

Fact (Friedman-Hyttinen-Kulikov)
Suppose V = L, and X ⊆ κ and Y ⊆ reg(κ) are stationary. If every
stationary subset of X reflects at stationary many α ∈ Y , then =2

X ↪→c=2
Y .
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Motivation

Limitations

Let λ be a regular cardinal and denote by Sλ the set {α < κ | cf (α) = λ}.

• For all regular cardinals γ < λ < κ, any X ⊆ Sλ, X does not reflect
at any α ∈ Sγ .

• If κ = λ+ and �λ holds, then for all X ⊆ κ there is a stationary
Y ⊆ X such that Y does not reflect at any α < κ. This happens in L.

• For all regular cardinal λ < κ, any X ⊆ Sλ, X does not reflect at any
α ∈ Sλ.

• Full stationary reflection usually requires large cardinals.
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Filter Reflection

The case of L

Let us denote by =θ
λ the relation =θ

S when S = Sλ.

Fact (Hyttinen-Kulikov-M)
Suppose V = L. Let λ be a regular cardinal below κ. Then for all
stationary X ⊆ κ, =κ

X ↪→c=2
λ.

Question
How is this possible if there are sets in L that do not reflect at any α < κ?
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Filter Reflection

Capturing clubs

Suppose S is stationary subset of κ, and ~F = 〈Fα | α ∈ S〉 is a sequence
such that, for each α ∈ S, Fα is a filter over α.

Definition
We say that ~F captures clubs iff, for every club C ⊆ κ, the set {α ∈ S |
C ∩ α /∈ Fα} is non-stationary;

For any α < κ not ω-cofinal, denote by CUB(α) the club filter of subsets
of α. The sequence ~F = 〈Fα | α ∈ Sω1〉 define by Fα = CUB(α), capture
clubs.
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Filter Reflection

Filter reflection

Suppose X and S are stationary subsets of κ, and ~F = 〈Fα | α ∈ S〉 is a
sequence such that, for each α ∈ S, Fα is a filter over α.

Definition
We say that X ~F-reflects to S iff ~F captures clubs and, for every
stationary Y ⊆ X, the set {α ∈ S | Y ∩ α ∈ F+

α } is stationary

Definition
We say that X f-reflects to S iff there exists a sequence of filters ~F over a
stationary subset S ′ of S such that X ~F-reflects to S ′.
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Filter Reflection

Some comments

• Suppose X ,S ⊆ κ are stationary sets such that every α ∈ S is not
ω-cofinal and every stationary Y ⊆ X reflects at stationary many
β ∈ S. Define the sequence ~F = 〈Fα | α ∈ S〉 by Fα = CUB(α).
Clearly X ~F-reflects to S.

• We call fake reflection the case when X f-reflects to S and for all
α ∈ S, Fα 6⊇ CUB(α).

• Suppose S ⊆ κ is stationary and {Sβ | β < κ} a partition of S.
Define the sequence ~F = 〈Fα | α ∈ S〉 by: For all α ∈ Sβ let Fα be
the filter generated by {β} if β < α, and {α} otherwise. Clearly for
all Y ⊆ X , {α ∈ S | Y ∩ α ∈ F+

α } is stationary.
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Filter Reflection

Strong forms of filter reflection

Definition
We say that X strongly ~F-reflects to S iff ~F captures clubs and, for every
stationary Y ⊆ X, the set {α ∈ S | Y ∩ α ∈ Fα} is stationary.

Definition
We say that X ~F-reflects with ♦ to S iff ~F captures clubs and there exists
a sequence 〈Yα | α ∈ S〉 such that, for every stationary Y ⊆ X, the set
{α ∈ S | Yα = Y ∩ α & Y ∩ α ∈ F+

α } is stationary.
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Fake Reflection

Properties

Fact (Monotonicity)
For stationary sets Y ⊆ X ⊆ κ and S ⊆ T ⊆ κ:

1 If X f-reflects to S, then Y f-reflects to T ;
2 If X strongly f-reflects to S, then Y strongly f-reflects to T ;
3 If X f-reflects with ♦ to S, then Y f-reflects with ♦ to T .

