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Abstract

The purpose of this work was to, uinderstand the stationary tower forcing
(IPx), introduced by W. Hugh Woodin, and the possible suborders (mainly
the towers Q2,) of P, that satisfy the basic properties of P¢,)like projec-
tion, lifting and normality. Another aim was to study hew-large cardinal
properties of x influence the forcing with these orders, and finallysto study

the applications of these forcings.

We defined the operators projection (Sx) 'and lifting. (S ) for stationary sets
S, and the stationary tower as the partial orderiwith conditions in V; that
are stationary in the sense of géneralized stationarity. The(partial order is
given by the lifting operatof The tower @, is the stuborder of P, where
the conditions are only the substes-of S. In most-applications S = P, (V;)

for some regular A < 6.

The results of the study show thatif @2, is closed under projection and
lifting, then Q2 has, with slight differences almost all the properties of IP .
we present several important applications of these forcings. The first kind
is absolutness results for set forcings from a proper class of woodin cardi-
nals. Another application characterices forcing axioms by embedding into a

stationary tower.
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Chapter 1

Introduction

“ You could think ('m)wrong, but that’s no reason to
stop thinking.

- Gregory House %

The stationary tower forcing is a method invented by Wi, Hugh Woodin mo-
tivated by the work of Foreman, Magidor and Shelah [FMS88]. Tt is used
most of the times to prove absoluteness results, other applications include

characterization of the forcing axioms and derived models.

One of the first results proved by.Woodin using the stationary tower was
the ¥2-absolutness theorem in'1985.

In 1970 Solovay proved the classical result: If « is anyinaccessible cardinal and
G is a V-generic contained in coH{w,< «). Then in V|G|, every set of reals
from L(R) is Lebesgue measurable, has the Baive property and has the perfect set
property [Sol70]. Motivated by the, stationary tower and [FMS88], Shelah
and Woodin showed that the existence of a supercompact cardinal implies
that every set of reals from L(R) is Lebesgue measurable and has the Baire
property [SW90]. Later, using the stationary tower Woodin proved the same
result assuming the existance of a Woodin cardinal limit of woodin cardinals

instead of the existance of a supercompact cardinal.



1. INTRODUCTION

Using the stationary tower, Woodin also/proved the'so)called derived model
theorem.

The stationary tower forcing is-a very uséful and powerful method. This
is due to the different kihds-of generie, elementary embeddings that can
be obtained using it. “In the following chaptets; the reader will be guided
through the main results, the definitions and-the different constructions of
the stationary tower in order to understand the applications of the method

presented in the last.chapter.

The definition of a statienary set over a set X is given using closed and
unbounded sets of X.\We will work with two definitions of closed and un-
bounded sets. In order to show that there is no mistake or ambiguity on
the definition of a stationary set, the first step iscto, study the relations be-
tween these different definitions and show that the definition-of a stationary
set does not depend on the definition of a closed and unbounded set. This
makes the argument on some proofs.easier, choosing the appropiate defini-
tion. But the definition of a stationary set still depends on X, in order to
find a relation between the stationary sets over X andt‘the stationary sets
over Y, when X is a subset of Y, we define the prejection and lifting opera-
tors. These two operators have a-lot of nice properties that make the work

with stationary sets easier.

Now that we have tools-to work“with stationary sets we can define the sta-
tionary tower as the set with all the elements of Vj that are stationary, and
the order given by lifting(a- > b, if the projection of b to Ua is a subset of
a). At this moment-every property of the stationary tower will depend on
the properties of lifting and projection. A way to obtain results that not only
works for the stationary tower is restricting the stationary tower to subor-
ders with equivalent operators for projection and lifting. These suborders

are the towers Q2, that are defined using a stationary set S for everyone.



The tower Q2 is the suborder of P, where the)conditiohs™are only the
subsets of S, the the properties of Q2, depend exclusively,on the stationary
set S (Q2, is closed under projection ifand only if forievery subset'Y of Vi,
the restriction of S to Y coincides with”Sy). For every generic\G and every
set X we construct an ultrafiltet\lx, given.a family of ultrapowers, this fam-
ily of ultrapowers has a direct limit, the generic ultrapower (M, E) and an
elementary embedding j associated, to it, this one is the generic elementary
embedding and it is the embedding that is used in all the applications. As
can be expected, some properties of j.depend on S, (wWhen S is of the form

Pr (Vi) the image of A is at least ).

Even when S is of the form P, (V) there are still some general properties
vary from one tower to another one. Some of these properties can be studied
through the properties of x (if x is a limit of completely Jénsson cardinals
then j(A) = x). Another important property of M that has not been study
at this point is the wellfoundedness of M, to.study this we introduce the
definition of a semi-proper set. This definition’is the main‘idea behind the
study of the wellfoundedness of M but also it is very tsefull at the moment

we want to use the stationary tower forcing method.

At this point the reader should be acquainted withihe stationary tower forc-
ing and have the background to understand the classical applications. We
present Woodin proof of the abselutness of the theory of the Chang model
L(Ord®) under all set forcings from aproper class of Woodin cardinals. To
prove this we use symmetric extensions and the tower Q%, when S is the
set Py, (Vi), this tower has nice-properties, it makes every element of Vy
countable and if G is a Q% -generic then G N Q% is a Q% ;-generic if § is a
Woodin cardinal smaller than x. As an application we prove that every set
of reals from L(R) is Lebesgue measurable, has the Baire property and has

the perfect set property if there exists a Woodin cardinal limit of Woodin
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cardinals.

We also prove X2-absolutness for forcing with.the coutable stationary tower
Q. over models of CH.

Another application showh here is the relation between the stationary tow-
ers and the forcing axigms. The forcing axiomFA,(IP) is the statement that
for all sequence (Dp)p<, of predense setsythere is a filter that intersects
every set of the collection, For example Martin maximum is FA,, (PP) for
all stationary set preserving forcing IP. This application requires knowing
the critical point of the generic 'émbedding, this can be done by ensuring
that {z € Py(p) : zNpeu} € G. Assuming that there is a proper class
of Woodin cardinals, we present the proof that the forcing axiom FA,(IP)
holds if and only if IP"completely embeds into the stationary tower Q2 ; for
S =P,(Vs) and A = a™ below some condition.

This has applications in Viale’s recent work [Via]'for proving absoluteness
of the Il,-theory of the H,,, under stationary set preserving forcings which

presented a version of Martin’s Maximum.

The books [Lar04] and [Woo99]"are good references for, further properties

and applications of the stationary tower.

None of the uncredited results ‘presented in‘the preliminaries is due to the
author, these results can be found in beeks’of set theory, [Jec03], [Kan03] or
in [Kun11]. The uncredited results-presented in the chapters 3, 4 and 5 are

due to W.H. Woodin:



Chapter 2

Preliminaries

“ The more I think about language, the more it amazes
me that people ever understand each other at all.

