Filter Reflection

Miguel Moreno University of Vienna Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters

Bar-Ilan University and Hebrew University logic seminar

May 2020

Miguel Moreno (BIU-HU)

May 2020 1 / 51

This is a joint work with Gabriel Fernandes and Assaf Rinot at BIU.

Our paper, entitled **Fake Reflection** is available at https://arxiv.org/abs/2003.08340

Outline

1 Motivation

- 2 Filter Reflection
- 3 Fake Reflection
- 4 Killing Filter Reflection
- 5 Sakai's Forcing

Stationary reflection

Let α be an ordinal of uncountable cofinality. A set $C \subseteq \alpha$ is a club if it is closed and unbounded. A set $S \subseteq \alpha$ is stationary if for all club $C \subset \alpha$, $C \cap S \neq \emptyset$.

Definition

Let κ be a regular uncountable cardinal $\alpha \in \kappa$ be an ordinal of uncountable cofinality, and a stationary $S \subseteq \kappa$, we say that S reflects at α if $S \cap \alpha$ is stationary in α

If κ is a weakly compact cardinal, every stationary subset of κ reflects at a regular cardinal $\alpha < \kappa.$

Generalised descriptive set theory

Suppose κ is an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The generalised Baire space is the space κ^{κ} endowed with the bounded topology, for every $\eta \in \kappa^{<\kappa}$ the following set

$$N_{\eta} = \{\xi \in \kappa^{\kappa} \mid \eta \subseteq \xi\}$$

is a basic open set.

Equivalence modulo nonstationary

Definition

For every stationary set $S \subseteq \kappa$ and $\theta \in [2, \kappa]$, the equivalence relation $=_{S}^{\theta}$ over the subspace θ^{κ} is defined via

$$\eta =_{\mathcal{S}}^{\theta} \xi$$
 iff $\{\alpha \in \mathcal{S} \mid \eta(\alpha) \neq \xi(\alpha)\}$ is non-stationary.

Definition

The quasi-order \leq^{S} over κ^{κ} is defined via

 $\eta \leq^{\mathsf{S}} \xi$ iff $\{\alpha \in \mathsf{S} \mid \eta(\alpha) > \xi(\alpha)\}$ is non-stationary.

The quasi-order \subseteq^{S} over 2^{κ} is nothing but $\leq^{S} \cap (2^{\kappa} \times 2^{\kappa})$.

Model Theory and $=_{S}^{\theta}$

In model theory, Shelah's main gap theorem can be understood as: *Classifiable theories are less complex than non-classifiable theories.* In generalized descriptive set theory, the complexity of a theory can be study by studying the complexity of the isomorphism relation of the theory. Let λ be a regular cardinal and denote by S_{λ}^{κ} the set $\{\alpha < \kappa \mid cf(\alpha) = \lambda\}$. Let us denote by $=_{\lambda}^{\theta}$ the relation $=_{S}^{\theta}$ when $S = S_{\lambda}^{\kappa}$.

Fact (Hyttinen-M)

The isomorphism relation of any classifiable theory is less complex than $=_{\lambda}^{\kappa}$ for all λ .

Under some cardinal arithmetic assumptions the following can be proved:

Fact (Friedman-Hyttinen-Kulikov)

Suppose T is a non-classifiable theory. There is a regular cardinal $\lambda < \kappa$ such that $=^2_{\lambda}$ is as most as complex as the isomorphism relation of T.

Reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

Definition

A function $f : X_0 \to X_1$ is said to be a reduction of R_0 to R_1 iff, for all $\eta, \xi \in X_0$, $\eta R_0 \xi$ iff $f(\eta) R_1 f(\xi)$.

The existence of a function f satisfying this is denoted by $R_0 \hookrightarrow R_1$.

Lipschitz reductions

For i < 2, let X_i be some space from the collection $\{\theta^{\kappa} \mid \theta \in [2, \kappa]\}$. Let R_0 and R_1 be binary relations over X_0 and X_1 , respectively.

