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Two notions

▶ Model theory notion. Classification theory (Shelah 1990)

▶ Set theory notion. Borel reducibility (Friedman and Stanley
1989)
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The spectrum fuction

Let T be a countable theory over a countable language. Let
I(T , α) denote the number of non-isomorphic models of T with
cardinality α.
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Shelah’s Main Gap Theorem

Theorem (Shelah 1990)
Either, for every uncountable cardinal α, I(T , α) = 2α; or ∀α > 0,
I(T , ℵα) < ℶω1(| α |).

If T is classifiable and T ′ is not, then T is less complex than T ′

and their complexity are not close.
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Descriptive Set Theory

▶ 1989: Friedman and Stanley introduced the Borel reducibility
between classes of countable structures.

▶ 1991: Väänänen: A Cantor-Bendixson theorem for the space
ωω1

1 .

▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a
systematic comparison between the Main Gap dividing lines
and the complexity given by Borel reducibility.
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The bounded topology

Let κ be an uncountable cardinal that satisfies κ<κ = κ.

We equip the set κκ with the bounded topology. For every
ζ ∈ κ<κ, the set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set.
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The Generalised Baire spaces

The generalised Baire space is the space κκ endowed with the
bounded topology.

The generalised Cantor space is the subspace 2κ.
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Coding structures

Let ω ≤ µ ≤ κ be a cardinal. Fix a relational language
L = {Pn|n < ω} and a bijection πµ between µ<ω and µ.

Definition
For every η ∈ κκ define the structure Aη↾µ with domain µ as
follows: For every tuple (a1, a2, . . . , an) in µn

(a1, a2, . . . , an) ∈ PAη↾µ
m ⇔ η(πµ(m, a1, a2, . . . , an)) > 0.
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The isomorphism relation

Definition
Let ω ≤ µ ≤ κ be a cardinal and T a first-order theory in a
relational countable language, we say that f , g ∈ κκ are ∼=µ

T
equivalent if one of the following holds:
▶ Aη↾µ |= T , Aξ↾µ |= T , Aη↾µ

∼= Aξ↾µ

▶ Aη↾µ ̸|= T , Aξ↾µ ̸|= T
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Reductions

Let E1 and E2 be equivalence relations on κκ. We say that E1 is
reducible to E2, if there is a function f : κκ → κκ that satisfies
(x , y) ∈ E1 ⇔ (f (x), f (y)) ∈ E2. We write E1 ↪→r E2.

We can define a partial order on the set of all first-order complete
countable theories

T ≤κ T ′ iff ∼=T ↪→C ∼=T ′
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Theories

▶ Classifiable theories are divided into:
▶ shallow,

I(T , ℵα) < ℶω1(| α |);
▶ non-shallow,

I(T , α) = 2α.

▶ Non-classifiable theories
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Question

Question: What can we say about the Borel-reducibility between
those dividing lines?

Conjecture: If T is classifiable and T ′ is non-classifiable, then
T ≤κ T ′.
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Borel-reducibility Main Gap

Theorem (M.)
Let c = 2ω. Suppose κ = λ+ = 2λ and 2c ≤ λ = λω1 . If T is a
classifiable theory, and T ′ is a non-classifiable theory, then

T ≤κ T ′ and T ′ ̸≤κ T .
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Equivalence modulo γ cofinality

Definition
We define the equivalence relation =2

γ ⊆ 2κ × 2κ, as follows: let
S = {α < κ | cf (α) = γ},

η =2
γ ξ ⇐⇒ {α < κ | η(α) ̸= ξ(α)} ∩ S is non-stationary.
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Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Assume T is a classifiable theory and let
S = {α < κ | cf (α) = γ}. If ♢S holds, then ∼=T ↪→C =2

γ .
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The idea

▶ Construct the reductions.

▶ Construct Ehrenfeucht-Mostowski models, such that

f =2
γ g iff Mf ∼= Mg .

▶ Construct ordered trees, such that

f =2
γ g ⇔ Af ∼= Ag ⇔ Mf ∼= Mg .
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Ordered trees from the linear order

▶ ω1-dense,

▶ (κ, ω1)-nice, (< κ)-stable,

▶ κ-colorable.
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Hyttinen - Tuuri’s order

Definition (Hyttinen - Tuuri 1991)
Let R be the set of functions f : ω → κ, for which
|{n ∈ ω | f (α) ̸= 0}| is finite.
If f , g ∈ R, then f < g if and only if f (n) < g(n), where n is the
least number such that f (n) ̸= g(n).

Fact (Hyttinen-Tuuri 1991)
The linear order R is (κ, ω)-nice and (< κ)-stable.
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ω1-dense

Let Q be a model of DLO of size 2ω, that is ω1-dense.

