Superestabilidad

Miguel Moreno

5 de junio de 2010

Algunas definiciones y teoremas tomados de Essential Stability Theory, Steven Buechler y de Fundamentals of Stability Theory, John T. Baldwin, para la exposición final del curso Tópicos Avanzados en Lógica de la Universidad Nacional.

1. Superestabilidad

Definición 1.1 Una teoría T es superestable si, existe un cardinal λ_1 tal que, para todo $\lambda \geq \lambda_1$, T es λ -estable.

Definición 1.2 $\lambda(T)$ es el menor cardinal, si es que existe, en el cual T es λ -estable.

Definición 1.3 $\kappa(T)$ es el menor cardinal infinito tal que para cualquier sucesión $\{A_i: i<\kappa(T)\}$, con, si $i< j<\kappa(T)$ entonces $A_i\subset A_j$, y todo tipo $p\in\bigcup_{i<\kappa(T)}A_i$, entonces existe un j tal que $p|A_{j+1}$ no bifurca sobre A_j .

Definición 1.4 En una teoría estable, para todo tipo $p \in S(A)$ se define $mult(p) = |\{q \in S(\mathcal{C} : p \subset q, q \text{ no bifurca sobre A})\}|$. $\mu(T)$ es el menor cardinal, talque para todo tipo completo $p, \mu(T) \geq mult(p)$.

Lema 1.5 $\mu(T) \leq \lambda(T)$.

Lema 1.6 $\lambda(T) \leq 2^{\aleph_0}$

Prueba

Como ya se había visto, $|S(A)| \leq |A|^{|T|} = |A|^{\aleph_0}$, en particular $2^{\aleph_0} = (2^{\aleph_0})^{\aleph_0}$

Teorema 1.7 (Espectro de estabilidad) Si T es estable, T es λ -estable si y solo si $\lambda = \lambda(T) + \lambda^{<\kappa(T)}$.

La demostración de este teorema se base en los dos siguientes lemas.

Lema 1.8 Si $\lambda < \lambda^{<\kappa(T)}$, entonces T no es λ -estable.

Lema 1.9 Si T es estable y $\lambda \geq \lambda(T)$ y $\lambda = \lambda^{<\kappa(T)}$, entonces T es λ -estable. **Prueba**

Sea A un conjunto de cardinalidad λ , entonces para todo tipo $p \in S(A)$ es una extensión no bifurcante de p|B para algún $B \subset A$ de cardinalidad menor a $< \kappa(T)$. Entonces $|S(A)| \le$ numero de subconjuntos de A con cardinalidad menor a $\kappa(T)\times$ numero de tipos sobre un conjunto de cardinalidad menor a
$$\begin{split} \kappa(T) \times \mu(T) \\ |S(A)| &\leq \lambda^{<\kappa(T)} \times \lambda(T) \times \mu(T) = \lambda. \end{split}$$

Teorema 1.10 De las siguientes afirmaciones siempre se cumple una y solamente una.

- 1. T es λ -estable en todo λ .
- 2. T es λ -estable si y solo si $\lambda \geq 2^{\aleph_0}$.
- 3. T es λ -estable si y solo si $\lambda = \lambda^{\aleph_0}$.
- 4. T no es estable.

Prueba

Si $\lambda(T) = \aleph_0$, entonces T es estable en todo cardinal. Si $\lambda(T) > \aleph_0$ entonces existe un conjunto $|A|=\aleph_0$ con $|S(A)|>\aleph_0$, como $|S(A)|<2^{\aleph_0}$ implica $|S(A)|=\aleph_0$, entonces $|S(A)|=2^{\aleph_0}$, $\lambda(T)\geq 2^{\aleph_0}$ y por el lema 1.6 se tiene $\lambda(T)=2^{\aleph_0}$. Como $\kappa(T)=\aleph_0$ o $\kappa(T)=\aleph_1$ entonces por el teorema del espectro de estabilidad, $\lambda = 2^{\aleph_0} + \lambda^{<\aleph_0}$ o $\lambda = 2^{\aleph_0} + \lambda^{<\aleph_1}$, de la primera se tiene como solución $\lambda \geq 2^{\aleph_0}$ y en la segunda, la solución es λ^{\aleph_0} .