For all $\eta, \xi \in \kappa^{\kappa}$, denote

$$\Delta(\eta,\xi) := \min(\{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cup \{\kappa\}).$$

A reduction f of R_0 to R_1 is said to be 1-Lipschitz iff for all $\eta, \xi \in X_0$,

$$\Delta(\eta,\xi) \leq \Delta(f(\eta),f(\xi)).$$

The existence of a 1-Lipschitz reduction f is denoted by $R_0 \hookrightarrow_1 R_1$. We likewise define $R_0 \hookrightarrow_c R_1$, $R_0 \hookrightarrow_B R_1$ and $R_0 \hookrightarrow_{BM} R_1$ once we replace 1-Lipschitz by a continuous, Borel, or Baire measurable map, respectively.

Comparing $=_{S}^{\kappa}$ and $=_{S}^{2}$

Fact (Asperó-Hyttinen-Kulikov-M)

If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=_X^{\kappa} \hookrightarrow_c =_Y^{\kappa}$.

Fact (Friedman-Hyttinen-Kulikov)

Suppose V = L, and $X \subseteq \kappa$ and $Y \subseteq reg(\kappa)$ are stationary. If every stationary subset of X reflects at stationary many $\alpha \in Y$, then $=_X^2 \hookrightarrow_c =_Y^2$.

Limitations

Let λ be a regular cardinal and denote by S_{λ}^{κ} the set $\{\alpha < \kappa \mid cf(\alpha) = \lambda\}$.

- For all regular cardinals $\gamma \leq \lambda < \kappa$, any $X \subseteq S_{\lambda}^{\kappa}$, X does not reflect at any $\alpha \in S_{\gamma}^{\kappa}$.
- If $\kappa = \lambda^+$ and \Box_{λ} holds, then for all $X \subseteq \kappa$ there is a stationary $Y \subseteq X$ such that Y does not reflect at any $\alpha < \kappa$. This happens in L.

• Usual stationary reflection requires large cardinals.

Filter Reflection

Outline

- 1 Motivation
- 2 Filter Reflection
- 3 Fake Reflection
- **4** Killing Filter Reflection
- 5 Sakai's Forcing

Filter Reflection

The case of L

Recall:
$$=_{\lambda}^{\theta}$$
 is the relation $=_{S}^{\theta}$ when $S = S_{\lambda}^{\kappa}$.

Fact (Hyttinen-Kulikov-M)

Suppose V = L. Let λ be a regular cardinal below κ . Then for all stationary $X \subseteq \kappa$, $=_X^{\kappa} \hookrightarrow_c =_{\lambda}^2$.

Question

How is this possible if there are sets in L that do not reflect at any $\alpha < \kappa$?

Capturing clubs

Suppose S is stationary subset of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that $\vec{\mathcal{F}}$ captures clubs iff, for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is non-stationary;

For any ordinal $\alpha < \kappa$ of uncountable cofinality, denote by $CUB(\alpha)$ the club filter of subsets of α . The sequence $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S_{\omega_1}^{\kappa} \rangle$ define by $\mathcal{F}_{\alpha} = CUB(\alpha)$, capture clubs.

Filter reflection

Suppose X and S are stationary subsets of κ , and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence such that, for each $\alpha \in S$, \mathcal{F}_{α} is a filter over α .

Definition

We say that X $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary

Definition

We say that X f-reflects to S iff there exists a sequence of filters $\vec{\mathcal{F}}$ over a stationary subset S' of S such that X $\vec{\mathcal{F}}$ -reflects to S'.

Filter Reflection

Some comments

- Suppose X, S ⊆ κ are stationary sets such that every ordinal α ∈ S has uncountable cofinality and every stationary Y ⊆ X reflects at stationary many β ∈ S. Define the sequence *F* = ⟨*F*_α | α ∈ S⟩ by *F*_α = CUB(α). Clearly X *F*-reflects to S.
- We call fake reflection the case when X f-reflects to S and for all $\alpha \in S$, $\mathcal{F}_{\alpha} \not\supseteq CUB(\alpha)$.
- Suppose S ⊆ κ is stationary and {S_β | β < κ} a partition of S. Define the sequence *F* = ⟨*F*_α | α ∈ S⟩ by: For all α ∈ S_β let *F*_α be the filter generated by {β} if β < α, and {α} otherwise. Clearly for all Y ⊆ X, {α ∈ S | Y ∩ α ∈ *F*⁺_α} is stationary.

