Borel-reducibility counterparts of Shelah's classification theory

Miguel Moreno University of Vienna FWF Meitner-Programm

Seminario Mundo - Lógica - Modelos Bogota

3 Octubre, 2023

Geometry

▶ Independence of Euclid's fifth postulate, the parallel postulate.

Khayyám (1077) and Saccheri (1733) considered the three different cases of the Khayyám-Saccheri quadrilateral (right, obtuse, and acute).

▶ Euclidean geometry, Elliptic geometry, Hyperbolic geometry.

The spectrum fuction

Let T be a countable theory over a countable language. Let $I(T,\alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

History

- ▶ 1904: Veble introduced categorical theories.
- ▶ 1915 1920: Löwenheim-Skolem Theorem.
- ▶ **1929:** Gödel's completeness theorem.
- ▶ **1954:** Łoś and Vaught introduced κ -categorical theories.
- ▶ **1965:** Morley's categoricity theorem.

Morley's conjecture

History

1960's: Let T be a first-order countable theory over a countable language. For all $\aleph_0 < \lambda < \kappa$,

$$I(T,\lambda) \leq I(T,\kappa).$$

1990: Shelah proved Morley's conjecture.

Shelah's Main Gap Theorem

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T,\alpha)=2^{\alpha}$; or $\forall \alpha>0$, $I(T,\aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|).$

If T is classifiable and T' is not, then T is less complex than T'and their complexity are not close.

Descriptive Set Theory

▶ 1989: Friedman and Stanley introduced the Borel reducibility between classes of countable structures.

▶ **1993:** Mekler-Väänänen κ -separation theorem.

▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a systematic comparison between the Main Gap dividing lines and the complexity given by Borel reducibility.

The bounded topology

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in \kappa^{\kappa} \mid \zeta \subset \eta \}$$

is a basic open set.

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

The generalised Cantor space is the subspace 2^{κ} .

Coding structures

Let $\omega \leq \mu \leq \kappa$ be a cardinal. Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$ and a bijection π_{μ} between $\mu^{<\omega}$ and μ .

Definition

For every $\eta \in \kappa^{\kappa}$ define the structure $\mathcal{A}_{\eta \upharpoonright \mu}$ with domain μ as follows: For every tuple (a_1, a_2, \ldots, a_n) in μ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta} \upharpoonright \mu} \Leftrightarrow \eta(\pi_{\mu}(m, a_1, a_2, \ldots, a_n)) > 0.$$

The isomorphism relation

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $f,g \in \kappa^{\kappa}$ are \cong_T^{μ} equivalent if one of the following holds:

- $\blacktriangleright \ \mathcal{A}_{\eta \restriction \mu} \models T, \mathcal{A}_{\xi \restriction \mu} \models T, \mathcal{A}_{\eta \restriction \mu} \cong \mathcal{A}_{\xi \restriction \mu}$
- $\blacktriangleright \ \mathcal{A}_{\eta \upharpoonright \mu} \not\models T, \mathcal{A}_{\xi \upharpoonright \mu} \not\models T$

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is reducible to E_2 , if there is a function $f: \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T' \text{ iff } \cong_{T} \hookrightarrow_{C} \cong_{T'}$$

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;
- T is superstable with DOP; %pause
- T is superstable with OTOP.

Classifiable theories

Classifiable are divided into:

shallow,

$$I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|);$$

non-shallow,

$$I(T,\alpha)=2^{\alpha}.$$

Fact (Friedman-Hyttinen-Kulikov 2014)

- 1. Let $\kappa^{<\kappa}=\kappa>2^\omega$. If T is classifiable and shallow, then \cong_T is $\kappa\text{-Borel}.$
- 2. If T is classifiable non-shallow, then \cong_T is $\Delta^1_1(\kappa)$ not κ -Borel.
- 3. If T is unstable or stable with the OTOP or superstable with the DOP and $\kappa > \omega_1$, then \cong_T is not $\Delta_1^1(\kappa)$.
- 4. If T is stable unsuperstable, then \cong_T is not κ -Borel.

Question

Question: What can we say about the Borel-reducibility between different dividing lines?

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)

Let κ be such that $\kappa > 2^{\omega}$. If T is classifiable and shallow with depth α , then $rk_B(\cong_T) \leq 4\alpha$.

