Unstable theories

Constructing trees

Coloring an order

Colouring orders and ordering trees

Miguel Moreno University of Vienna FWF Meitner-Programm

Bar-Ilan Set Theory Colloquium

February, 2022

Bar-Ilan Set Theory Colloquium

Miguel Moreno (UV) Colouring orders and ordering trees

1 of 44

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

- ► Löwenheim-Skolem Theorem: $\exists \alpha \ge \omega \ I(T, \alpha) \ne 0 \Rightarrow \forall \beta \ge \omega \ I(T, \beta) \ne 0.$
- Morley's categoricity: $\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1$
- Shelah's Main Gap Theorem: Either, for every uncountable cardinal α, I(T, α) = 2^α, or ∀α > 0 I(T, ℵ_α) < □_{ω1}(| α |).

Bar-Ilan Set Theory Colloquium

Image: A math a math

Approaches

Shelah's stability theory. Classify the models of T by different divisible lines that clearly differentiate between the theories that can be classified and those that cannot.

Descriptive set theory: It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.

Introduction 00000	Shelah's Main Gap Theorem	Unstable theories	Constructing trees	Coloring an order

The topology

 κ is an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^κ with the bounded topology. For every $\zeta\in\kappa^{<\kappa},$ the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

Miguel Moreno (UV)

Introduction	Shelah's Main Gap Theorem	Unstable theories	Constructing trees	Coloring an order
00000				

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure \mathcal{A}_f with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are \cong_T^{κ} equivalent if $\mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$ or $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

Introduction 0000●	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees	Coloring an order

Reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is Borel reducible to E_2 , if there is a Borel function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We write $E_1 \hookrightarrow_b^{\kappa} E_2$.

If the function is continuous, then we say that E_1 is continuous reducible to E_2 and we denote it by $E_1 \hookrightarrow_c^{\kappa} E_2$.

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T'$$
 iff $\cong^{\kappa}_{T} \hookrightarrow^{\kappa}_{c} \cong^{\kappa}_{T'}$

< (T) >

Unstable theories

Constructing trees

Coloring an order

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Question:

Is there a continuous reducibility counterpart of the Main Gap Theorem in the spaces $\kappa^{\kappa}?$

non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;
- T is superstable with DOP;
- ► *T* is superstable with OTOP.

Progress

Theorem (Friedman - Hyttinen - Kulikov) If T is classifiable and T' is unsuperstable, then

 $T' \not\leq^{\kappa} T$

Theorem (Hyttinen - Moreno)

Suppose T is a classifiable theory, T' is an stable theory with the OCP, and κ an inaccessible cardinal. Then

$$T \leq^{\kappa} T'$$

Miguel Moreno (UV)

Progress

Theorem (Moreno)

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, and κ an inaccessible cardinal. Then

 $T \leq^{\kappa} T'$

Theorem (Mangraviti - Motto Ros)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \le \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T^{\kappa} \hookrightarrow_b^{\kappa} \cong_{T'}^{\kappa}$$

< 口 > < 同 >

Progress

Theorem (Hyttinen - Kulikov - Moreno) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. There is a κ -closed κ^+ -cc forcing which forces: If T is classifiable and T' is not, then $T \leq^{\kappa} T'$ and $T' \not\leq^{\kappa} T$

Theorem (Fernandes - Moreno - Rinot)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. Let T be a non-classifiable theory. There is a κ -closed κ^+ -cc forcing which forces:

If T' is a countable complete first-order theory, then $T' \leq^{\kappa} T$.

Bar-Ilan Set Theory Colloquium

< 口 > < 同 >

Stable unsuperstable theories

Theorem (Hyttinen - Kulikov - Moreno) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. If T is classifiable and T' is stable unsuperstable, then $T \leq^{\kappa} T'$.