Strong forms of filter reflection

Definition

We say that X strongly $\vec{\mathcal{F}}$ -reflects to S iff $\vec{\mathcal{F}}$ captures clubs and, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}\}$ is stationary.

Definition

We say that X $\vec{\mathcal{F}}$ -reflects with \diamondsuit to S iff $\vec{\mathcal{F}}$ captures clubs and there exists a sequence $\langle Y_{\alpha} \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y_{\alpha} = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary.

Fake Reflection

Outline

- 1 Motivation
- 2 Filter Reflection
- 3 Fake Reflection
- **4** Killing Filter Reflection
- 5 Sakai's Forcing

Properties

Fact (Monotonicity)

For stationary sets $Y \subseteq X \subseteq \kappa$ and $S \subseteq T \subseteq \kappa$:

- **1** If X \mathfrak{f} -reflects to S, then Y \mathfrak{f} -reflects to T;
- 2 If X strongly f-reflects to S, then Y strongly f-reflects to T;
- **3** If X \mathfrak{f} -reflects with \diamondsuit to S, then Y \mathfrak{f} -reflects with \diamondsuit to T.

Proposition

Suppose X strongly f-reflects to S. If \Diamond_X holds, then so does \Diamond_S .

Fake reflection and reductions

Lemma

If X f-reflects to S, then
$$=_X^{\kappa} \hookrightarrow_1 =_S^{\kappa}$$
.

Proof.

Suppose that $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S' \rangle$ witnesses that X f-reflects to S. For every $\alpha \in S'$, define an equivalence relation \sim_{α} over κ^{α} by letting $\eta \sim_{\alpha} \xi$ iff there is $W \in \mathcal{F}_{\alpha}$ such that $W \cap X \subseteq \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\}$. As there are at most $|\kappa^{\alpha}|$ many equivalence classes and as $\kappa^{<\kappa} = \kappa$, we may attach to each equivalence class $[\eta]_{\sim_{\alpha}}$ a unique ordinal (a *code*) in κ , which we shall denote by $\lceil \eta \rceil_{\sim_{\alpha}} \rceil$. Next, define a map $f : \kappa^{\kappa} \to \kappa^{\kappa}$ by letting for all $\eta \in \kappa^{\kappa}$ and $\alpha < \kappa$:

$$f(\eta)(lpha):=egin{cases} \lceil \eta \restriction lpha
ceil_{\sim_lpha} \urcorner, & ext{if } lpha \in S'; \ 0, & ext{otherwise}. \end{cases}$$

Fake reflection and reductions

Lemma

If X strongly f-reflects to S, then for all $\theta \in [2, \kappa]$, $=_X^{\theta} \hookrightarrow_1 =_S^{\theta}$.

Lemma

If X f-reflects with \diamondsuit to S, then $=_X^{\kappa} \hookrightarrow_1 =_S^2$.

What happens in L

Suppose V = L. For $\kappa = \lambda^+$, it is known that for all stationary sets $X \subseteq \kappa$ there is a stationary $Y \subseteq X$ that does not reflect at any $\alpha < \kappa$.

Question

What about fake reflection? Suppose V = L. Does X f-reflects to κ , for all stationary $X \subseteq \kappa$?

A diamond reflection principle

For sets N and x, we say that N sees x iff N is a transitive model of $ZF^$ and $x \cup \{x\} \subseteq N$

Definition

For a stationary $S \subseteq \kappa$ and a positive integer n, $DI_S^*(\Pi_n^1)$ asserts the existence of a sequence $\vec{N} = \langle N_\alpha \mid \alpha \in S \rangle$ satisfying the following:

- **1** for every $\alpha \in S$, N_{α} is a set of cardinality $< \kappa$ that sees α ;
- 2 for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $X \cap \alpha \in N_{\alpha}$;
- 3 for every Π_n^1 -sentence ϕ valid in a structure $\langle \kappa, \in, (A_m)_{m \in \omega} \rangle$, there are stationarily many $\alpha \in S$ such that $|N_{\alpha}| = |\alpha|$ and

$$N_{\alpha} \models "\phi$$
 is valid in $\langle \alpha, \in, (A_m \upharpoonright \alpha)_{m \in \omega} \rangle"$.