- Kurt Godel %

2.1 Clubs and stationary sets

There are different notions of closed and unbegunded sets (clubs). The aim of
this section is to show these different notions and the relation between them.
Due to the lemma 2.8 the definition of a stationary set does not depend on
the definition of clubs. This brings\flexibility, in the arguments of the proofs.
The next definition is for clubs.in P (X) and is the one-that we are going to

use in the following chapters.

Definition 2.1. For a set X #.Q,we say that C. C P(X) is a club in P(X), if
there exists F : [X|<“ — X suchthat C ={Z°C X : F[[Z]~“] C Z}.
Lets denote by Cy the club associatedo-the function f.

Definition 2.2. Aset S C P(X) is stationary in P(X), if S intersects all the clubs
of P(X).

If S is stationary in P(X) then US = X. To check this take x € X, define
F:[X]*¥ = X, F(Z) = x,then x € J(CFNS).
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For every set X # @, fix an element x in X, the set S*= {X\{x}, {x}} is not
stationary but US = X.
The notion of closed and unbounded set iftan ordinalis"more natural than

the previous one.

Definition 2.3. Let xbe a'requlardincountable cardinal. A set C C «x is a clubin k
if for every limit ordinal & < x sup(C Na) =w implies « € C and for every & < x
there exists B € C such that &>< p.

These clubs have a property withsfunctions from « to x that looks similar to

the definition 1.1.
Lemma 2.4. Let C be'a ehub in x, then there exists a function f : x — « such that
{v<x:Va<q, fla) <7} C€

Proof. Let C be a club in k. Denote by C’ theset of limit points of C, C' is a
clubin k. Let f : x — «, f(a) = min(C\(#+1)), and
de ={y <x:Va <7, f(a) <7}

Claim: df = C’

Proof of the claim: Assume there exists y € d f\C’ »then there exists a1, ar €
C such that a1 < <y and Cr(az\a1) £ {¥}. Since Va < 7 implies
f(a) < v we gety <min(C\a; +1) = f(ap) < 7 a contradiction, we con-
clude df C C'.

Let v € C" and a <_7 then there éxists 1, B2 € C such thata < B < B2 <y
so f(a) = min(C\a + 1) < Ba <, hence we conclude C' C dy. O

This notion of clubs in ordinals can be generalize to clubs in Py(X) in a

natural way as follows.

Definition 2.5. Let « be a reqular uncountable cardinal. Let X be a set of cardinal-

ity at least k. A set C C Py(X) is a club in Py(X) if:
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L. For every Z € Py(X) exists Z' € C such that Z &.7".

II. For every chain xo C x1 C ---, of length a < x,"with x, €°C, for every

v < atheset |J xyisinC.
yu

On the other hand the condition1I. is equivalent to alcendition on directed
sets.

A set Y is a directed set if for every x,y in Y there exists z € Y such that
x Uy C z. We say that a set A-is.closed for directed sets up to p if it satisfies
the following condition, II". For everyzdirected set {z, : v < u} C A we

have (J z, € A.
T

Lemma 2.6. A set C C Py(X)-satisfies II if and only if it satisfies II" for every

p< K

Proof. <: It is clear that every chain is a directed set.

= Proceed by induction on u. Let Y be a directed’set, Y = {y. &< p} and
assume C is closed for directed sets up to A, for every Ad< . Let Y, C Y
be the smallest set such that y, € Yu, |J ¥3€'Y, and is a directed. set) Then
xa:UYaECandxﬁCxaforﬁ<uc,ﬂs<gUY:“L<Jyxa€C. O

It is easy to see that every club‘in P (X) is_.unbounded asin’I and closed as
in II but has elements of cardinality | X/[:; The following lemma is the version

of the lemma 2.4 for clubs in P, (X).

Lemma 2.7. For every club C.in-Pyx(X) there exists a function

£ [X]SY — Pe(X) such that {Z € P(X) = Va € [Z]<¥ f(a) CZ} CC.
Proof. Let us construct f in an inductive way.

e (V) =0Q.

e for every a € [X]""! choose f(a) such that:

1. b € [a]* f(b) C f(a).
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This can be done because o' <b€L[J] f (b)) € Pi(X) and C satisfies I.
i
Claim: If Z € Py (X) such that Va € [Z]S¥, f(a) C Z, then

Z=U{f(a):a e [Z]~“Pand {f(a)+ac [Z]<“} is a directed subset of C.
With this claim and the lemma'2:6, we get Z € C and we are done.

Proof of the claim: D: It is‘clear from the way we chose Z.

C: Leta € Z then by 2. {a} C f({a}).

Directed subset: By:3./{f(a) : a € [Z]<“} is a subset of C. Given

a1,ay € [Z]<¢ there exist n and b such that b € [Z]" and a;,a; C b, by 1.

f(a1), f(a2) C f(b). 0

Example 2.1. For « a reqular uncountable.cardinal. The Set {Vi} is not a club in
P(Vy), otherwise there exists F : [Vi]|3“.—"Vi, Cp={ Vi } and the closure of @
under F is { Vi } but cf (k) > w.

Some results are easier toprove using tuples than finite subsets, let us define
a club of tuples in P (X, for | X| >.w, as the set'of,closure point of a function.
For a given a function f : X<¢ ,—»X the associated club is

Cr={aC X: fla~“] Cak

Notice that for every«function F :{X|~“ — X we can define f : X<“ — X as

f(Z) = F(Z) and we-get C; = CF:

Lemma 2.8. For every function f : X<“ — X there exists a function F : [X]<“ —

X with Cg C Cf.

Proof. First let us prove it for the case where X is an ordinal of the form
o+ w.
Let f be a function f : X<“ — X. Construct F as follows F(®) = §,
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F({a}) =a+1foralla > 4.

For any a € [X]<“ let e, denote the order of .

Lett,, be t,, : k,, — n, be a numeration‘'with k,,, < ny,;=such that forall k € w
and t : k — w there exists m € w with'k' < n,,, rang(f) < ny and t,, = t.
Define F(a) = f(eq o t),) for a’¢ {{a}, Of;oa > 0. Suppose Z € Cf, note
thatw € Z forall 6 < a < §Pw. Let (ag, ., a1 ) &Z~Y, {ao,...,ar_1} =
{bo,..., by}, in order, t : k — [ such that a; = byjy for all i < k. Pick
m such that n,, > I, t = ty,and bjyy =8 +1,bp,1 =8 +2,...,b,, 1 =
8+ (ny—1)— (I+1) where¥’ > 6 suchthat &' > b;.

Then F({b; : i < nn}) = f(epicngotm) = f((ao, ..., ax-1)). Since & >4,
ae€Z A{bii<ng} CZ f({bini<nn})€Z.

In the general case of ordinals, X = 7 and f : X~“ — X. Let f' :
v+ w=Y — v + w be the function defined as f'(a) = f({x.€ aM™}), clearly
for every z € Cp we have zN+y € C;. By the previous case there-exists
F': [y + w]<“ — 9+ w such that Cp C Cp, sinceang(f’) Cq/we can de-
fine F : [y|<“ — 7 as the function F(x) = F'(x),and we will,obtain Cr C Cy.
In the general case f induces a function fig; »'|X|~“ <|X]|, Fx the corre-
sponding function Fyx : [[X[]=“ — [X| and let ¢ be a'bijection/g's X — |X|,
define F(Z) = g~ (Fx|(g[Z])). O

2.2 Properties of stationary’sets and. clubs

In this section we will prove some basic properties of the stationary sets and
some others of the club that are fundamental for proofs later.
The clubs described by the next lemma will be very useful when we prove

the properties of the stationary(tower.

