The equivalence modulo non-stationary ideals

M. Moreno (Joint with D. Aspero, T. Hyttinen, and V. Kulikov)

> Department of Mathematics and Statistics University of Helsinki

> > Arctic Set Theory 3 January 2017

M. Moreno (UH)

Arctic Set Theory 3 January 2017 1 / 36

- 1 Classifying First-order countable Theories
- 2 The Main Gap in the Borel hierarchy
- 3 The Generalized Baire Space
- 4 Properties of E^{κ}_{μ} and E^{2}_{μ}

Outline

1 Classifying First-order countable Theories

- 2 The Main Gap in the Borel hierarchy
- 3 The Generalized Baire Space
- 4 Properties of E^{κ}_{μ} and E^{2}_{μ}

The spectrum problem

Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

- Löwenheim-Skolem Theorem: $\exists \alpha \ge \omega \ I(T, \alpha) \ne 0 \Rightarrow \forall \beta \ge \omega \ I(T, \beta) \ne 0.$
- Morley's categoricity: $\exists \alpha > \omega \ I(T, \alpha) = 1 \Rightarrow \forall \beta > \omega \ I(T, \beta) = 1$
- Shelah's Main Gap Theorem: Either, for every uncountable cardinal α, *I*(*T*, α) = 2^α, or ∀α > 0 *I*(*T*, ℵ_α) < □_{ω1}(| α |).

Classifying First-order countable Theories

Approaches

• Shelah's stability theory.

Classify the models of T by cardinal invariants and clearly differentiate between the theories that can be classified and those that cannot.

• Descriptive set theory:

It uses Borel-reducibility and the isomorphism relation to define a partial order on the set of all first-order complete countable theories.

The topology

 κ is a cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set 2^{κ} with the bounded topology. For every $\zeta \in 2^{<\kappa}$, the set

$$[\zeta] = \{\eta \in 2^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

The collection of Borel subsets of 2^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

Reductions

A function $f: 2^{\kappa} \to 2^{\kappa}$ is *Borel*, if for every open set $A \subseteq 2^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^{κ} .

Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is *Borel* reducible to E_2 , if there is a Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq B E_2$.

Coding structures

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in 2^{\kappa}$ define the structure \mathcal{A}_f with domain κ by: for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) = 1$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in 2^{\kappa}$ are \cong_T^{κ} equivalent if

•
$$\mathcal{A}_f \models \mathcal{T}, \mathcal{A}_g \models \mathcal{T}, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

Classifying First-order countable Theories

The complexity

We can define a partial order on the set of all first-order complete countable theories

$$T \leqslant^{\kappa} T'$$
 iff $\cong^{\kappa}_{T} \leqslant_{B} \cong^{\kappa}_{T'}$

Outline

- 1 Classifying First-order countable Theories
- 2 The Main Gap in the Borel hierarchy
- 3 The Generalized Baire Space
- (4) Properties of E^{κ}_{μ} and E^{2}_{μ}

Shelah's Main Gap Theorem

Theorem (Shelah)

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem in the space 2^{κ} ?

Countable

 $T = Th(\mathbb{Q}, \leq).$ T', the theory of vector space over the field of rational numbers.

By the Borel-reducibility hierarchy:

 $T \leqslant^{\omega} T'$ $T' \nleq^{\omega} T$

By the stability theory T' is simpler than T.

Uncountable

Theorem (Shelah)

If T is classifiable, then \cong^{κ}_{T} is Δ^{1}_{1} .

Theorem (S. Friedman, Hyttinen, Kulikov) If T is unstable then \cong_T^{κ} is not Δ_1^1 .

Theorem (S. Friedman, Hyttinen, Kulikov) If T is unstable and T' is classifiable, then $T \leq \kappa T'$.

The Equivalence Modulo Non-stationary Ideals

Definition

For every $X \subset \kappa$ stationary, we define E_X^2 as the relation

 $E_X^2 = \{(\eta, \xi) \in 2^\kappa \times 2^\kappa \mid (\eta^{-1}[1] \triangle \xi^{-1}[1]) \cap X \text{ is not stationary}\}$

where \triangle denotes the symmetric difference.

When
$$X = \{ \alpha < \kappa | cf(\alpha) = \lambda \}$$
, we will denote E_X^2 by E_λ^2 .

Looking above the Gap

Theorem (S. Friedman, Hyttinen, Kulikov)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$.

- If T is an unstable or superstable with OTOP, then $E_{\lambda}^2 \leq_B \cong_T^{\kappa}$.
- If $\lambda \geq 2^{\omega}$ and T is a superstable with DOP, then $E_{\lambda}^2 \leq_B \cong_T^{\kappa}$.

Theorem (S. Friedman, Hyttinen, Kulikov)

Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and T is a stable unsuperstable. Then $E_{\omega}^2 \leq_B \cong_T^{\kappa}$

Looking below the Gap

Theorem (S. Friedman, Hyttinen, Kulikov)

If T is a classifiable theory, then for all regular cardinal $\lambda < \kappa$, $E_{\lambda}^2 \not\leq_B \cong_T^{\kappa}$

Theorem (Hyttinen, Kulikov, M.)