$Dl_{S}^{*}(\Pi_{1}^{1})$ and fake reflection

Lemma

Suppose $S \subseteq \kappa$ is stationary for which $Dl_S^*(\Pi_1^1)$ holds. Then for all stationary $X \subseteq \kappa$, X f-reflects to S.

Proof.

Idea: Let Φ be a Π_1^1 -sentence such that for all α , $\langle \alpha, \in \rangle \models \Phi$ if and only if α is regular. Let $S' \subseteq S$ be the set of ordinals such that $N_{\alpha} \models ``\Phi$ is valid in $\langle \alpha, \in \rangle$ ''. For all $\alpha \in S'$, define \mathcal{F}_{α} as the set of $D \in N_{\alpha}$ such that $N_{\alpha} \models ``D$ is a club''.

Fake reflection in L

Theorem

Suppose V = L. For any stationary set $S \subseteq \kappa$, $Dl_S^*(\Pi_2^1)$ holds.

Corollary

Suppose V = L. Then for every stationary set $S \subseteq \kappa$, κ f-reflects to S.

Remark

By monotonicity, suppose V = L, then for all stationary sets $X, S \subseteq \kappa, X$ f-reflects to S.

In particular S f-reflects to S and $S_{\omega_1}^{\kappa}$ f-reflects to S_{ω}^{κ} .

Over the limits

- Usual stationary reflection is a special case of filter reflection.
- For all regular cardinals $\gamma \leq \lambda < \kappa$, any $X \subseteq S_{\lambda}^{\kappa}$, X does not reflect at any $\alpha \in S_{\gamma}^{\kappa}$. S_{λ}^{κ} f-reflects to S_{γ}^{κ} is consistently true.
- If κ = λ⁺ and □_λ holds, then for all X ⊆ κ there is a stationary Y ⊆ X such that Y does not reflect at any α < κ. Fake reflection is consistent with □_λ.
- Fake reflection does not require large cardinals. This is the case of L.

Outline

- 1 Motivation
- 2 Filter Reflection
- 3 Fake Reflection
- 4 Killing Filter Reflection
- 5 Sakai's Forcing

The Failure

Question

Is the failure of filter reflection consistently true?

- Weakly compact: clearly the failure cannot be forced.
- Usual stationary reflection: force \Box_{λ} .
- Fake reflection: forcing \Box_{λ} is not enough.

Question

What do we need to kill fake reflection?

$$I[\kappa - X]$$

Definition

Let $X \subseteq \kappa$. We define a collection $I[\kappa - X]$, as follows. A set Y is in $I[\kappa - X]$ iff $Y \subseteq \kappa$ and there exists a sequence $\langle a_{\beta} | \beta < \kappa \rangle$ of elements of $[\kappa]^{<\kappa}$ along with a club $C \subseteq \kappa$ such that, for every $\delta \in Y \cap C$, there is a cofinal subset $A \subseteq \delta$ of order-type cf (δ) such that 1 $\{A \cap \gamma | \gamma < \delta\} \subseteq \{a_{\beta} | \beta < \delta\}$, and 2 $\operatorname{acc}^+(A) \cap X = \emptyset$.

Shelah's approachability ideal $I[\kappa]$ is equal to $I[\kappa - \emptyset] \upharpoonright Sing$

 $\mathsf{Add}(\kappa,1)$

Theorem

Suppose X, S are disjoint stationary subsets of κ , with $S \in I[\kappa - X]$. For every $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$, $V^{\text{Add}(\kappa,1)} \models X$ does not $\vec{\mathcal{F}}$ -reflect to S.

Proof: Towards a contradiction, suppose that $\vec{\mathcal{F}}$ is a counterexample.

Let R denote the set of all pairs $(p,q) \in 2^{<\kappa} \times 2^{<\kappa}$ such that:

• dom
$$(p) = dom(q)$$
 is in nacc (κ) ;

- $\{\alpha \in \operatorname{dom}(p) \mid p(\alpha) = q(\alpha) = 1\}$ is disjoint from X;
- $\{\alpha \in \operatorname{dom}(q) \mid q(\alpha) = 1\}$ is a closed set of ordinals.