Lemma 2.9. In a countable language:

I. For countably many relations R; and functions f; on X, there is a skolem function

F: X“ — X such that M < X for all M € Cr.
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IL. If F : X<% — X is given, then forvevery (M,G) < (X, F) M is closed un-
der F.

Proof. 1. Let {¢, : n &w} be an entumeration of,all formulas, k, denote the
number of free variables of . Let fy, be aiskolem function for
Fyu(x1, ..., xk,-1,y). Cheose xg € X. Define F(ay, ..., a,) = fy,(a1,...,ak,1)
if k, < n and x( in othéer case.

Then for M € Cf, ¥y, a1, ..., ar, 1€ M we have

F(ay, ..., ax,, 8k 41, ---,n) € M. If k, < n then fy, (ai,...,ar,) € M, so for
kn <n+1, Mis closed for fy,.

It is enough to show-that there exists an enumeration {¢, : n € w} such
that k, < n+ 1. Let A, be the set of all the formulas,with n free variables,

and {¢, : m € w} an enumeration of A,, then'the usual enumeration of

IN x IN works.
IL. X is closed under F so M is closed under G, sineeé (M, G) < (X, F), then
M is closed under F. O]

From now on a set a is stationary if it isstationary in“P(Ua), unless specified
differently. Now we avill"define the(projection and the lifting, these two

operations will lead«iis to the eonstructionof stationary towers.

Definition 2.10. Let O AX C Y.

e Projection
For S C P(Y), we define the projection of S to X as
Sx ={ZNXrZeS}.

o Lifting
For S C P(X), we define the lifting of S to Y as
SY={ZeP(Y):ZNnX e S}.

10
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Remark. For every @ # X C Y we have the following propefties of lifting

and projection.
° (SY)X =S.

e SC (SX)Y.

51CSy implies (Sl)X - (Sz)x

S1 C S, implies (S1)Y C.(5y)Y.

(51N S2)x € (S1)x N (S2)x-

(51N S)Y = (51)Y N (S L.

(S1US2)x = (S1)x U (S2)x-

(51 U Sz)y = (Sl)Y U (SQ)Y.

(P(X)\S)" =P(Y)\S".
e (So)x C Sy if and only if Sy C (S1)Y.

Theorem 2.11 (Menas). For every @ #X C Y we have:
1. If S is a stationary set in P(Y.) then Sx is‘stationary.

2. S is a stationary set in P(X) if andenly if SY is Stationary.

Proof. 1. Let f: [X]=“ — X, define
F:[Y]™™ =Y, F{yi"0yn)) =Ly, ..., yn} N X). So Z C Yis
closed under F if and only if<Z vX is closed under f, we get Cy =
(Cr)x by the previous rematrkwe get (Cf)y D Cp, since CFNS # @.

2. «<: If SY is stationary then by 1. S = (SY)y is stationary.
=:LetF: Y=Y = Y, givena Z C Y define Zyg = Z, Z; ;1 = F[Z~“|U Z
and Hp(Z) = |J Z;. For the language £ = {g;: i € w} U{x; :i € w}

1ew
where g; is an i-ary function and {x;};c., are variables. Let {ty }mecw

11
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12

be an enumeration of all the terms that are not*variables, such that all
terms appear infinitely often: Fix xo € Hr, X then define

g: XY — Xas g(ao, ... am) = tu(a;\x, F\gi) if'this belongs to X, xo
in other case. So g[Z<%}'= Hr(Z)Q/X. Assume\Z € Cy, HF(Z)NX C
Z, since Zy = Zxthen Hp(Z)Q X = Z and Hp(Z) € Cr we conclude
Cy € (Cr)x. Since S is stationary, CpN'S # @ let Z € CoN S, then
Z € (Cr)x N S so thére exists Z’' € Cr such that Z=Z'NXso Z' € SY,
CrNSY #£@. O

Note that for every function F ¥ X<“ — X and Z = {@}, Hp(Z) is countable,

so Pp(X) is stationary for w < A.

Remark. There exists a no stationary set S C P(¥9), such that Sx is sta-
tionary. Let X = {x1,x2}, S = {{x1}, {x2}},Clearly S is_not stationary in
P(X), for the function F(x) = x1 for x e{{x2},@} and)F(x) = x; in the
other case, CF NS = @; but Sy, , is stationary in P ({%1}).

The following lemma will be used in the follewing chapter as the normality

lemma.

Lemma 2.12 (Jech). Let X #.Qand S C R(X)stationary. Suppose F : S — X
is a regresive function, i.e. F(Z) € Z for all,Z € S. Then there exists a € X such
that {Z € S : F(Z) =<a.is stationaty.

Proof. Assume that for each a € X there exists F, : X<“ — X such that
Cr,N{Z € S:F(Z)="ua}y= . Define G : X~ — X as

G(a,ag,...ay) = Fy(ao, ..., a,).

LetZeCsNSand x € Z, (ag,...,a,) € Z<“ then

Fi(ao,...,an) = G(x,a9,...,a,) € Z,thus Z € Cg, so F(Z) # x forall x € Z,
F(Z) ¢ Z a contradiction. O
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To conclude this section we will show what it"is known as<the club filter
that is really useful at the moment you work with clubs., This filter is really

different when the clubs are in P, (X) than when thé-elubs are in/P(X).

Lemma 2.13 (Jech). If C and D are'clubs in Py (X)pthen C 2D/is'a club. All the
clubs in Py (X) generate a k-cotiiplete filter.

Proof. For the first part.

II: Let C and D be clubs. Every chain x; € xp C - .- with length v < x in
CND is achainin C and D so the limit point L<J Xy is in C and D so it is in
CnD. o

I: Let x € Pr(X), choose xy &€'C such that x C xg, xp; € C and xp;_1 € D,
i > 0 such that x;_; C x;. *This chain has the same limit as the chains
< X >i>0 and < xp;_1 >0, we conclude x C U xieCnd.

For the k-completeness we proceed by inducti(;relf}for the successor step this
is the same proof as in the beginning of this lemma;let v < « be a limit ordi-
nal, it is enough to prove that C = (| C,, where'<’'Cy >, IS a decreasing
chain, is a club. "

II: Let x; € x1 C - -- be a chain of length\a < 7 in C,*for every & < B <
this chain is a chain in Cg then thelimit is in Cg.

I: Given x € Py(X) let xg €.Cp such that-2.C xy and Xy € C, such that
U xp C x4, for every a the chain < xg >,<p<, is an‘increasing chain in C,,
ESKU xg € Cy then |J xp € C. O

B<a B<a

Lemma 2.14. If Cs and Cg aréclubs in P (X)), then C¢ N Cg is a club in P(X),.