Proposition
Suppose X strongly f-reflects to S. If ♦X holds, then so does ♦S .
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Fake Reflection

Fake reflection and reductions
Lemma
If X f-reflects to S, then =κ

X ↪→1 =κ
S .

Proof.
Suppose that ~F = 〈Fα | α ∈ S ′〉 witnesses that X f-reflects to S. For
every α ∈ S ′, define an equivalence relation ∼α over κα by letting η ∼α ξ
iff there is W ∈ Fα such that W ∩ X ⊆ {β < α | η(β) = ξ(β)}. As there
are at most |κα| many equivalence classes and as κ<κ = κ, we may attach
to each equivalence class [η]∼α a unique ordinal (a code) in κ, which we
shall denote by p[η]∼α

q. Next, define a map f : κκ → κκ by letting for all
η ∈ κκ and α < κ:

f (η)(α) :=
{
p[η � α]∼α

q, if α ∈ S ′;
0, otherwise.

Miguel Moreno (BSF) May 2020 19 / 32



Fake Reflection

What happens in L

Suppose V = L. For κ = λ+, it is known that for all stationary sets X ⊆ κ
there is a stationary Y ⊆ X that does not reflect at any α < κ.

Question
What about fake reflection?
Suppose V = L. Does X f-reflects to κ, for all stationary X ⊆ κ?

Miguel Moreno (BSF) May 2020 20 / 32



Fake Reflection

A diamond reflection principle

For sets N and x , we say that N sees x iff N is transitive, p.r.-closed, and
x ∪ {x} ⊆ N

Definition
For a stationary S ⊆ κ and a positive integer n, Dl∗S(Π1

n) asserts the
existence of a sequence ~N = 〈Nα | α ∈ S〉 satisfying the following:

1 for every α ∈ S, Nα is a set of cardinality < κ that sees α;
2 for every X ⊆ κ, there exists a club C ⊆ κ such that, for all
α ∈ C ∩ S, X ∩ α ∈ Nα;

3 for every Π1
n-sentence φ valid in a structure 〈κ,∈, (Am)m∈ω〉, there

are stationarily many α ∈ S such that |Nα| = |α| and

Nα |= “φ is valid in 〈α,∈, (Am � α)m∈ω〉”.
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Fake Reflection

Dl∗S(Π1
1) and fake reflection

Lemma
Suppose S ⊆ κ is stationary for which Dl∗S(Π1

1) holds. Then for all
stationary X ⊆ κ, X f-reflects to S.

Proof.
Idea: Let Φ be a Π1

1-sentence such that for all α, 〈α,∈〉 |= Φ if and only if
α is regular. Let S ′ ⊆ S be the set of ordinals such that
Nα |= “Φ is valid in 〈α,∈〉”. For all α ∈ S ′, define Fα as the set of
D ∈ Nα such that Nα |= “D is a club”.
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Fake Reflection

Fake reflection in L

Theorem
Suppose V = L. For all n < ω and any stationary set S ⊆ κ, Dl∗S(Π1

n)
holds.

Corollary
Suppose V = L. Then for every stationary set S ⊆ κ, κ f-reflects to S.

Remark
By monotonicity, suppose V = L, then for all stationary sets X , S ⊆ κ, X
f-reflects to S.

In particular S f-reflects to S and Sω1 f-reflects to Sω.
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Fake Reflection

Over the limits

• Full stationary reflection is a special case of filter reflection.

• For all regular cardinals γ < λ < κ, any X ⊆ Sλ, X does not reflect
at any α ∈ Sγ . Sλ f-reflects to Sγ is consistently true.

• If κ = λ+ and �λ holds, then for all X ⊆ κ there is a stationary
Y ⊆ X such that Y does not reflect at any α < κ. Fake reflection is
consistent with �λ.