Teorema 1.11 Si T es estable y no es superestable, entonces si $\aleph_1 \leq \lambda < \lambda^{\omega}$, T no tiene un modelo saturado de tamaño λ .

Teorema 1.12 Las siguientes afirmaciones son equivalentes.

- 1. T es superestable.
- 2. $\kappa(T) = \omega$.
- 3. Existe un cardinal Λ talque para todo $\delta > \Lambda$ y toda sucesión $\{M_i : i < \delta\}$ creciente de modelos saturados, entonces $\bigcup_{i<\delta} M_i$ es saturado.

Prueba

- $(1) \rightarrow (2)$ Sea λ un cardinal con cofinalidad ω y con $\lambda > \lambda_1.$ Al ser T superestable, T es λ -estable, por el teorema del espectro de estabilidad,
- $\lambda = \lambda(T) + \lambda^{\kappa(T)}$, como $\lambda_1 \geq \lambda(T)$, entonces $\lambda = \lambda^{<\kappa(T)} < \lambda^{cf(\lambda)}$, $\kappa(T) \leq \omega$, $\kappa(T) = \omega$.
- (2) \rightarrow (1) Si $\lambda > \lambda(T)$, $\lambda = \lambda^{<\omega}$, de donde $\lambda = \lambda(T) + \lambda^{\kappa(T)}$, por el lema 1.9 T es λ -estable y T es superestable.
- $(3) \rightarrow (1)$ Si T no es superestable, existe un cardinal $\lambda > \lambda(T)$ tal que T no es λ -estable, por el teorema 1.10, $\aleph_0 < \lambda(T) < \lambda < \lambda^{\omega}$, por el teorema 1.11 T no tiene modelos saturados.

 $(1) \to (3)$ Como T es superestable, entonces para todo $\delta > \lambda(T)$ y toda sucesión $\{M_i\}_{i < \delta}$ de modelos saturados, siendo M la unión de la sucesión; sea $A < |M| = \lambda$ y $p \in S(A)$, si λ es regular entonces existe un i tal que $A \subset M_i$, por lo que $p \in S(A)$, existe una realización en M_i , M es saturado; en adelante se trabajara con λ singular, sea $r \in S(M)$ una extensión no bifucante de p, por existencia en simples, existe un conjunto $A_0 \subset M_0$ finito, tal que r no bifurca sobre A_0 ; al ser T superestable entonces $\kappa(T) = \omega$, por lo que existe el conjunto $E = \{e_i : i < \lambda\}$ tal que $e_i \in M_{i+1}$ y satisface $r|M_i$. Se elije $E_0 \subset E$ tal que $t(A, E \cup M_0)$ no bifurca sobre $E_0 \cup M_0$, como $|E_0 \cup M_0| \le \kappa(T) + |A|$, $E - E_0$ es distinto de vacío, existe un elemento e en $E - E_0$ que cumple por simetría, $t(e, E_0 \cup A \cup M_0)$ no bifurca sobre $E_0 \cup M_0$, de igual forma $t(e, E_0 \cup M_0)$ no bifurca sobre M_0 , por transitividad, $t(e, E_0 \cup A \cup M_0)$ no bifurca sobre M_0 , pero $r|M_0$ es estacionario, por lo que e realiza a e0. e1 estaturado.

Existe una cuarta equivalencia la cual es, T es superestable si existe un modelo limite de cardinalidad mayor que $|T|^+$, y este en único, para esta equivalencia hay que definir el modelo limite a modo tal que se pueda entender la demostración, a diferencia de el teorema 1.12 la demostración de una de las direcciones esta equivalencia no se usa la definición de teoría superestable si no la equivalencia 3) del teorema 1.12