We let $\mathbb{R} := (R, \leq)$ where $(p', q') \leq (p, q)$ iff $p' \supseteq p$ and $q' \supseteq q$.

continuation of the proof

 \mathbb{R} is $<\kappa$ -closed of size κ , \mathbb{R} is forcing equivalent to Add $(\kappa, 1)$.

Let $P := \{p \mid \exists q \ (p,q) \in R\}$. It is easy to see that $\mathbb{P} := (P, \supseteq)$ is $<\kappa$ -closed, so that \mathbb{P} is forcing equivalent to $Add(\kappa, 1)$.

Let G be \mathbb{R} -generic over V. Let G_0 denote the projection of G to the first coordinate, so that G_0 is \mathbb{P} -generic over V.

In $V[G_0]$, let $Q := \{q \in 2^{<\kappa} \mid \exists p \in G_0 \ (p,q) \in R\}$. Clearly, $\mathbb{Q} := (Q, \supseteq)$ is isomorphic to the quotient forcing \mathbb{R}/G_0 .

It follows that, in V[G], we may read a \mathbb{Q} -generic set G_1 over $V[G_0]$ such that, in particular, $V[G] = V[G_0][G_1]$.

Denote $\eta := \bigcup G_0$ and let $Y := \{ \alpha \in X \mid \eta(\alpha) = 1 \}.$

continuation of the proof

Recall: $\eta := \bigcup G_0$ and $Y := \{ \alpha \in X \mid \eta(\alpha) = 1 \}$ We will prove the following claim:

- 1 In $V[G_0]$, Y is stationary. As $Add(\kappa, 1)$ is almost homogeneous and \mathbb{P} is equivalent to $Add(\kappa, 1)$, in $V[G_0]$, $X \vec{\mathcal{F}}$ -reflects to S. Therefore, $T := \{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary.
- 2 In $V[G_0][G_1]$, T is stationary.
- 3 In $V[G_0][G_1]$, Y is nonstationary.

The last two claims contradict that $\vec{\mathcal{F}}$ capture clubs.

In $V[G_0]$, Y is stationary

Let \dot{Y} be the \mathbb{P} -name for Y, that is,

$$\dot{Y}:=\{(\check{lpha}, {\it p})\mid {\it p}\in {\it P}, lpha\in {\it X}\cap {\it dom}({\it p}), {\it p}(lpha)=1\}.$$

Let p be an arbitrary condition that \mathbb{P} -forces that some \dot{D} is a \mathbb{P} -name for a club in κ . Recursively define a sequence $\langle (p_i, \alpha_i) | i < \kappa \rangle$ as follows:

• Let
$$(p_0, \alpha_0)$$
 be such that $p_0 \supseteq p$ and $p_0 \Vdash_{\mathbb{P}} \check{\alpha}_0 \in \dot{D}$.

▶ Suppose that $i < \kappa$ for which $\langle (p_j, \alpha_j) | j \leq i \rangle$ has already been defined. Set $\varepsilon_i := \max\{\alpha_i, \operatorname{dom}(p_i)\} + 1$. Then pick $p_{i+1} \supseteq p_i$ and $\alpha_{i+1} < \kappa$ such that $\varepsilon_i \in \operatorname{dom}(p_{i+1})$ and $p_{i+1} \Vdash_{\mathbb{P}} \check{\alpha}_{i+1} \in \dot{D} \setminus \check{\varepsilon}_i$.

In $V[G_0]$, Y is stationary

Suppose that i ∈ acc(κ) and that ⟨(p_j, α_j) | j < i⟩ has already been defined. Evidently,</p>

$$\sup_{j < i} \varepsilon_j = \sup_{j < i} (\operatorname{dom}(p_j)) = \sup_{j < i} \alpha_j,$$

denote the above common value by α_i . Finally, set $p_i := (\bigcup_{j < i} p_j)^{\frown} 1$, p_i is a legitimate condition satisfying dom $(p_i) = \alpha_i + 1$ and $p_i(\alpha_i) = 1$.

Evidently, $E := \{\alpha_i \mid i < \kappa\}$ is a club, we may pick $\beta \in X$ such that $\alpha_\beta = \beta$.