Proof. Let f : X% — X and g »X=“ — X be the associated function to
the clubs. Define F : X~“ —~X.as F(ag,ay,...,a,) = f(ao,a1,...ax) when
n =2k and F(ag,ay,...,a,) = g(ao,a1,...a;) when n =2k + 1.

Assume Z € CfNCyand a = (ag,a1,...,a,) € Z<%, then F(a) = f(ag,a1,...ax)
or F(a) = g(ag,a1,...ax), in both cases F(a) € Z and Cf N Cy C Cr. Assume

Z € Cranda = (ap,ay,...,a,) € Z<“, then f(a) = F(ao,a1,...,an,0y+1, - .- a21),

13
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where a,,11,...a, € Z, then Z € Cy, in the same way)we prove Z € C,, we

conclude Cr = C; N Cs. O

Lemma 2.15 (Foreman, Magidor, Shelah). For |X| > w, the collection of clubs

in P(X) generates a countably complete'filter.

Proof. Let < f; >jc,'a set of functions fromX=“ to X. Letg:w - w X w a
surjective function such that g>(n) < n.

Define F : X<“ — X as F(ao, a1, . 4y) = fgl(n)(ao,al,...,agz(n)).

Let Z € N Cy and a= (ao, ays. :7an) € Z=¢, then F(a) = fq,(n)(a0,a1, .., dg,(n))

1ew

so F(a) € Z, therefore N Cs, € Cr. Let Z € Cr and

iew
a = (ap,m,...,a,) €.Z5%, then for every i € w there exists k; such that
g1(k;) = iand g»(k;)*= n, and computing f;(a) = F(ag,a1,...,an,an41,. .- ax,),

where a,,11,...a;, € Z, then for every i € w, Z € Cf,,, Cr = N sz" O

icw
At this moment we have two different kinds oficlubs, definition 2.1 and 2.5,
as we said, any club C in P(Vj) has Vi asian element'so C is not a club in
Pi(Vi). These two kinds of clubs are'related when-X is a regular uncount-
able cardinal A and we restrict the definition 2.1 as, the clubs € C P, (A) such
that there exists F : [A\|<% =% Aywith C = {Z C X : E[[Z}"¥] C ZA|Z| < «},
we call them strong clubs.-The following lemma due to Foreman, Magidor,

Shelah shows this relation and it can be found“in [FMS88].

Lemma 2.16 (Foreman, Magidor, Shelah). Let x < A be reqular cardinals, Fs(A, k)
the filter of strong clubs‘in/Pc(A) anud F (A, «) the filter of clubs in Py(A). Then
F (A, x) is the filter generated by

FsMmr)U{{Z € Pc(A):ZNk € x}}

Proof. Let C C Px(A) be aclub, L =< H(A),¢,C, A, {x} >, and
{gi }icw Skolem functions for £ closed under composition. Let {f;}ic., their
restriction to A in domain and range. For any set y € Py(A) that is closed

under each f; and satisfies y N« € «, exists N < L such that NN A = y.

14
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For a € [y]<“ define M, as follows, for |a| ="Llet M, € ‘N C be such
that « C M,, assume M, is define for every (¢} < n and let p € [y}~“ be a

set with n+1 elements, since N ="C is‘a«club” and () M,) UBEN there
aCp

exists Mg € NN C such that ( |J M,)Yp C M.
xCp

For every a, since M, € C NNy then N |=M,| < x."Being h : v — M,

a surjective function in N, where v = }M,| in N;ésince N Nk € k, we get

v € N and for every x € M, there.exists B € Nisuch that f(B) = x € N.

Therefore M, € N.

Since {M, : « € [y]<“} is a directed sét and y = |J M,, we conclude y € C.

By lemma 2.15 exists a function<f~such that C; = NCy, therefore {y €
Pe(A) iy e CrAyNk e x} O =

If in the definition 2.5 (I) we allow |Z| = «, then X is an élement of any
club of this kind, and {X} is a club, and F(x,x) would\be the principal
filter generated by {X} and example 2.1 shows that-this new kind ofclub is

different from the one in definition 2.1.

15






Chapter 3

The stationary towers

“ The mind, the héad s the territory where nothing
should be banned.

- Los Rodriguez, Aqui No Podemos Hacerlo 2

3.1 The stationary tower and its restrictions

For « a strongly inaccessible cardinal, the statipnary towerinV is denoted
by P« and is the set whose elements are“all the a € Vy; that are stationary,
and we say 4 > b if Ua C Ub and forwevery z € b, z( (Ua) €la, (@ C ah)y,
note that two conditions a and b (are compatible if a(V?)Y (W8, A7 p(LUDU(LE) jg
stationary in (Ua) U (Ub).

There are many different ways to restfict the stationary tower to a suborder,

the following one is due to W. HughyWoodin/it can be found in [Lar(04].

Definition 3.1 (P$,). For « @ strongly inaecessible cardinal and S C Py(Vy) a
stationary set, for every A < x let Sy ={XN V) : X € S} and

IPS<K = {a Py :aC Ssup((Uu)ﬁK)}
with the induced order.

The following remark motivates the definition of the towers Q2,, and will

be the suborders with in we are going to work, as we will see, sometimes

17
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P, is dense in Q2, and the stationafy tower can‘be seen as a tower Q%

with the precise set S.

Remark. The usual projection’doesn’t hold for P%,, when S = P, (V).
Take b = Py, (Vy) N Vy'for A an uncountable dimit cardinal. Thus if x € b
we get x € V), x € Py, (Vi)and sup((Ub)Q«x) = A, Sy ={ZNV, : Z €
Pu, (Vi)}, so b € P2,. Now let X = {w}, then by = {ZNX:Z € b} =
{{w}, @}, sup((Ubx)Nx) = w. Since {w} ¢ V,, we conclude {w} ¢ S, and
bx ¢ P3,.

Even for Ug, X transitive.sets, the projection still doesn’t hold. Take
b="Puy,(Vi)NVyandX = w+1, bx = P(X) and {w} & Se.

In PS, we can project to X = V, for A a limit cardinal. Given b € P$,
and 0 = sup((Ub) Nk), then for A > 6 we have by'= b and for 6 > A,
bx is stationary and Ubx = X so sup((Ubx) k) = sup(V)yNk) = A,
Sy ={ZNV,:Z e S} Since b € P and by = {ZQV, : Z € b}, this
implies Z € b then there exists Z' € S such that Z—="2' NV, so bx C S,.

Definition 3.2 (Q2,). For « a strongly inaccessible’ cardingl'afid S C Py (Vy) a
stationary set, let

Q2 = {a €Pxy:a C S}

with the induced order.

Remark. For S = P, (V) 'we get Q5<K = P«. By definition QS<K C P- and
by the transitivity of Vg P« C Q5<K.

The last restriction is givenrby Matteo Viale can be found in [Via].

Definition 3.3 (R}){ For « a strongly inaccessible cardinal and A a regular cardi-

nal, let Ry ={X: XNA€AN|X| < A}and
R} ={a€P.:aC Ry}

with the induced order.