Denote by S_{λ}^{κ} the set $\{\alpha < \kappa | cf(\alpha) = \lambda\}$. Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. If $\Diamond(S_{\lambda}^{\kappa})$ holds, then $\cong_{T}^{\kappa} \leq_{B} E_{\lambda}^{2}$.

A Generalized Borel-reducibility Counterpart

Theorem (Hyttinen, Kulikov, M.)

Suppose $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$. If T is a classifiable theory and T' is a stable unsuperstable theory, then $\cong_T^{\kappa} \leq_B E_{\omega}^2 \leq_B \cong_{T'}^{\kappa}$ and $E_{\omega}^2 \leq_B \cong_T^{\kappa}$.

Let $H(\kappa)$ be the following property: If T is classifiable and T' is not, then $T \leq^{\kappa} T'$ and $T' \leq^{\kappa} T$.

Theorem (Hyttinen, Kulikov, M.) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$. If V = L, then $H(\kappa)$ holds.

Question:

Is there a Borel reducibility counterpart of the Main Gap Theorem that does not need to force diamonds?

It can be studied in two ways:

- Does it holds E²_ω ≤_B ≅^κ_T for every theory T non-classifiable under some cardinal assumptions that imply ◊(S^κ_ω)?
- Is there a Borel reducibility counterpart of the Main Gap Theorem in another space?

The Generalized Baire Space

Outline

- 1 Classifying First-order countable Theories
- 2 The Main Gap in the Borel hierarchy
- 3 The Generalized Baire Space
- 4 Properties of E^{κ}_{μ} and E^{2}_{μ}

The Generalized Baire Space

The generalized Baire space

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^κ with the bounded topology. For every $\zeta\in\kappa^{<\kappa},$ the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

The collection of Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ .

Reductions in GBS

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *Borel* reducible to E_2 , if there is a Borel function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

We write $E_1 \leq B E_2$.

Coding structures in GBS

Fix a language $\mathcal{L} = \{P_n | n < \omega\}$

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure \mathcal{A}_f with domain κ by: for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

Definition (The isomorphism relation)

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are \cong_T^{κ} equivalent if

•
$$\mathcal{A}_f \models \mathcal{T}, \mathcal{A}_g \models \mathcal{T}, \mathcal{A}_f \cong \mathcal{A}_g$$

or

• $\mathcal{A}_f \nvDash T, \mathcal{A}_g \nvDash T$

The Equivalence Modulo Non-stationary Ideals in GBS

We say that $f, g \in \kappa^{\kappa}$ are E_{λ}^{κ} equivalent if the set $\{\alpha < \kappa | f(\alpha) = g(\alpha)\}$ contains an unbounded set that is closed under λ -limits.

Theorem (Hyttinen, M.)

Suppose T is a classifiable theory and $\lambda < \kappa$ is a regular cardinal. Then $\cong_T^{\kappa} \leq_B E_{\lambda}^{\kappa}$.

The Generalized Baire Space

Orthogonal Chain Property (OCP)

```
Lemma (Hyttinen, M.)
```

If a theory T has the OCP, then T is not classifiable.

Theorem (Hyttinen, M.)

Suppose T is a classifiable theory, T' is an stable theory with the OCP, and κ an inaccessible cardinal. Then $\cong_T^{\kappa} \leq_B E_{\omega}^{\kappa} \leq_B \cong_{T'}^{\kappa}$

The Generalized Baire Space

Strong DOP (S-DOP)

Lemma

If a theory T has the S-DOP, then T is not classifiable.

Theorem (M.)

Suppose T is a classifiable theory, T' is a superstable theory with the S-DOP, $\lambda \geq 2^{\omega}$, and κ an inaccessible cardinal. Then $\cong_{T}^{\kappa} \leqslant_{B} E_{\lambda}^{\kappa} \leqslant_{B} \cong_{T'}^{\kappa}$

Motivation

 It is consistent that there is a generalized Borel reducibility counterpart of the Main Gap Theorem in the space 2^κ.

• For κ inaccessible, the classifiable theories are at most as complex as the theories with OCP or S-DOP.

- **1** For which λ holds $E_{\lambda}^{\kappa} \leq B E_{\lambda}^{2}$?
- 2 For which λ holds $E_{\omega}^2 \leq_B E_{\lambda}^2$?

Properties of ${\it E}^\kappa_\mu$ and ${\it E}^2_\mu$

Outline

- 1 Classifying First-order countable Theories
- 2 The Main Gap in the Borel hierarchy
- 3 The Generalized Baire Space
- 4 Properties of E^{κ}_{μ} and E^{2}_{μ}

Σ_1^1 -completeness

Theorem (Hyttinen, Kulikov)

If V = L, then E^{κ}_{μ} is Σ^{1}_{1} -complete for every $\mu < \kappa$.

Corollary

If V = L and T is a theory with the OCP or the S-DOP, then \cong_T^{κ} is Σ_1^1 -complete.