Then $p_{\beta} \Vdash_{\mathbb{P}} \check{\beta} \in \dot{D} \cap \check{X}$, so that, from $p_{\beta}(\beta) = 1$, we infer that $p_{\beta} \Vdash_{\mathbb{P}} \dot{D} \cap \dot{Y} \neq \emptyset$.

In $V[G_0][G_1]$, T is stationary

Fix \vec{a} , C in V that witness together that S is in $I[\kappa - X]$. As \mathbb{P} is cofinality-preserving, in $V[G_0]$, the above two still witness together that S is in $I[\kappa - X]$.

Work in $V[G_0]$. As T is a subset of S, \vec{a} , C also witness together that T is in $I[\kappa - X]$.

Let q be an arbitrary condition that Q-forces that some \dot{D} is a Q-name for a club in $\kappa.$

Fix a large enough regular Θ and some well-ordering \leq_{Θ} of H_{Θ} ; an elementary submodel $N \prec (H_{\Theta}, \leq_{\Theta})$ such that $\vec{a}, C, \mathbb{Q}, q, \dot{D} \in N$ and $\delta := N \cap \kappa$ is in T.

In $V[G_0][G_1]$, T is stationary

Pick a cofinal subset $A \subseteq \delta$ with $otp(A) = cf(\delta)$ and $acc^+(A) \cap X = \emptyset$ such that:

$$\{A \cap \gamma \mid \gamma < \delta\} \subseteq \{a_{\beta} \mid \beta < \delta\}.$$

Let $\langle \delta_i \mid i < cf(\delta) \rangle$ be the increasing enumeration of A.

For every initial segment *a* of *A*, we recursively define the following sequence $\langle (q_i, \alpha_i) | i \leq \sigma(a) \rangle$, where $\sigma(a)$ will the length of the recursion.

▶ Let q_0 be the \leq_{Θ} -least condition in \mathbb{Q} extending q for which there is $\alpha < \kappa$ such that $q_0 \Vdash_{\mathbb{Q}} \check{\alpha} \in \dot{D}$. Now, let α_0 be the \leq_{Θ} -least ordinal α such that $q_0 \Vdash_{\mathbb{Q}} \check{\alpha} \in \dot{D}$.

In $V[G_0][G_1]$, T is stationary

▶ Suppose that $\langle (q_j, \alpha_j) | j \leq i \rangle$ has already been defined.

If $a \setminus \max\{\alpha_i, \operatorname{dom}(q_i), \delta_i\}$ is empty, then we terminate the recursion, and set $\sigma(a) := i$.

Otherwise, let ε_i be the $<_{\Theta}$ -least element of $a \setminus \max\{\alpha_i, \operatorname{dom}(q_i), \delta_i\}$, and then let q_{i+1} be the $<_{\Theta}$ -least condition in \mathbb{Q} extending q_i satisfying $\varepsilon_i \in \operatorname{dom}(q_{i+1})$ and satisfying that there is $\alpha < \kappa$ such that $q_{i+1} \Vdash_{\mathbb{Q}} \check{\alpha} \in \dot{D} \setminus \varepsilon_i$.

Now, let α_{i+1} be the \leq_{Θ} -least ordinal α such that $q_{i+1} \Vdash_{\mathbb{Q}} \check{\alpha} \in \dot{D} \setminus \varepsilon_i$.

In $V[G_0][G_1]$, T is stationary

Suppose that *i* is a limit ordinal and that ⟨(q_j, α_j) | j < i⟩ has already been defined.</p>

Evidently,

$$\sup_{j < i} \varepsilon_j = \sup_{j < i} (\operatorname{dom}(q_j)) = \sup_{j < i} \alpha_j,$$

so we let α_i denote the above common value.

As
$$\{\varepsilon_j \mid j < i\} \subseteq a \subseteq A$$
 and as $\operatorname{acc}^+(A) \cap X = \emptyset$, we infer that $\alpha_i \notin X$.

So, $q_i := (\bigcup_{j < i} q_j)^{\frown} 1$ is a legitimate condition satisfying dom $(q_i) = \alpha_i + 1$ and $q_i(\alpha_i) = 1$.

Killing Filter Reflection

In $V[G_0][G_1]$, T is stationary

Recall $\delta := \mathbf{N} \cap \kappa$ and $\delta \in \mathbf{T}$.