Miguel Moreno (UV) Colouring orders and ordering trees

Ordered trees

Definition

Let K_{tr}^{ω} be the class of models $(A, \prec, (P_n)_{n \leq \omega}, <, h)$, where:

- there is a linear order $(I, <_I)$ such that $A \subseteq I^{\leq \omega}$;
- A is closed under initial segment;
- ► ≺ is the initial segment relation;
- $h(\eta, \xi)$ is the maximal common initial segment of η and ξ ;
- ▶ let $lg(\eta)$ be the length of η (i.e. the domain of η) and $P_n = \{\eta \in A \mid lg(\eta) = n\}$ for $n \leq \omega$;

Miguel Moreno (UV)

Bar-Ilan Set Theory Colloquium

Image: A mathematical states and a mathem

Ordered trees

Definition (continuation)

Let K_{tr}^{ω} be the class of models $(A, \prec, (P_n)_{n \leq \omega}, <, h)$, where:

- ▶ for every $\eta \in A$ with $lg(\eta) < \omega$, define $Suc_A(\eta)$ as $\{\xi \in A \mid \eta \prec \xi \land lg(\xi) = lg(\eta) + 1\}$. If $\xi < \zeta$, then there is $\eta \in A$ such that $\xi, \zeta \in Suc_A(\eta)$;
- For every η ∈ A\P_ω, <↾ Suc_A(η) is the induced linear order from *I*, i.e.

 $\eta^{\frown}\langle x\rangle < \eta^{\frown}\langle y\rangle \Leftrightarrow x <_I y;$

Image: A mathematical states and a mathem

• If η and ξ have no immediate predecessor and $\{\zeta \in A \mid \zeta \prec \eta\} = \{\zeta \in A \mid \zeta \prec \xi\}$, then $\eta = \xi$.

Miguel Moreno (UV)

Generalized Ehrenfeucht-Mostowski models

Definition

Suppose T is a countable complete theory in a countable vocabulary \mathcal{L} , \mathcal{L}^1 a Skolemization of \mathcal{L} , and T^1 the Skolemization of T by \mathcal{L}^1 .

We say that a function Φ is proper for K_{tr}^{ω} , if for each $A \in K_{tr}^{\omega}$, there is a model \mathcal{M}_1 and tuples a_s , $s \in A$, of elements of \mathcal{M}_1 such that the following two hold:

every element of M₁ is an interpretation of some µ(a_s), where µ is a L¹-term;

•
$$tp_{at}(a_s, \emptyset, \mathcal{M}_1) = \Phi(tp_{at}(s, \emptyset, A)).$$

Proper function

We denote \mathcal{M}_1 by $EM^1(A, \Phi)$. Denote by $EM(A, \Phi)$ the \mathcal{L} -reduction of $EM^1(A, \Phi)$

Theorem (Shelah)

Suppose $\mathcal{L} \subseteq \mathcal{L}^1$ are vocabularies, T is a complete first order theory in \mathcal{L} , T^1 is a complete theory in \mathcal{L}^1 extending T and with Skolem-functions.

Suppose T is unsuperstable and $\{\phi_n(x, y_n) \mid n < \omega\}$ witnesses this. Then there is a function Φ proper such that for all $A \in K_{tr}^{\omega}$, $EM^1(A, \Phi)$ is a model of T^1 , and for $s \in P_n^A$, $t \in P_{\omega}^A$, $EM^1(A, \Phi) \models \phi_n(a_t, a_s)$ if and only if $A \models s \prec t$.

Miguel Moreno (UV)

< 口 > < 同 >

κ -representation

Definition

Let A be an arbitrary set of size at most κ . A sequence $\mathbb{A} = \langle A_{\alpha} \mid \alpha < \kappa \rangle$ is a κ -representation of A, if $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ is an increasing continuous sequence of subsets of A, for all $\alpha < \kappa$, $|A_{\alpha}| < \kappa$, and $\bigcup_{\alpha < \kappa} A_{\alpha} = A$.

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees	Coloring an order

$$S(\mathbb{A})$$

Definition

For any $A \in K_{tr}^{\omega}$ with size κ and \mathbb{A} a κ -representation of A, we define $S(\mathbb{A})$ as the set of limit ordinals $\delta < \kappa$ for which exists $\eta \in P_{\omega}^{A}$ such that the following hold

Miguel Moreno (UV)

Equivalence modulo S

Definition

Given $S \subseteq \kappa$, we define the equivalence relation $=_S^2 \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows

$$\eta =_{S}^{2} \xi \iff \{ \alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha) \} \cap S \text{ is non-stationary.}$$

We will denote by $=_{\mu}^{2}$ the relation $=_{S}^{2}$ when $S = \{ \alpha < \kappa \mid cf(\alpha) = \mu \}.$

Miguel Moreno (UV)

The isomorphism

Theorem (Shelah)

Suppose T is a countable complete unsuperstable theory in a countable vocabulary.

