The Borel reducibility Main Gap

Miguel Moreno University of Helsinki

Arctic Set Theory Workshop 7

21 February, 2025

Two notions

History ●000

► Model theory notion. Classification theory (Shelah 1990)

➤ Set theory notion. Borel reducibility (Friedman and Stanley 1989)

The spectrum fuction

History ○●○○

Let T be a countable theory over a countable language. Let $I(T,\alpha)$ denote the number of non-isomorphic models of T with cardinality α .

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T,\alpha) = 2^{\alpha}$; or $\forall \alpha > 0$, $I(T,\aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$.

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

History

Descriptive Set Theory

History

▶ 1989: Friedman and Stanley introduced the Borel reducibility between classes of countable structures.

- ▶ 1991: Väänänen: A Cantor-Bendixson theorem for the space $\omega_1^{\omega_1}$.
- ▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a systematic comparison between the Main Gap dividing lines and the complexity given by Borel reducibility.

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in \kappa^{\kappa} \mid \zeta \subset \eta \}$$

is a basic open set.

The Generalised Baire spaces

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

The generalised Cantor space is the subspace 2^{κ} .

Coding structures

Let $\omega \leq \mu \leq \kappa$ be a cardinal. Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$ and a bijection π_{μ} between $\mu^{<\omega}$ and μ .

Definition

For every $\eta \in \kappa^{\kappa}$ define the structure $\mathcal{A}_{\eta \upharpoonright \mu}$ with domain μ as follows: For every tuple (a_1, a_2, \ldots, a_n) in μ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta \upharpoonright \mu}} \Leftrightarrow \eta(\pi_{\mu}(m, a_1, a_2, \ldots, a_n)) > 0.$$

The isomorphism relation

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $f,g \in \kappa^{\kappa}$ are \cong_T^{μ} equivalent if one of the following holds:

- $\blacktriangleright \ \mathcal{A}_{\eta \restriction \mu} \models T, \mathcal{A}_{\xi \restriction \mu} \models T, \mathcal{A}_{\eta \restriction \mu} \cong \mathcal{A}_{\xi \restriction \mu}$
- $\blacktriangleright \ \mathcal{A}_{\eta \upharpoonright \mu} \not\models T, \mathcal{A}_{\xi \upharpoonright \mu} \not\models T$

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is reducible to E_2 , if there is a function $f: \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T' \text{ iff } \cong_{T} \hookrightarrow_{C} \cong_{T'}$$

Theories

- Classifiable theories are divided into:
 - shallow,

$$I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|);$$

non-shallow,

$$I(T,\alpha)=2^{\alpha}.$$

► Non-classifiable theories

Question

Question: What can we say about the Borel-reducibility between those dividing lines?

Conjecture: If T is classifiable and T' is non-classifiable, then $T<^\kappa T'$.

Theorem (M.)

Let $\mathfrak{c}=2^\omega$. Suppose $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq\lambda=\lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then

$$T \leq^{\kappa} T'$$
 and $T' \nleq^{\kappa} T$.

ASTW7

Definition

We define the equivalence relation $=_{\gamma}^2 \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let $S = \{\alpha < \kappa \mid cf(\alpha) = \gamma\}$,

$$\eta = {}^2_{\alpha} \xi \iff \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S$$
 is non-stationary.

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)

Assume T is a classifiable theory and let

$$S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}$$
. If \diamondsuit_S holds, then $\cong_T \hookrightarrow_C =_{\gamma}^2$.

The idea

- Construct the reductions.
- Construct Ehrenfeucht-Mostowski models, such that

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Construct ordered trees, such that

$$f =_{\gamma}^{2} g \Leftrightarrow A_{f} \cong A_{g} \Leftrightarrow \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Ordered trees from the linear order

 \triangleright ω_1 -dense,

 \blacktriangleright (κ, ω_1) -nice, $(<\kappa)$ -stable,

 \triangleright κ -colorable.

Hyttinen - Tuuri's order

Definition (Hyttinen - Tuuri 1991)

Let \mathcal{R} be the set of functions $f:\omega\to\kappa$, for which $|\{n \in \omega \mid f(\alpha) \neq 0\}|$ is finite.

If $f, g \in \mathcal{R}$, then f < g if and only if f(n) < g(n), where n is the least number such that $f(n) \neq g(n)$.

Fact (Hyttinen-Tuuri 1991)

The linear order \mathcal{R} is (κ, ω) -nice and $(< \kappa)$ -stable.

ω_1 -dense

Let Q be a model of DLO of size 2^{ω} , that is ω_1 -dense.

Definition

Let $\kappa \times \mathcal{Q}$ be ordered by the lexicographic order, \mathcal{I}^0 be the set of functions $f: \omega_1 \to \kappa \times \mathcal{Q}$ such that $f(\alpha) = (f_1(\alpha), f_2(\alpha))$, for which $|\{\alpha \in \omega_1 \mid f_1(\alpha) \neq 0\}|$ is smaller than ω_1 . If $f, g \in \mathcal{I}^0$, then f < g if and only if $f(\alpha) < g(\alpha)$, where α is the least number such that $f(\alpha) \neq g(\alpha)$.