For every $\gamma < cf(\delta)$, $\langle (q_i, \alpha_i) \mid i \leq \sigma(A \cap \gamma) \rangle$ is in *N*.

Therefore $\sigma(A) = cf(\delta)$ and $\alpha_{cf(\delta)} = \delta$.

Finally $q_{cf(\delta)} \Vdash_{\mathbb{Q}} \check{\delta} \in \dot{D}$.

In $V[G_0][G_1]$, Y is nonstationary.

Look at the set

$$\mathcal{C} := \{ \alpha < \kappa \mid \exists q \in \mathcal{G}_1(q(\alpha) = 1) \}$$

by the definition of \mathbb{R} and \mathbb{Q} , *C* is a closed subset of κ which is disjoint from *Y*.

By a density argument we prove that C is unbounded. For every condition q in \mathbb{Q} , find $\delta \in S$ above dom(q). Define $q^{\bullet} : \delta + 1 \rightarrow 2$ via:

$$q^{ullet}(lpha) := egin{cases} q(lpha), & ext{if } lpha \in ext{dom}(q); \ 1, & ext{if } lpha = \delta; \ 0, & ext{otherwise}. \end{cases}$$

 $\{\alpha < \kappa \mid q^{\bullet}(\alpha) = 1\}$ is a proper end-extension of $\{\alpha < \kappa \mid q(\alpha) = 1\}$.

Killing fake reflection

Corollary

Suppose X, S are disjoint stationary subsets of κ , with $S \in I[\kappa - X]$. After forcing with $Add(\kappa, \kappa^+)$, X does not f-reflect to S.

By doing a preliminary forcing to enlarge $I[\kappa - X]$ for all X, we obtain:

Corollary (Dense non-reflection)

There exists a cofinality-preserving forcing extension in which for all two disjoint stationary subsets X, S of κ , X does not \mathfrak{f} -reflect to S.

Killing fake reflection

Lemma

Suppose that κ is strongly inaccessible or $\kappa = \lambda^+$ with $\lambda^{<\lambda} = \lambda$. For every stationary $X, Y \subseteq \kappa$ such that $Tr(X) \cap Y$ is non-stationary, $Y \in I[\kappa - X]$.

Corollary

If κ is strongly inaccessible (e.g., κ Laver-indestructible supercompact), then in the forcing extension by Add (κ, κ^+) , for all two disjoint stationary subsets X, S of κ , the following are equivalent:

- 1 X f-reflects to S;
- 2 every stationary subset of X reflects in S.

Killing Filter Reflection

Theorem

Martin's Maximum The consistency of Martin's Maximum implies the consistency of

$$=^{\kappa}_{\omega} \hookrightarrow_1 =^2_{\omega_1}$$

by an elaboration on the proof to kill fake reflection we can furthermore kill the reduction:

$$=^2_{\omega_1} \not\hookrightarrow_{BM} =^\kappa_\omega$$
.

Sakai's Forcing

Outline

- 1 Motivation
- 2 Filter Reflection
- 3 Fake Reflection
- 4 Killing Filter Reflection
- 5 Sakai's Forcing

The next step

Question

Can we force filter reflection?

Easy answer: Yes. Just force usual stationary reflection (collapse a weakly compact cardinal).

Question

Can we force fake reflection without using large cardinals?

Sakai's \diamondsuit^{++}

Definition

For a stationary $S \subseteq \kappa$, \diamondsuit_{S}^{++} asserts the existence of a sequence $\langle K_{\alpha} | \alpha \in S \rangle$ satisfying the following:

- **1** for every infinite $\alpha \in S$, K_{α} is a set of size $|\alpha|$;
- 2 for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $C \cap \alpha, X \cap \alpha \in K_{\alpha}$;
- 3 the following set is stationary in $[H_{\kappa^+}]^{<\kappa}$:

 $\{M \in [H_{\kappa^+}]^{<\kappa} \mid M \cap \kappa \in S \& \operatorname{clps}(M, \in) = (K_{M \cap \kappa}, \in)\}.$

\diamondsuit^{++} and $DI_S^*(\Pi_n^1)$

Recall: For sets N and x, we say that N sees x iff N is a transitive model of ZF^- and $x \cup \{x\} \subseteq N$.