If κ is a regular uncountable cardinal, $A_1, A_2 \in K_{tr}^{\omega}$ have size κ , A_1 , A_2 are locally (κ , bs, bs)-nice and ($< \kappa$, bs)-stable, EM(A_1, Φ) is isomorphic to EM(A_2, Φ), then $S(A_1) =_{\omega}^2 S(A_2)$.

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories 00000000●	Constructing trees	Coloring an order

The goal

Theorem (Hyttinen - Kulikov - Moreno)

Assume T is a countable complete classifiable theory over a countable vocabulary. If \diamondsuit_{ω} holds, then $\cong_T^{\kappa} \hookrightarrow_c^{\kappa} =_{\omega}^2$.

The Objective $=_{\omega}^{2} \hookrightarrow_{c}^{\kappa} \cong_{T}^{\kappa}$ for any *T* unsuperstable.

For all $\eta \in 2^{\kappa}$ contruct an ordered tree A_{η} such that the following hold:

- construct them in a smooth way, i.e. the obtained reduction is continuous;
- for all $\eta, \xi \in 2^{\kappa}$, $\eta =_{\omega}^{2} \xi$ if and only if $A_{\eta} \cong A_{\xi}$;

• for all
$$\eta, \xi \in 2^{\kappa}$$
, $\eta =_{\omega}^{2} \xi$ if and only if $S(A_{\eta}) =_{\omega}^{2} S(A_{\xi})$;

< 17 ▶

Colored trees

Definition

A coloured tree is a pair (t, c), where t is a κ^+ , $(\omega + 2)$ -tree and c is a map $c : t_{\omega} \to 2$, where t_{ω} i the set of leaves.

Theorem (Hyttinen - Kulikov)

It is possible to construct for any $f \in 2^{\kappa}$ a colored tree J_f such that: For every $f, g \in 2^{\kappa}$ the following holds

$$f =^2_{\omega} g \Leftrightarrow J_f \cong J_g$$

Miguel Moreno (UV)

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees ○●○○○○	Coloring an order

Coloring orders

Definition

Let *I* be a linear order of size κ . We say that *I* is κ -colorable if there is a function $F : I \to \kappa$ such that for all $B \subseteq I$, $|B| < \kappa$, $b \in I \setminus B$, and $p = tp_{bs}(b, B, I)$ such that the following hold: For all $\alpha \in \kappa$, $|\{a \in I \mid a \models p \& F(a) = \alpha\}| = \kappa$.

Theorem

Suppose I is a κ -colorable linear order. Then for any $f \in 2^{\kappa}$, there is an ordered coloured tree $A_f(I)$ that satisfies: For all $f, g \in 2^{\kappa}$,

$$f =_{\omega}^{2} g \Leftrightarrow A_{f}(I) \cong A_{g}(I),$$

and
$$S(A_f(I)) = \{\delta < \kappa \mid cf(\delta) = \omega \land f(\delta) = 1\}.$$

Miguel Moreno (UV)

Colouring orders and ordering trees

Shelah's Main Gap Theorem	Unstable theories	Constructing trees	Coloring an order
		000000	

Recall

The Objective $=_{\omega}^{2} \hookrightarrow_{c}^{\kappa} \cong_{T}^{\kappa}$ for any *T* unsuperstable. For all $\eta \in 2^{\kappa}$ contruct *I* is a κ -colorable linear order such that the following hold:

- $A_{\eta}(I)$ is locally (κ, bs, bs) -nice;
- $A_{\eta}(I)$ is $(<\kappa, bs)$ -stable;

Nice linear order

Definition (Lemma by Hyttinen - Tuuri)

Let *I* be a linear order of size κ and $\langle I_{\alpha} \mid \alpha < \kappa \rangle$ a κ -representation. Then *I* is (κ, bs, bs) -nice if the following hold: There is a club $C \subseteq \kappa$, such that for all limit $\delta \in C$, for all $x \in I$ there is $\beta < \delta$ such that one of the following holds:

$$\forall \sigma \in I_{\delta}[\sigma \ge x \Rightarrow \exists \sigma' \in I_{\beta} \ (\sigma \ge \sigma' \ge x)] \\ \forall \sigma \in I_{\delta}[\sigma \le x \Rightarrow \exists \sigma' \in I_{\beta} \ (\sigma \le \sigma' \le x)]$$

< 口 > < 同 >

Unstable theories

Constructing trees

Coloring an order

Locally nice ordered tree

Definition

 $A \in K_{tr}^{\omega}$ of size at most κ , is locally (κ, bs, bs) -nice if for every $\eta \in A \setminus P_{\omega}^{A}$, $(Suc_{A}(\eta), <)$ is (κ, bs, bs) -nice, $Suc_{A}(\eta)$ is infinite, and there is $\xi \in P_{\omega}^{A}$ such that $\eta \prec \xi$.