• For all regular cardinal λ < κ, any X ⊆ Sλ, X does not reflect at any
α ∈ Sλ. Sλ f-reflects to Sλ is consistently true.

• Fake reflection does not requires large cardinals. This is the case of L.
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Sakai’s Forcing

The next step

Question
Can we force filter reflection?

Easy answer: Yes. Just force full reflection (collapse a weakly compact
cardinal).

Question
Can we force fake reflection?
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Sakai’s Forcing

Sakai’s ♦++

Definition
For a stationary S ⊆ κ, ♦++

S asserts the existence of a sequence 〈Kα |
α ∈ S〉 satisfying the following:

1 for every infinite α ∈ S, Kα is a set of size |α|;
2 for every X ⊆ κ, there exists a club C ⊆ κ such that, for all
α ∈ C ∩ S, C ∩ α,X ∩ α ∈ Kα;

3 the following set is stationary in [Hκ+ ]<κ:

{M ∈ [Hκ+ ]<κ | M ∩ κ ∈ S & clps(M,∈) = (KM∩κ,∈)}.
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Sakai’s Forcing

♦++ and Dl∗SΠ1
n

Lemma
For every stationary S ⊆ κ, ♦++

S implies Dl∗S(Π1
2).

Proof (sketch): Suppose 〈Kα | α ∈ S〉 is a ♦++
S -sequence. Define a

sequence ~N = 〈Nα | α ∈ S〉 by letting Nα be the p.r.-closure of
Kα ∪ (α + 1). Let φ = ∀X∃Yϕ be a Π1

2-sentence and (Am)m∈ω be such
that 〈κ,∈, (Am)m∈ω〉 |= φ. Given an arbitrary club C ⊆ κ, we consider the
following set

C := {M ≺ Hκ+ | M ∩ κ ∈ C & (Am)m∈ω ∈ M}.

C is a club in [Hκ+ ]<κ.
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Sakai’s Forcing

♦++ and Dl∗SΠ1
n

Lemma
For every stationary S ⊆ κ, ♦++

S implies Dl∗S(Π1
2).

Proof continuation (sketch): By ♦++
S the set

C ∩ {M ∈ [Hκ+ ]<κ | M ∩ κ ∈ S & clps(M,∈) = (KM∩κ,∈)}

is stationary, pick M in this set. Since 〈κ,∈, (Am)m∈ω〉 |= φ, by definition

Hκ+ |= “∀X ⊆ κm(X) ∃Y ⊆ κm(Y) 〈κ,∈, (Am)m∈ω〉 |= ϕ”.

M |= “∀X ⊆ κm(X)∃Y ⊆ κm(Y)(〈κ,∈, (Am)m∈ω〉 |= ϕ)”.

Let π : M → Nα denote the transitive collapsing map.

Nα |= “∀X ⊆ αm(X)∃Y ⊆ αm(Y)(〈α,∈, (Am ∩ (αm(Am)))m∈ω〉 |= ϕ)”.
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Sakai’s Forcing

Sakai’s forcing

Definition
Let S be the poset of all pairs (k,B) with the following properties:

1 k is a function such that dom(k) < κ;
2 for each α ∈ dom(k), k(α) is a transitive model of ZF− of size
≤ max{ℵ0, |α|}, with k � α ∈ k(α);

3 B is a subset of P(κ) of size ≤ dom(k);
(k ′,B′) 6 (k,B) in S if the following holds:

(i) k ′ ⊇ k, and B′ ⊇ B;
(ii) for any B ∈ B and any α ∈ dom(k ′)\dom(k), B ∩ α ∈ k ′(α).

Fact (Sakai)
For every stationary S ⊆ κ, V S |= ♦++

S .
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Sakai’s Forcing

Conclusion

Corollary
For all stationary subsets X and S of κ, there exists a <κ-closed κ+-cc
forcing extension, in which X f-reflects to S.
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Sakai’s Forcing

Thank you
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