3.1. The stationary tower and-its restrictions

Before starting with the properties of the Q% towers let's make an observa-

tion about the stationary tower in V.
Lemma 3.4. For every S C Py (V) stationary set, P, # P2,.

Proof. 1t is enough to prove this for'S = P, (V). Let a ={{w}}, a is station-
ary in P(Ua) and (UaNk) =Jw} and S = {X N V4 X € P(Vk)}. Since
w ¢ V, then {w} ¢ S, a € Se. O

In the definition of lifting for stationary sets we asked the sets a and Y, to
satisfy the property Ua C Y to be able'to define a¥. But if Y C Ua we
can define a¥ = {Z C Y : Zn{Ua) € a}, that turns to be a restriction
a¥ ={ZCY:Z¢ca}.

Now we define the notion of projection and lifting in Q2 ,, thisfiotion will let
us have a nice tower with in we can work easily most of thetimes, in partic-

ular when S = Py, (Vi) that is an important case because of its applications.

Definition 3.5. Given S C Py (Vi) a stationary set,

e Projection for Q3.

For every a € Q% and Y C Ua, define
ay ={ZAY,Z € a}
e Lifting for Q3.
For every a € Q% and Ua C Y, defirie
a¥ ={ZeSY:Zn(Ua) €a}
Note that the lifting for Q% in the case S = Py(Vj), is the same lifting as in
the definition 2.10. And that the lifting in Q2 is a¥ = a¥ N SY where, the

lifting of the left side is in QS<K and the right side is in IP .

We will say that Q2 is closed under projection (lifting) if for any a € Q3
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and Y C Ua (Ua C Y) we have ay € Q% (a¥ € Q%)) As it was mentioned
the towers Q2 are not always closedrunder projection, but the theorem 3.6

characterized when the toweris.closed under projection.

Theorem 3.6. Let S C Pu(Vi) be a stationary set, thew QS is closed under pro-
jection if and only if every subset X_C Vy satisfiés-Sy = SY.

Proof. <. Leta € Q2,, fot.every Y C Uawe have ay = {ZNY : Z € a}. So
ay CSy =S5 CS,ac0?,.

=: Assume there exists X C V¥, stich that Sy # SX. Let x € Sx\S then

x = ZNX for some Z &.S;let a = {Z}, clearly a € Q2, and since Q%, is
closed under projection, ax € Q2,, this means {x} € Q%,, x € S contradict-

ing the way we chose x. O

For lifting again not every tower Q2, is closed under lifting but some prop-
erties of S ensure that the respective tower will'be closed-under lifting.

Note that if for every Y C V, SY contains axclub in P(Y), then QS<K is closed
under lifting. The lemma 3.7 gives‘us-a sufficiént condition for Q% to be

closed under lifting.

Lemma 3.7. Let S C Py (Vi) be a stationary set such-that for every Y C Vi and
F: [Y]<% — Y, S satisfy’ Hp(Z) €=SY for every Z' € SY. Then Q3 is closed
under lifting.

Proof. Leta € Q3,, Us'Q\Y and F +{¥]<“ — Y, by the proof of the theorem
2.11, there exists ¢ *[Un]~“ — Wa.stch that C; C (Cr)u, then Cg Na # @, let
ZeCiNaC SY, since Ua' CyY then Hp(Z) € SY. But here exists Z' € Cr
such that Z' N (Ua) = Z'and Hp(Z) C Z’,so Hr(Z) N (Ua) = Z, we conclude
Hp(Z) € a”. O

Example 3.1. Let S = Py (Vi) \Puwy (Vi), a = {w1} € Q5 and
aw = {w} & Q5. S is stationary because for every function F : [V]|<¢ — V,

w < Hp(wy) < «. Foreacha € Q% | Ua| > w and for every Ua C Y we have
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Vx €a’ w; Cx, x| >w,s0a’ €Q3,.
QS is closed under lifting but not under projection, notice that S,, # S“-and that

S% doesn’t contain a club.

Example 3.2. Let x9,x1 € wy\w, X0.7 X1.
S = {w, w U {xo}, wi\{xg b} W (P (Vi) \Pew;, (Vi)

a={w}eQs,, a = {w,wU{xg},wr\{x0}}, Ua“ = w;.
Let F : wy® — wy be the function. defined as F(Z) = xo for Z # xo and F(xg) =
x1. We get Fl(w U {x0})=“] € w U {xghsoa®1 N Cr = @.

Example 3.3. The countable towér i3 denote by Q and it is the tower QS when
S = Pu, (V). Note that Sx ="P.,, (X) = SX for every X C Vi so Q< is closed
under projection and lifting. This holds every time that S = P, (Vi ){for w < A.

Example 3.4. Let A be a cardinal such that w < A < x, S<= P (Vy).UP, (V)
and a = P(V))\Pw(Vy). Clearly a € Q3, and Sy =\S* for everipY~C Vi, but
ay = a for every A < 6, then a) is not stationdgry,in Vs. Q4 is closed under

projection but not under lifting.

Lemma 3.8 (Normality in Q2,). Let S.C Py (V) bea stationary.sét, b € Q3
and F : b — Ub a regressive function, i.e. F(Z) & Z. Therithere exists x € Ub
such that {Z € b: F(Z) = x} € Q%,.

Proof. By the normality lemma there'exists x @ Ubsuch that {Z € b: F(Z) =
x} €Porand {Z €b:F(Z) =%} Cb 'S, Weconclude {Z €b: F(Z) =
x} e Q.. O

Corollary 3.9. Let S C Py (Vy) be stationary, such that Q3 is closed under pro-

jection and lifting, then P2 is'dense in Q5.

Proof. By definition P2, = {a € Py : @ C Syp((ua)nx) } then
PS, = {a € Py :a C S, A =sup((Ua)Nk)}, so for every a € P, we

have a C S and a € Q% proving P2, C Q2.

21



3. THE STATIONARY TOWERS

22

Leta € QS<K, so a € P, and there exists @ a limit cardinal such that a € V,
a¥s € Q5, and Ua" =V, therefore sup((Ua"s)N k) = a and

a%s C S« =Sy = S,, we conclude a" € P%pand a'* <. O

Remark. In the example.3.1 we have'P3, ¢ @3, because Q2 is closed

(V)

under lifting but net'under projection. In the‘example 3.3 ]PZ? is dense

in Q..

Fact 3.10. Let S C Pg( Vi) be stationary, such that Q2 is closed under projection
and lifting. Then for every clubgubset C of x, there exists a predense set Dc C Q%

such that oy € C for every inaceessible 7y such that, Dc N in is a predense subset.

Proof. Let < 7, : a < ¥ > be an enumeration of C. For each a € IPS, define
a* = a¥ where 1, is the least ordinal in C such thata € V..