Miguel Moreno (UV) Colouring orders and ordering trees Bar-Ilan Set Theory Colloquium

26 of 44

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees 00000●	Coloring an order

Stable ordered tree

Definition $A \in K_{tr}^{\omega}$ is $(< \kappa, bs)$ -stable if for every $B \subseteq A$ of size smaller than κ ,

$$\kappa > |\{tp_{bs}(a, B, A) \mid a \in A\}|.$$

Miguel Moreno (UV) Colouring orders and ordering trees

Initial order

Definition

Let ${\mathbb Q}$ be the linear order of the rational numbers.

Let $\kappa \times \mathbb{Q}$ be order by the lexicographic order, I^0 be the set of functions $f : \omega \to \kappa \times \mathbb{Q}$ such that $f(n) = (f_1(n), f_2(n))$, for which $\{n \in \omega \mid f_1(n) \neq 0\}$ is finite.

If $f, g \in I^0$, then f < g if and only if f(n) < g(n), where n is the least number such that $f(n) \neq g(n)$.

< 口 > < 同 >

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees	Coloring an order ○●○○○○○○○○○○○○○○

Initial order

Lemma

There is a κ -representation $\langle I_{\alpha}^{0} | \alpha < \kappa \rangle$ such that for all limit $\delta < \kappa$ and $\nu \in I^{0}$ there is $\beta < \delta$ which satisfies the following:

$$\forall \sigma \in I^{\mathbf{0}}_{\delta}[\sigma > \nu \Rightarrow \exists \sigma' \in I^{\mathbf{0}}_{\beta} \ (\sigma \ge \sigma' \ge \nu)]$$

In particular

There is a κ -representation $\langle I^0_{\alpha} \mid \alpha < \kappa \rangle$ such that for all limit $\delta < \kappa$ and $\nu \in I^0$, if $\nu \notin I^0_{\delta}$ there is $\beta < \delta$ which satisfies the following:

$$\forall \sigma \in I^{\mathbf{0}}_{\delta}[\sigma > \nu \Rightarrow \exists \sigma' \in I^{\mathbf{0}}_{\beta} \ (\sigma > \sigma' > \nu)]$$

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees	Coloring an order

For all $\gamma < \kappa$, let us define $\langle I_{\alpha}^{0} \mid \alpha < \kappa \rangle$ by

$$\mathit{I}^{\mathsf{0}}_{\gamma} = \{
u \in \mathit{I}^{\mathsf{0}} \mid
u_{1}(\mathit{n}) < \gamma ext{ for all } \mathit{n} < \omega \}$$

it is clear that $\langle I_{\alpha}^{0} | \alpha < \kappa \rangle$ is a κ -representation. Suppose $\delta < \kappa$ is a limit and $\nu \in I^{0}$. If $\nu \in I_{\delta}^{0}$, then there is $\beta < \delta$ such that $\nu \in I_{\beta}^{0}$ and the result follows. Let us take care of the case $\nu \notin I_{\delta}^{0}$. Let $\beta < \delta$ be the least ordinal such that for all $n < \omega$, $\nu_{1}(n) < \delta$ implies $\nu_{1}(n) < \beta$.

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories 000000000	Constructing trees	Coloring an order

Claim: For all $\sigma \in I^0_{\delta}$. If $\sigma > \nu$, then there is $\sigma' \in I^0_{\beta}$ such that $\sigma \neq \sigma'$ and $\sigma > \sigma' > \delta$.

Proof of the claim: Let us suppose $\sigma \in I_{\delta}^{0}$ is such that $\sigma \geq \nu$. By the definition of I^{0} , there is $n < \omega$ such that $\sigma(n) > \nu(n)$ and n is the minimum number such that $\sigma(n) \neq \nu(n)$. Since $\sigma \in I_{\delta}^{0}$, for all $m \leq n$, $\nu_{1}(m) \leq \sigma_{1}(m) < \delta$. Thus for all $m \leq n$, $\nu_{1}(m) < \beta$. Let us divide the proof in two cases, $\sigma_{1}(n) = \nu_{1}(n)$ and $\sigma_{1}(n) > \nu_{1}(n)$.