Borel*-codes

For every regular cardinal $\gamma < \kappa$ define the following Borel*-code. Define T_{γ} as the tree whose elements are all the increasing elements of $\kappa^{\leqslant \gamma}$, ordered by end-extension. For every element of T_{γ} that is not a leaf, define

$$H_{\gamma}(x) = \begin{cases} \cup & \text{if } x \text{ has an immediate predecessor } x^{-} \text{ and } H_{X}(x^{-}) = \cap \\ \cap & \text{otherwise} \end{cases}$$

and for every leaf *b* define $H_{\gamma}(b)$ by:

$$(\eta,\xi) \in H_{\gamma}(b) \iff \alpha = sup(ran(b))(\eta(\alpha) = \xi(\alpha)).$$

Let us denote by $T_{\gamma} \upharpoonright_{\alpha}$ the subtree of $T_{\gamma} \cap \alpha^{\leqslant \gamma}$ with

$$\{b\in T_\gamma\restriction_\alpha | b \text{ a leaf}\}=\{b\in T_\gamma| b \text{ a leaf}\}\cap\{b\in T_\gamma\cap\alpha^{\leqslant\gamma}| b \text{ a leaf}\}$$

and H^{α}_{γ} is H_{γ} restricted to $\{b \in T_{\gamma} \upharpoonright_{\alpha} | b \text{ a leaf}\}.$

Borel*-reflection

Definition

For every $\gamma < \lambda < \kappa$ regular cardinals, we say that S_{γ}^{κ} Borel*-reflects to S_{λ}^{κ} if the following holds for every $\eta, \xi \in \kappa^{\kappa}$:

 $II \uparrow B^*(T_{\gamma}, H_{\gamma}, (\eta, \xi)) \Leftrightarrow II \uparrow B^*(T_{\gamma} \restriction_{\alpha}, H_{\gamma}^{\alpha}, (\eta, \xi)) \text{ for } \lambda\text{-club many } \alpha \text{ 's in } S_{\lambda}^{\kappa}$

Lemma

If
$$S_{\gamma}^{\kappa}$$
 Borel*-reflects to S_{λ}^{κ} , then $E_{\gamma}^{\kappa} \leq_{B} E_{\lambda}^{\kappa}$.

◇-reflection

Definition

Let X, Y be subsets of κ and suppose Y consists of ordinals of uncountable cofinality. We say that X \diamond -reflects to Y if there exists a sequence $\{D_{\alpha}\}_{\alpha \in Y}$ such that:

- $D_{\alpha} \subset \alpha$ is stationary in α .
- if $Z \subset X$ is stationary, then $\{\alpha \in Y | D_{\alpha} = Z \cap \alpha\}$ is stationary.

Theorem (S. Friedman, Hyttinen, Kulikov) If X \diamond -reflects to Y, then $E_X^2 \leq_B E_Y^2$.

Lemma

Suppose $\lambda^{<\lambda} = \lambda$ and $\gamma < \lambda$ regular cardinals. If $S^{\kappa}_{\gamma} \diamond$ -reflects to S^{κ}_{λ} , then S^{κ}_{γ} Borel*-reflects to S^{κ}_{λ} .

Lemma

Suppose that κ is a weakly compact cardinal and that V = L. Then there is a forcing extension where $\lambda^{++} = \kappa$ and

- 1 $E_{\lambda}^2 \leq_B E_{\lambda^+}^2$.
- $2 E_{\lambda}^{\kappa} \leqslant_{B} E_{\lambda^{+}}^{\kappa}.$

Lemma

The following is consistent: There are λ^+ many disjoint stationary subsets of $S_{\lambda^+}^{\lambda^{++}}$ such that $S_{\lambda}^{\lambda^{++}}$ \diamond -reflects to S_{γ} for every $\gamma < \lambda^+$.

Corollary

The following is consistent:

$$E_{\lambda}^{\lambda^{++}} \leqslant_B E_{\lambda^{+}}^2.$$

Properties of ${\it E}^\kappa_\mu$ and ${\it E}^2_\mu$

Questions

1 For which λ and κ holds $E_{\lambda}^{\kappa} \leq_{B} E_{\lambda}^{2}$?

2 Is it consistent that $E_{\lambda}^2 \leq B E_{\omega}^2$?

References

- S.D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory, Memoirs of the Amer. Math. Soc. Vol. 230/1081 (American Mathematical Society, 2014).
- T. Hyttinen and V. Kulikov, On Σ₁¹-complete equivalence relations on the generalized Baire space, Mathematical Logic Quarterly 61, 66-81. 2015.
- T. Hyttinen, V. Kulikov, and M. Moreno, *A Generalized Borel-reducibility Counterpart of Shelah's Main Gap Theorem*, Archive of Mathematical Logic. To appear.

References

- T. Hyttinen, and M. Moreno, *On the reducibility of isomorphism relations*, Mathematical Logic Quarterly. To appear.
- M. Moreno, *The isomorphism relation of theories with S-DOP*, in preparation.
- S. Shelah, *Classification theory*, Stud. Logic Found. Math. Vol. 92, (North-Holland, Amsterdam, 1990).