Define Dc = {a* : a € P2, }. Note that D¢ is-dense because P3, is dense.
Let v be such that Dc N Qiﬂr is predense, and <'ag : B <eof(v) > a cofinal
succession of <. For each ag take ag € QSQ such that Vaﬁ C Uag, therefore,
for each ag there exists bg € Dc N QS@Y compatible with ag, by corollary 3.9,
there exists 7 € ]Piv such that » < ag andur\ < bg; since IP“iAY c PS,, r*is
defined and satisfies V[xﬁ CWr? = V,,, for some vy > ag. We conclude there

exists a succession < 4.1, < v >< Ccofinal te,y,'since Cis a club v € C.[J

3.2 The generic ultrapower

In this section we-will construct an ultrapower for the towers Q2, in the
same way as W. Hugh Wooedindid in IP .

From now on S is a stationary set in Py (Vj), with « a strongly inaccessible
cardinal, and Q% (is closed under projection and lifting, unless we state
something different.

Given G C Vi a V-generic in Q%,, for every nonempty set X € V, we define

UX:{bxibGG/\XgUb}



8.2. "The generie ultrapower

Fact 3.11. Uy is a V-ultrafilter on SX.

Proof. Letb € Q3,, X C Ub and A 'S¥.

Define 1’ = {Z €b: ZNX e‘Ahand b! ={Z € b: ZRNX ¢ A}. Since b
is stationary and b° U b! = b, is stationary over P(Ub) or b! is stationary
over P(Ub). Assume b° is stationary, Ub® = Ub s0.b° C b C S then b° € Q5
and 10 < b, the same arguments show that BY'C b C S, thus b! € QS<K and
bt <.

We have shown that for each A € .SX.and each b € Qix with X C Ub, exists

an element a € Q5<K such that.ay € A or ax C S*\ A. Then the set
D={acQ :ax C AVax C SX\A}

is dense in Q%,. Since G is generic, GN D # @ so therésexists by &G such
that by < A or by < SX\A, A € G or S¥\ A € Gxwe conclude ‘A € Uy or
S¥\A € Ux. O

Note that in the previous proof we proved’that for.evety X C/5¥;X is a

stationary set or S¥\ X is a stationary:set.

Fact 3.12. If X,Y # @ such that X-C Y. Then-for every a C’S%, a € Uy if and
onlyif {ZZe€Y:ZNX €a} € Uy.

Proof. <=: Since {Z € Y : ZN X &a} € Uysthere exists b € Q2 such that
by ={Ze€Y:ZNnX €a} withd € G, then

a={ZNX:Zeby} ={ZNX:3A€bNANY =Z}

={ANYNX:Aeb}={ANX:Ae€b}=>bxelUx

=: Assume {Z € Y : ZNX € a} ¢ Uy, since Uy is an ultrafilter on SY,
{Z € Y:ZNX ¢ a} € Uy, therefore there exists b € Q%,, b € G such that
by={ZeY:ZNnX¢ately,s0{ZNY:Zebl ={ZeY:ZNX €al}.
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Let Z' € bx then Z' = Z N X for some ‘Z’© b, but Z &Y ‘€ by then
ZNYNX ¢ a. Therefore ZN X ¢’a.and bx CSX\a, since-bx € Ux and Uy

is an ultrafilter, a ¢ Uy. O

For each @ # X € Vi let(Mx, Ex) ="t (V, Ux).and let jx : V — (Mx, Ex)
be the induced embedding.

For X C Y we define jxy : Mx's My as jx¥([fluy) = [fy]u, where fy(Z) =
f(ZNnX).

Let (M, E) be the limit of the family

< My, jxpjxy : X, Y €e VA\{@}, X CY >

and j the correspondinglimit of the embeddings.
The following lemma describes the function that represents X in the generic

ultra power when X € V.

Lemma 3.13. For any a € Q2 the identity function on a represents j[Ua] in the

generic ultrapower, i.e. {b € M : bE[il?] g} =j[Ual.

Proof. Fixa € Q% and b € Q2 such that Ua € Ub.
Let it : S0 — S, iU8(Z) =Z'M (Ua).

Claim: [if]u,, = juplUnl-

Proof of the claim: Working on- V.

D: Letx € Uz and f : 8% — Ua, f(Z)»= x. To show jiy(x) € [i¥]y,, it
is enough to show {Z~C Ub : x4¢"Z} € Uy by projection the elements
of Uy, are stationary sets inlP(Ub) and since U, is an ultrafilter on S“?,
so it is enough to show-that S“*\{Z C Ub : x € Z} is not stationary. As-
sume it is stationary se-U(SYP\{Z C Ub : x € Z}) = Ub then there exists
Z € SY\{Z CUb: x € Z} such that x € Z a contradiction.

C: Let [f]u,, € [i9u,, in Myp. So f : SV — Ua is such that f(Z) € ZN (Ua)
if and only if Z € d, whered € G and Ub C Ud.
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Subclaim: {p € Q%, : pIF [flu,, € jup[Ua]} is dénse in Q2.

Proof of the subclaim: Assume ¢ € Q%, and (Wd) U (U¢) &Y. By lifting in
Q%,, c1 = ¢’ < ¢, define f*:c; — Ua, f4Z) = f(Z(Ub)) by riormality in
Q2,, there exists x € Ua such that ¢/ ="{Z € ¢ :f(Z) = x}, ¢! < cin Q%,,
we conclude ¢’ IF [f]u,, = jup(X); as we wanted:

By the subclaim and since G is generic, we conclude [i}]u, C jup[Ual, fin-

ishing the proof of the claim.

By the definition of jy we obtain {is; by, = Jrov: ([ Juy,) for X € Yo C V3.
Using the claim we get jy, [Ua}. = jy, v, ([ ]u,,) and in the limit for Yo = Ua

we get j[Ua] = ji5, ([iga]u.,) =Tfilalc- O
Corollary 3.14. For every X € Vy:

1. Ux = {A C X jIX]Ej(A)}.

2. Foreverya € Q5,, a € G if and only if§[UalEj(a).

Proof. 1. By lemma 3.13, {A C S¥j[X]|Ej(A)}. = {A C S*[iX]GEj(A)}
and in the ultrapower this is [i¥]u, Exjx{(A), by Xos ‘theorem this is

{Z € SX: Z € A} € Ux."In the limit'we hayé, A€ Uy if and only if
JIX]Ej(A).

2. If j[Ua] € j(a) then a &y, so there exists b € G so that Ua C Ub and
by, = a, then a > b by the genericity of G, a € G.
If a € G, then a € Uy, and+{Ua] € j(a). O

One of the most interesting cases of the Lemma 3.13 is the case when a is
an ordinal smaller than . For those cases the function that represents them
in the generic ultrapower is an order type function as the following lemma

describes. This lemma has the corollaries 3.16 and 3.17 that show some
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ordinals inequalities in the generic ultrapower. In-particular the corollary

3.17 shows that x has cardinality at mest A in. M.

Lemma 3.15. For each o < 1 the function g, : S* — «,

2u(Z) = 0.t.(Z) represents,w in M.

Proof. Claim: M, ={([g4]u, isthe transitive.collapse of [id*]y, ).

Proof of the claim:
{y € §* “ga(y) is the transitive collapse of id*(y)} =

{y € §* : gu(y) is'the order type of id*(y)} = S*

and S* € U,.