Miguel Moreno (UV)

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees	Coloring an order

Case 1. $\sigma_1(n) = \nu_1(n)$. By the density of \mathbb{Q} there is r such that $\sigma_2(n) > r > \nu_2(n)$. Let us define σ' by:

$$\sigma'(m) = egin{cases}
u(m) & ext{if } m < n \\
(
u_1(n), r) & ext{if } m = n \\
0 & ext{in other case}. \end{cases}$$

Case 2. $\sigma_1(n) > \nu_1(n)$. Let us define σ' by:

$$\sigma'(m) = \begin{cases} \nu(m) & \text{if } m < n\\ (\nu_1(n), \nu_2(n) + 1) & \text{if } m = n\\ 0 & \text{in other case} \end{cases}$$

Clearly $\sigma > \sigma' > \nu$. Since $\nu_1(m) < \beta$ for all $m \leq \eta_{\mathcal{D}} \sigma' \in l^0_{\beta}$, $\mathfrak{p} \in \mathfrak{s}_{\beta}$

Miguel Moreno (UV)

Colouring orders and ordering trees

•

The orders

Suppose $i < \kappa$ is such that I^i has been defined. For all $\nu \in I^i$ let ν^{i+1} be such that

$$\nu^{i+1} \models tp_{bs}(\nu, l^i \setminus \{\nu\}, l^i) \cup \{\nu > x\}.$$

Notice that ν^{i+1} is a copy of ν that is smaller than ν . Let $I^{i+1} = I^i \cup \{\nu^{i+1} \mid \nu \in I^i\}$. Suppose $i < \kappa$ is a limit ordinal such that for all j < i, I^j has been defined, we define I^i by $I^i = \bigcup_{i < i} I^j$.

Miguel Moreno (UV)

Colouring orders and ordering trees

Bar-Ilan Set Theory Colloquium

< 口 > < 同 >

The representations

Suppose $i < \kappa$ is such that $\langle I_{\alpha}^{i} \mid \alpha < \kappa \rangle$ has been defined. For all $\alpha < \kappa$,

$$I_{\alpha}^{i+1} = I_{\alpha}^{i} \cup \{\nu^{i+1} \mid \nu \in I_{\alpha}^{i}\}.$$

Suppose $i < \kappa$ is a limit ordinal such that for all j < i, $\langle I_{\alpha}^{j} \mid \alpha < \kappa \rangle$ has been defined, we define $\langle I_{\alpha}^{i} \mid \alpha < \kappa \rangle$ by

$$I^i_{\alpha} = \bigcup_{j < i} I^j_{\alpha}.$$

Shelah's Main Gap Theorem	Unstable theories	Constructing trees	Coloring an order
			000000000000000000000000000000000000000

The order

Let us define I as

$$I = \bigcup_{j < \kappa} I^j$$

and the $\kappa\text{-representation }\langle \textit{I}_{\alpha}\mid\alpha<\kappa\rangle$ as

$$I_{\alpha} = \bigcup_{\alpha < \kappa} I_{\alpha}^{\alpha}.$$

Miguel Moreno (UV) Colouring orders and ordering trees

A different perspective

Definition (Generator)

For all $\nu \in I$ let us denote by $o(\nu)$ the least ordinal $\alpha < \kappa$ such that $\nu \in I^{\alpha}$.

Let us denote the generator of ν by $Gen(\nu)$ and define it by induction as follows:

• Genⁱ(
$$\nu$$
) = \emptyset , for all $i < o(\nu)$;

• Gen^{*i*}(
$$\nu$$
) = { ν }, for *i* = $o(\nu)$;

• for all
$$i \ge o(\nu)$$
,

$$\mathit{Gen}^{i+1}(\nu) = \mathit{Gen}^{i}(\nu) \cup \{ \sigma \in \mathit{I}^{i+1} \mid \exists \tau \in \mathit{Gen}^{i}(\nu) \ [\tau^{i+1} = \sigma] \};$$