Lemma

For every stationary $S \subseteq \kappa$, \diamondsuit_{S}^{++} implies $Dl_{S}^{*}(\Pi_{2}^{1})$.

Proof (sketch): Suppose $\langle K_{\alpha} \mid \alpha \in S \rangle$ is a \Diamond_{S}^{++} -sequence. Define a sequence $\vec{N} = \langle N_{\alpha} \mid \alpha \in S \rangle$ by letting $N_{\alpha} = K_{\alpha}$ if K_{α} sees α , otherwise N_{α} is any model of ZF⁻ that sees α and contains K_{α} . Let $\phi = \forall X \exists Y \varphi$ be a Π_{2}^{1} -sentence and $(A_{m})_{m \in \omega}$ be such that $\langle \kappa, \in, (A_{m})_{m \in \omega} \rangle \models \phi$. Given an arbitrary club $C \subseteq \kappa$, we consider the following set

$$\mathcal{C} := \{ M \prec H_{\kappa^+} \mid M \cap \kappa \in C \& (A_m)_{m \in \omega} \in M \}.$$

 \mathcal{C} is a club in $[H_{\kappa^+}]^{<\kappa}$.

\diamondsuit^{++} and $DI^*_S(\Pi^1_n)$

Lemma

For every stationary $S \subseteq \kappa$, \diamondsuit_S^{++} implies $Dl_S^*(\Pi_2^1)$.

Proof continuation (sketch): By \diamondsuit_S^{++} the set

 $\mathcal{C} \cap \{ M \in [H_{\kappa^+}]^{<\kappa} \mid M \cap \kappa \in S \And \mathsf{clps}(M, \in) = (K_{M \cap \kappa}, \in) \}$

is stationary, pick M in this set. Since $\langle \kappa, \in, (A_m)_{m \in \omega} \rangle \models \phi$, by definition

$$H_{\kappa^+}\models ``\forall X\subseteq \kappa^{m(\mathbb{X})} \exists Y\subseteq \kappa^{m(\mathbb{Y})} \langle \kappa, \in, (A_m)_{m\in\omega}\rangle\models \varphi".$$

$$M\models ``\forall X\subseteq \kappa^{m(\mathbb{X})}\exists Y\subseteq \kappa^{m(\mathbb{Y})}(\langle\kappa,\in,(A_m)_{m\in\omega}\rangle\models\varphi)".$$

Let $\pi: M \to N_{\alpha}$ denote the transitive collapsing map.

$$N_{\alpha} \models ``\forall X \subseteq \alpha^{m(\mathbb{X})} \exists Y \subseteq \alpha^{m(\mathbb{Y})} (\langle \alpha, \in, (A_m \cap (\alpha^{m(\mathbb{A}_m)}))_{m \in \omega} \rangle \models \varphi)".$$

Miguel Moreno (BIU-HU)

May 2020 48 / 51

Sakai's forcing

Definition

Let S be the poset of all pairs (k, B) with the following properties:

- 1 k is a function such that $dom(k) < \kappa$;
- 2 for each $\alpha \in dom(k)$, $k(\alpha)$ is a transitive model of ZF^- of size $\leq \max\{\aleph_0, |\alpha|\}$, with $k \upharpoonright \alpha \in k(\alpha)$;
- 3 \mathcal{B} is a subset of $\mathcal{P}(\kappa)$ of size $\leq \operatorname{dom}(k)$;

$$(k',\mathcal{B}')\leqslant (k,\mathcal{B})$$
 in $\mathbb S$ if the following holds:

(i)
$$k' \supseteq k$$
, and $\mathcal{B}' \supseteq \mathcal{B}$;

(ii) for any $B \in \mathcal{B}$ and any $\alpha \in dom(k') \setminus dom(k)$, $B \cap \alpha \in k'(\alpha)$.

Fact (Sakai)

For every stationary $S \subseteq \kappa$, $V^{\mathbb{S}} \models \diamondsuit_{S}^{++}$.

Sakai's Forcing

Conclusion

Corollary

For all stationary subsets X and S of κ , there exists a $<\kappa$ -closed κ^+ -cc forcing extension, in which X f-reflects to S.

Sakai's Forcing

Thank you