Since M, &% Mis elementary, by the claim we have
M = ([g4] is the transitive collapse of [id"]).

Leth : (ext}’M/E)([id"‘]), E)— (extE/M,E)([g“]), E) be the function

h(b) = cif M = (f(b) = c) where
M = (f : [id*] = [34] is the collapsing map)

since the collapsing map,is an’isomorphism, then / is-an isomorphism and

(extly ) ([id"]), E) = (extf), ) ([8a))iE) by lemma 3.13 we get
(exty g, ([8a]), E) = (&) E) = (a, €)
By the definition of wfp(M, E),
wfp(M,E) = {x € M : {B.€ M : bE tc(x)MF)} is well founded in V'}

then [g.] € wfp(M, E), since [g.] is transitive, [g,] is an ordinal in (M, E)

isomorphic to a; we.dentify [g,] with a O

Corollary 3.16. Given a cardinal A such that w < A < x, S = P)(V) and
G a V-generic. Fix B < x, B C X, a € Q% stationary in P(X) and function
f:Pr(X) — Ord:
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1. If{Z € P\(X) : Z & aVot(ZNB) > f(Z)} contains‘a’club in P(X),
then a - B > [f]uy-

22 If{Z € Py(X) : Z ¢ avot(ZNB) < f(Z)} contains a elub in P(X),
then a - B < [f]uy.-

Proof. It is enough to prove 1.

Let G be a generic such that a € G. Assume
{ZePy(X):Z¢aVot(ZNB)> f(Z)} Contains a club and B # [f]uy- By
lemma 3.15 and the definition of jg x#{Z € Pr(X) : 0.t(ZNB) > f(Z)} ¢
Uy, since Uy is an ultrafilter on Py(X), {Z € PA(X) :0.t(ZNP) < f(2)} €
Ux but

{ZePy(X):Z¢avot(ZNP) > f(Z)} e Uxso{Z € Py(X):Z &a} €

Ux, contradiction since a € Uy. O

Corollary 3.17. Given a regular uncountable cardinal”"Asuch that A < k, S =

P (Vi) and G a V-generic. Then j(A) > « in the generic ultrapower,

Proof. 1t is enough to prove that for every < k, {Z.€ Pi(B) : o4(Z.A B) <
/\} S U5 but this is PA(,B) S Uﬁ. OJ

Remark. For P, since P_= @2, wheri'we apply the previous corollary
we obtain j(x) > k. A way to obtain the critical point’of j is using corollary
3.14. Let v < « be a regular uncountable cardinal,’F : [y]<“ — vy and B < 7.
Since v is regular Hr(B) #.2, Hr(B) is a'limit ordinal, y N Cr # @, v is
stationary in P(7y), v € P« If v € G'then j[y] € j(y) and j[7] is an ordinal
below j(7), then j[y] is transitive thus j(a) = «a for every a < 7 and the

critical point of j is .

Corollary 3.18. Assume that y and A are regular uncountable cardinals such that
u <A<k S="Py(V)and G a V-generic. Let a, = {z € Py(u) : zNp € u}.
Then cp(j) = p if and only if a, € G.
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Proof. By the lemma 3.13, a € G if andvonly if j[u] @F(u) € j(u). Therefore
jlu] Nj(p) is an ordinal below j(y). We conclude’that a & G if and only if

cp(j) = . 0

Note that for the towers R}, for every G V-generic We have cp(j) = A.
Before finishing thelchapter we will show the'reason why we haven’t worked
with the towers R} during the' chapter.

When A is a regular uncountable cardinal, and x < «’ strongly inaccessible

cardinals as in R}«Inthe previousremark we saw that A is stationary and

Ae QZWK’). Since this tower'is closed under lifting we get (R)"* = A% €
QZ?}VK’) s0 (R)% is stationary and R} = Q%



Chapter 4

Large cardinals and stationary towers

“ It's kind of fun to do the impossible.

- Walt Disney

4.1 Completely Jénsson cardinals

This section is devoted to prove the corollary.4.13 that is-one’of the main
properties of the stationary tower. The proof of the corollary 4.12 in [Lar04]
(Lemma 2.3.2) doesn’t use Ramsey cardinals, we are presenting ‘a different
proof using Ramsey cardinals.

If the reader is familiar with. measurable«cardinals and Ramsey cardinals,
then the reader may skip the following.two pages of basic acknowledge and

continue with the the definition of Jénsson cardinal (definition 4.5).

k is a Ramsey cardinal if for every ¢partition F of [x]<“ into two pieces,
F : [x]<¥ — 2, there exists H @ #*such that o.t.(H) = x and for every
n € w, |F[[H]"]| = 1. We denete:this property by x — (x)<“.

k¥ an uncountable cardinal is measurable if there exists a x-complete non-
principal ultrafilter on x. Given a non-trivial elementary embedding

j: V. — M with cp(j) = «, the set U C P(x), whose elements are the sets

X C « that satisfy x € j(X), is a k-complete non-principal ultrafilter on «.
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For < X, : @« < x > a sequence of subsets of x,“we define the diagonal
intersection as Ay X, = {& < k€& N Xu}k

a<g
A filter F on « is normal if it is*elosed undér-diagonal ihtersection .

We call a normal measurg ‘on-«, a k-complete non-principal ultrafilter on «.
Lemma 4.1. For every neasurable x.there exists a.normal measure on «.

Proof. Let U be a xk-complete non-principal ultrafilter on x.
Since the relation ~ i« f ~ g <= {a <« : f(a) = g(a)} € U, has the
property that x/ ~'is well founded, we can define f : x — x a function such
that {& < x : f(a) > 7} € Ufor all vy, and [f] is the least class with this
property. Define

D={XCx:f1X)eU}

D is an ultrafilter, because X ¢ D implies f~1(X) &U so f~1(x\X) € U,
xK\X € D.
D is k-complete, because of the x-completeness of U,
N X) =N fUX) €Uso Xn&D.
<K <K <K
D is non-principal because for.every v < 4, {w : f(a).> v} € U so

fH b ¢ U {v} ¢ D.

Claim: For F a x-complete non-principal ultrafilter on x. If every regres-
sive function f : X — '« for X<& F,is constantin a set Y € F, then F is closed
under diagonal intersection.

Proof of the claim: Assume theréexists < X, : &« < ¥ >, X, € F such that
Ay<x Xy & F. Then ©\Apei Xy € F, let f be the function f : ¥\ Apcic Xy — X,
f(a) = ¢ where § < a and'w ¢ Xz. For a € x\Ay<x X, we have a ¢ N Xp
so there exists { < a-such that « ¢ Xz, and f is well defined. By the asﬁsffmp—
tions of the claim, there exists v < x and Y € F such that f[Y] = {7}, then

YNX, =® € F, contradiction.

To prove that D is normal, it is enough to prove that for every regressive
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function g : X — x on X € D there exists Y € D/such that ¢«is) constant on
Y.