• for all $i < \kappa$ limit,

$$Gen^{i}(\nu) = \bigcup Gen^{j}(\nu) = (0, 0) = (0, 0)$$

Miguel Moreno (UV)

A different perspective

Finally, let

$$Gen(\nu) = \bigcup_{i < \kappa} Gen^i(\nu).$$

Suppose $\nu \in I$. For all $\sigma \in Gen(\nu)$, $\sigma \neq \nu$, there is $n < \omega$ and a sequence $\{\sigma_i\}_{i \leq n}$ such that the following holds:

•
$$\sigma_0 = \nu$$
;
• for all $j < n$,
• $\sigma_{j+1} = (\sigma_j)^{o(\sigma_{j+1})}$;
• $\sigma = \sigma_n = (\sigma_{n-1})^{o(\sigma)}$

Miguel Moreno (UV)

Nice property I^i

Lemma

For all $i < \kappa$, $\delta < \kappa$ a limit ordinal, and $\nu \in I^i$, there is $\beta < \delta$ that satisfies the following:

$$\forall \sigma \in I^i_{\delta} \ [\sigma > \nu \Rightarrow \exists \sigma' \in I^i_{\beta} \ (\sigma \ge \sigma' \ge \nu)]$$

In particular. If $\nu \notin I_{\delta}^{i}$ there is $\beta < \delta$ which satisfies the following:

$$\forall \sigma \in I^i_{\delta}[\sigma > \nu \Rightarrow \exists \sigma' \in I^0_{\beta} \ (\sigma > \sigma' > \nu)]$$

Miguel Moreno (UV)

Nice property I

Lemma

For all $\delta < \kappa$ a limit ordinal, and $\nu \in I$, there is $\beta < \delta$ that satisfies the following:

$$\forall \sigma \in I_{\delta} \ [\sigma > \nu \Rightarrow \exists \sigma' \in I_{\beta} \ (\sigma \ge \sigma' \ge \nu)]$$

Miguel Moreno (UV) Colouring orders and ordering trees

$$(<\kappa, bs)$$
-stable I^0

Theorem (Hyttinen - Tuuri)

Let \mathcal{R} be the set of functions $f : \omega \to \kappa$ for which $\{n \in \omega \mid f(n) \neq 0\}$ is finite. If $f, g \in \mathcal{R}$, then f < g if and only if f(n) < g(n), where n is the least number such that $f(n) \neq g(n)$. If $\lambda^{\omega} = \lambda$, then the linear order \mathcal{R} is $(< \kappa, bs)$ -stable.

Lemma

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. I⁰ is (< κ , bs)-stable.

Miguel Moreno (UV)

< 口 > < 同 >

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees	Coloring an order

For all $A \subseteq I^0$ define Pr(A) as the set $\{f_1 \mid f \in A\}$. Let $A \subseteq I^0$ be such that $|A| < \kappa$. Since $|\mathbb{Q}| = \omega$, $|\{tp_{bs}(a, A, I^0) \mid a \in I^0\}| \le |\{tp_{bs}(a, Pr(A), \mathcal{R}) \mid a \in \mathcal{R}\} \times 2^{\omega}|$. Since $\lambda^{\omega} = \lambda$, $|\{tp_{bs}(a, A, I^0) \mid a \in I\}| < \kappa$.

$$(<\kappa, bs)$$
-stable *I*

Lemma

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. I is $(< \kappa, bs)$ -stable.

Theorem *I* is a ($< \kappa$, bs)-stable (κ , bs, bs)-nice κ -colorable linear order.

Miguel Moreno (UV)

Colouring orders and ordering trees

Shelah's Main Gap Theorem	Unstable theories	Constructing trees	Coloring an order
			000000000000000000000000000000000000000

Corollary

Theorem

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{\omega} = \lambda$. If T_1 is a countable complete classifiable theory, and T_2 is a countable complete unsuperstable theory, then $T_1 \leq^{\kappa} T_2$.

Theorem

There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for all countable complete unsuperstable theory T, \cong_T^{κ} is Σ_1^1 -complete.

Miguel Moreno (UV) Colouring orders and ordering trees

Introduction 00000	Shelah's Main Gap Theorem 000000	Unstable theories	Constructing trees	Coloring an order

Thank you

- 《口》 《聞》 《臣》 《臣》 三日 うへの

Bar-Ilan Set Theory Colloquium

Miguel Moreno (UV) Colouring orders and ordering trees