Theorem (Mangraviti - Motto Ros 2020)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_{\gamma}}(|\gamma|) \leq \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T \hookrightarrow_B \cong_{T'}$$

Fact (Mangraviti-Motto Ros)

Let E_1 be a Borel equivalence relation with $\gamma < \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma < \theta$, then $E_1 \hookrightarrow_B E_2$.

1_{ϱ} relation

Let $0 < \varrho \le \kappa$. $\eta \ 1_{\varrho} \ \xi$ if and only if one of the following holds:

- \triangleright ρ is finite:
 - $\eta(0) = \xi(0) < \rho 1;$
 - $\eta(0), \xi(0) \geq \varrho 1.$
- \triangleright ρ is infinite:

Lemma (M. 2023)

Suppose $\kappa > 2^{\omega}$ and T is a countable first-order theory in a countable vocabulary (not necessarily complete) such that $\cong_{\mathcal{T}}$ has $\rho < \kappa$ equivalence classes. Then

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} 1_{\varrho} \text{ and } 1_{\varrho} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}}.$$

Even more, if T is not categorical then $\cong_T \nleftrightarrow_C 1_a$.

- $ightharpoonup \cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} 1_{\mathcal{Q}}$ follows from Mangraviti-Motto Ros.
- ▶ $\eta \upharpoonright 1$ determines the equivalence class of η . So $1_{\varrho} \hookrightarrow_{L} \cong_{\mathcal{T}}$.
- ▶ 1_{ρ} is open, so $\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{C}} 1_{\rho}$ implies $\cong_{\mathcal{T}}$ is open.
- $ightharpoonup \cong_{\mathcal{T}}$ is open iff \mathcal{T} is categorical (Mangraviti-Motto Ros), so if \mathcal{T} is not categorical then $\cong_{\mathcal{T}} \not\hookrightarrow_{\mathcal{C}} 1_{\varrho}$.

Theorem (M. 2023)

Suppose $\aleph_n = \kappa = \lambda^+ = 2^{\lambda}$ is such that $\beth_{\omega_1}(|\mu|) \leq \kappa$. Let T_1 be a countable complete classifiable shallow theory with $\rho = I(\kappa, T_1)$, T_2 be a countable complete theory not classifiable shallow. If T is classifiable shallow such that $1 < I(\kappa, T) < I(\kappa, T_1)$, then

$$\cong_{\mathcal{T}} \hookrightarrow_B \ 1_{\varrho} \ \hookrightarrow_L \cong_{\mathcal{T}_1} \hookrightarrow_B \ 1_{\kappa} \ \hookrightarrow_L \cong_{\mathcal{T}_2}.$$

In particular

$$\cong_{\mathcal{T}_2} \not\hookrightarrow_r 1_{\kappa} \not\hookrightarrow_r \cong_{\mathcal{T}_1} \not\hookrightarrow_{\mathcal{C}} 1_{\varrho} \not\hookrightarrow_r \cong_{\mathcal{T}}.$$

Thank you

Article at: https://arxiv.org/abs/2308.07510

References

- ▶ O. Veblen, A System of Axioms for Geometry, Transactions of the American Mathematical Society **5**, 343–384 (1904).
- L. Löwenheim, Über Möglichkeiten im Relativkalkül, Math. Ann. **76**, 447–470 (1915).
- ▼ T. Skolem, Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnskapsselskapets skrifter. I. Mat.-naturv. klasse. 4, 1–36 (1920).
- ► K. Gödel, *Uber die Vollständigkeit des Logikkalküls*, Ph.D. thesis. University Of Vienna. (Vienna, 1929).
- ▶ J. Łoś, On the categoricity in power of elementary deductive systems, Colloq. Math. **3**, 58–62 (1954).

References

- M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114, 514–538 (1965).
- ➤ S. Shelah, *Classification theory*, Stud. Logic Found. Math. **92**, North-Holland (1990).
- H. Friedman, L. Stanley, A Borel reducibility theory for classes of countable structures, Journal of Symbolic Logic. 54, 894–914 (1989).
- A. Mekler, and J. Väänänen, *Trees and* Π_1^1 -subsets of $_1^\omega \omega_1$, The Journal of Symbolic Logic. **58**, 1052–1070 (1993).
- S.D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory, in Memories of the American Mathematical Society 230 (2014).

References

- ► F. Mangraviti, and L. Motto Ros, *A descriptive main gap theorem*, Journal of Mathematical Logic. **21**, 2050025 (2020).
- ► M. Moreno, Shelah's Main Gap and the generalized Borel-reducibility. Preprint, (2023).