κ -colorable

Definition

Let I be a linear order of size κ . We say that I is κ -colorable if there is a function $F:I\to \kappa$ such that for all $B\subseteq I,\ |B|<\kappa$, $b\in I\backslash B$, and $p=tp_{bs}(b,B,I)$ such that the following hold: For all $\alpha\in\kappa$,

$$|\{a \in I \mid a \models p \& F(a) = \alpha\}| = \kappa.$$

The F_{ω}^{φ} isolation

Definition

Let $\varphi(x,y) := "y > x"$, we define F_{ω}^{φ} in the following way. Let $|B| < \kappa$ and $p \in S_{bs}(B)$, $(p, A) \in F_{\omega}^{\varphi}$ if and only if $A \subseteq B$, A is finite, and there is $a \in A$ such that

$$\{a > x, x = a\} \cap p \neq \emptyset \& a \models p \upharpoonright B \setminus \{a\}.$$

Definition

C is $(F_{\omega}^{\varphi}, \kappa)$ -saturated if for all $B \subseteq C$ of size smaller than κ , and $p \in S_{bs}(B)$, $(p, A) \in F_{\omega}^{\varphi}$ implies that p is realized in C.

Definition

A sequence $(A,(a_i,B_i)_{i<\alpha})$ is an F^{φ}_{ω} -construction over A if for all $i<\alpha$, $(tp_{bs}(a_i,A_i),B_i)\in F^{\varphi}_{\omega}$ where $A_i=A\cup\bigcup_{j< i}a_j$. C is F^{φ}_{ω} -constructible over A if there is an F^{φ}_{ω} -construction over A such that $C=A\cup\bigcup_{j<\alpha}a_j$.

Definition

C is $(F_{\omega}^{\varphi}, \kappa)$ -primary over A if it is F_{ω}^{φ} -constructible over A and $(F_{\omega}^{\varphi}, \kappa)$ -saturated.

Lemma (M.)

Let $\mathfrak{c}=2^\omega$. Suppose $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq\lambda=\lambda^{\omega_1}$. There is an $(F_\omega^\varphi,\kappa)$ -primary model over \mathcal{I}^0 and it is an ω_1 -dense, (κ,ω_1) -nice, $(<\kappa)$ -stable, and κ -colorable linear order.

Lemma (M.)

Let κ be strongly inaccessible, or $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq \lambda=\lambda^{<\omega_1}$. If T is a non-classifiable theory then

$$\cong_T^{\lambda} \hookrightarrow_C \text{ id } \hookrightarrow_C \cong_T$$
.

Classifiable non-shallow

Lemma (M.)

Suppose $\kappa=\lambda^+=2^\lambda$. The following reduction is strict. Let $2^\mathfrak{c} \leq \lambda = \lambda^{<\omega_1}$. If T_1 is a classifiable non-shallow theory and T_2 is a non-classifiable theory, then

$$\cong_{T_2}^{\lambda} \hookrightarrow_{\mathcal{C}} \cong_{T_1} \hookrightarrow_{\mathcal{C}} \cong_{T_2}.$$

Classifiable shallow

Lemma (M.)

Suppose $\kappa=\lambda^+=2^\lambda$. The following reductions are strict. Let $\kappa=\aleph_\gamma$ be such that $\beth_{\omega_1}(\mid\gamma\mid)\leq\kappa$. Suppose T_1 is a classifiable shallow theory, T_2 a classifiable non-shallow theory, and T_3 non-classifiable theory. Then

$$\cong_{T_1} \hookrightarrow_B \cong_{T_3}^{\lambda} \hookrightarrow_C \cong_{T_2}.$$

General reduction

Fact (Mangraviti-Motto Ros)

Let E_1 be a Borel equivalence relation with $\gamma \leq \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma \leq \theta$, then $E_1 \hookrightarrow_B E_2$.

Lemma (M.)

Suppose $\kappa > 2^\omega$ and T is a countable first-order theory in a countable vocabulary (not necessarily complete) such that \cong_T has $\varrho \leq \kappa$ equivalence classes. Then for all $\alpha < \kappa$

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} \alpha_{\varrho} \text{ and } \alpha_{\varrho} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}}.$$

Even more, if T is not categorical then $\cong_T \not\hookrightarrow_C \alpha_\varrho$.

$$\cong_T \hookrightarrow_C =^2_{\mu}, \ \kappa = \lambda^+$$

Theory	$\lambda = \lambda^{\gamma}$	\Diamond_{λ}	$Dl^*_{\mathcal{S}^\kappa_\gamma}(\Pi^1_1)$
Classifiable	$\omega \le \mu \le$	$\mu = \lambda$	$\mu = \gamma$
	γ		
Non-	Indep	Indep	$\mu = \gamma$
classifiable			

$$=^2_{\mu} \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}}, \ \kappa = \lambda^+$$

Theory	$\lambda = \lambda^{\gamma}$	$2^{\mathfrak{c}} \leq \lambda =$	$2^{\mathfrak{c}} \leq \lambda =$
		λ^{γ}	$\lambda^{<\lambda}$
			$\&\ \diamondsuit_{\lambda}$
Stable	$\mu = \omega$	$\mu = \omega$	$\mu = \omega$
Unsuper-			
stable			
Unstable	$\omega \le \mu \le$	$\omega \le \mu \le$	$\omega \le \mu \le$
	γ	γ	λ
Superstable	$\omega \leq \mu \leq$	$\omega \le \mu \le$	$\omega \le \mu \le$
with	γ	γ	λ
ОТОР			
Superstable	?	$\omega_1 \le \mu \le$	$\omega_1 \le \mu \le$
with DOP		γ	λ

Theorem (M.)

Let κ be inaccessible, or $\kappa=\lambda^+=2^\lambda$ and $2^{\mathfrak{c}}\leq \lambda=\lambda^{<\omega_1}$. There exists a $<\kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

- $ightharpoonup \cong_T \text{ is } \Delta^1_1(\kappa);$
- ightharpoonup $\cong_{\mathcal{T}}$ is $\Sigma^1_1(\kappa)$ -complete.

Thank you

Article at: https://arxiv.org/abs/2308.07510