Definition
Let κ × Q be ordered by the lexicographic order, I0 be the set of
functions f : ω1 → κ × Q such that f (α) = (f1(α), f2(α)), for
which |{α ∈ ω1 | f1(α) ̸= 0}| is smaller than ω1.
If f , g ∈ I0, then f < g if and only if f (α) < g(α), where α is the
least number such that f (α) ̸= g(α).
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κ-colorable

Definition
Let I be a linear order of size κ. We say that I is κ-colorable if
there is a function F : I → κ such that for all B ⊆ I, |B| < κ,
b ∈ I\B, and p = tpbs(b, B, I) such that the following hold: For all
α ∈ κ,

|{a ∈ I | a |= p & F (a) = α}| = κ.
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The F φ
ω isolation

Definition
Let φ(x , y) := “y > x”, we define F φ

ω in the following way. Let
|B| < κ and p ∈ Sbs(B), (p, A) ∈ F φ

ω if and only if A ⊆ B, A is
finite, and there is a ∈ A such that

{a > x , x = a} ∩ p ̸= ∅ & a |= p ↾ B\{a}.
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F φ
ω saturation

Definition
C is (F φ

ω , κ)-saturated if for all B ⊆ C of size smaller than κ, and
p ∈ Sbs(B), (p, A) ∈ F φ

ω implies that p is realized in C .
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F φ
ω -construction

Definition
A sequence (A, (ai , Bi)i<α) is an F φ

ω -construction over A if for all
i < α, (tpbs(ai , Ai), Bi) ∈ F φ

ω where Ai = A ∪
⋃

j<i aj .
C is F φ

ω -constructible over A if there is an F φ
ω -construction over A

such that C = A ∪
⋃

j<α aj .
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(F φ
ω , κ)-primary

Definition
C is (F φ

ω , κ)-primary over A if it is F φ
ω -constructible over A and

(F φ
ω , κ)-saturated.

Lemma (M.)
Let c = 2ω. Suppose κ = λ+ = 2λ and 2c ≤ λ = λω1 . There is an
(F φ

ω , κ)-primary model over I0 and it is an ω1-dense, (κ, ω1)-nice,
(< κ)-stable, and κ-colorable linear order.
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Non-classifiable theories

Lemma (M.)
Let κ be strongly inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 .
If T is a non-classifiable theory then

∼=λ
T ↪→C id ↪→C ∼=T .
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Classifiable non-shallow

Lemma (M.)
Suppose κ = λ+ = 2λ. The following reduction is strict. Let
2c ≤ λ = λ<ω1 . If T1 is a classifiable non-shallow theory and T2 is
a non-classifiable theory, then

∼=λ
T2 ↪→C ∼=T1 ↪→C ∼=T2 .
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Classifiable shallow

Lemma (M.)
Suppose κ = λ+ = 2λ. The following reductions are strict.
Let κ = ℵγ be such that ℶω1(| γ |) ≤ κ. Suppose T1 is a
classifiable shallow theory, T2 a classifiable non-shallow theory, and
T3 non-classifiable theory. Then

∼=T1 ↪→B ∼=λ
T3 ↪→C ∼=T2 .
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General reduction

Fact (Mangraviti-Motto Ros)
Let E1 be a Borel equivalence relation with γ ≤ κ equivalence
classes and E2 be an equivalence relation with θ equivalence
classes. If γ ≤ θ, then E1 ↪→B E2.
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Classifiable shallow

Lemma (M.)
Suppose κ > 2ω and T is a countable first-order theory in a
countable vocabulary (not necessarily complete) such that ∼=T has
ϱ ≤ κ equivalence classes. Then for all α < κ

∼=T ↪→B αϱ and αϱ ↪→L ∼=T .

Even more, if T is not categorical then ∼=T ̸↪→C αϱ.
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∼=T ↪→C =2
µ, κ = λ+

Theory λ = λγ ♢λ Dl∗Sκ
γ
(Π1

1)
Classifiable ω ≤ µ ≤

γ
µ = λ µ = γ

Non-
classifiable

Indep Indep µ = γ
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=2
µ ↪→C ∼=T , κ = λ+

Theory λ = λγ 2c ≤ λ =
λγ

2c ≤ λ =
λ<λ

& ♢λ

Stable
Unsuper-

stable

µ = ω µ = ω µ = ω

Unstable ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with

OTOP

ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with DOP

? ω1 ≤ µ ≤
γ

ω1 ≤ µ ≤
λ
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Main Gap Dichotomy

Theorem (M.)
Let κ be inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 . There
exists a < κ-closed κ+-cc forcing extension in which for any
countable first-order theory in a countable vocabulary (not
necessarily complete), T , one of the following holds:
▶ ∼=T is ∆1

1(κ);
▶ ∼=T is Σ1

1(κ)-complete.
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Thank you

Article at: https://arxiv.org/abs/2308.07510
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