Let h: f~14(X) — «, h(a) = ¢(f(a)). Since g is regfessive and 71 (X) € U
we have [h] < [f], let ¥ < k be the least-ordinal suel'that {a.: h(a) <y} € U
by the minimality of f such v éxists, let Xp= {p : h(B)>a’} for & < 7y and
X, ={B:h(B) < v} by the xk=eompleteness of U,

ch'yX” ={B:h(B) =7} € Uso gisconstant on f{ ' Xu). O

a7y

Theorem 4.2. Every measurable cardinal isaRamsey cardinal.

Proof. Let D be a normal measure on «.

By induction we will show that for any partition F : [k]<“ — 2 there exists
H, € D such that |F[[H,]"]| = 1. For n = 1 it is clear.< Assume it is
true for n. Let F : [k]<“ — 2 a partition. Define F, :4[x\{a}]" = 2 as
F,(X) = F({a} U X) by the induction hypothesis there exists X,~€ D such
that F, is constant on X,.

For any 1 < B2 < -+ < But1 € Dpx Xy we'have

F({B1/- -/ Bu1}) =

Fg,({B2,.-.,Bus1}) = ip,, only dependsjon B;. We conclude that-A\, X, =
Yo U Yy, such that Va,B € Y}, iy ="ig for j & {0,1}. Since D is normal,
Ny<xXy € D then Yy € Dor¥y € D, let H, 1 be the one in D, then F is
constant in [H,1]"*1.

To finish the proof, given a partition F : [k]5%. — 2 let H, be the set such

[ee]
that f [(p,)» is constant. Theft for every n.€ @ f, is constant on [ H;]". [
i=1

Lemma 4.3. If « is a measurable cardinal, U a x-complete ultrafilter on x and

j: V= Ult(V,U) the induced embedding, then cp(j) = .

Proof. Note that fyx — {a} for a < «k represents a in Ult(V,U), leti:x — «
be the identity, so [fu]u < [iJu < [fi]u for & < «, j(x) > x and using Los

theorem and assuming [f,] # j(«), there exists [g] € [f.] such that the sets
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{x e x:g(x) € a} and {x € « : g(x)"& B} for B_<, are in the ultrafilter,

but is k-complete, so @ € U contradiction. ]

Theorem 4.4. Every measurable,cardinal is a Ramsey cardinal limit of Ramsy car-

dinals.

Proof. Let U be a #=complete ultrafilter onix, M = Ult(V,U), j: V - M
the induced embedding and cp(j) = x=Since M C V, P(x)M C P(x)". Let
X € P(X)Y, if |X]| < (x since cp(j)==-«x then X € P(a)M, for some & < «,
X € P(x)M; for | X|'= &, note that,j(X) Nk = X, thus X can be calculated on
M, so X € M, we conclude P (¥)M = P(x)V.

Claim: VKMH = Vii1t

Proof of the claim: Let X € Vi1, s0 X C V,, let f be'such that
M = (f : kK — Vi is a bijection )

and Y = f~1[X], since P(x)M = P(x)"Ave'get Y € Mand f(Y) = X € M.

Let F : []<“ — 2 in M, but f\ VM, = V. since ¥ |= (k is Ramsey),
there exists H € [«|* such that f is constant in [H]% fer every n € w. But
H e P(x)V = P(x)M, we'eonclude:M = (x is Ramsey), so

M = (Vo < x AB(a"<B < (k)N Bris Ramsey)). We conclude « is a limit of

Ramsey cardinals. O

The completely Jénsson-cardinals‘give the name to this section because they
are the ones that ensure the(corollary 4.13. The reason why we introduce
the Ramsey cardinals and-the measurable cardinals in the previous part is
because these cardinals-ensure the existence of a completely Jénsson cardi-
nal that is a limit of completely Jénsson cardinals. Before showing this, let’s
show (as the reader can expect) that every completely Jénsson cardinal is a

Jénsson cardinal.
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An algebra is a structure < A, f;, >nco Where'f, » [A]g(”) = A for some
¢(n) € w, and a subalgebra is a structure; <»Ay, f» [[Ao]g(,,)>n€ w. where

Ag C A and f,[[Ao]3™] C A,.

Definition 4.5. « is a Jonsson cardinal if every algebra of cardinality « has a proper

subalgebra of cardinality .

Definition 4.6. A strongly inaccessible cardinal x issa.completely Jénsson cardinal

if for every a € P the set
{XCVe: XN (Ua)can|XNk|l=x«}
is stationary in P (Vy).
Fact 4.7. If for every a € P,
A ={XCVe:XN(Ua) eaN|XNk|=x}

is a stationary set in P(Vy), then A’ = {X C Vi|X N«| =%} is a stationary set
in P(Vy).

Proof. A, C A’if and only if Vi ¢ A,, let a be aregular uncountable cardinal,
by a previous remark a € P, and Vi« A,. So Allis'a stationary set in

P(Vy). O
Lemma 4.8. Suppose A C Vy such,that |A| = let

Ya={XC Vi IXNA|l =x}
then Y 4 is stationary if and only if Y is stationaty.

Proof. Let h : Vi, — Vi be a bijectionwith h(x) = A. Let F : [Vi]<% — V,
F' =h1oFoh.So X € Y if and enly'if | X N«x| = x, that happens if and only
if | X N h~1[A]| = x, that happens.if and only if |1[X] N A| = , that happens
if and only if h[X] € Y4. For every X € Cp and x1,x2,...,x, € X we get
F({h(x1),h(x2),..., h(xn)}) = h(F'({x1,%x2,...,x,})) € h[X], h[X] € Cp. In
the same way h[X| € Cr implies X € Cp. We conclude X € Y, N Cp if and
only if h[X] € Y4 N Cp. O
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Theorem 4.9. Every completely Jénsson ¢ardinal is a_J[6nsson cardinal.

Proof. Let < A, fu >new be an algebra with |A]= «k, we can"assume A = V.
Let C,, be the club associatedto F,, where F, : [Vi|<“| ="V, F,(Z) = fu(Z)
if Z € [V,]$™ and F,(Z)/= @ in othercase.

Let C be the club C= " C,. Since « is a completely Jénsson, by the fact
4.7 and the lemma 4.8 wn:Cirjlave that {X C\V, " | X| = «} is a stationary set in
P(Vi),s0 CN{X C Vil Xp=x} #Q,let Y € CN{X C Vi : |X| = «} then

<Y, fu >new is a proper subalgebra of cardinality x. O

Fact 4.10. « is a Ramsey catdinal if and only if for every v < x, k — (k)3 i.e.

for every partition f : [ik|S“" — -y, there is H € [x|* such that for every n € w
FIH" =1,

Proof. Let f : [x]<“ — 7, v < «, be a partition.

Define ¢ : [x]<“ — 2, §(&1, 82, ..., &n) = 0if n==2m, and I"in other case. Let
H e [«]*, |g[[H]"]| = 1 for any n € w. Fix n € w since-~y < x, there exist
a,b € [H]" such that f(a) = f(b) and max(a) <imin(b), so g(aUb) = 0,
then ¢[[H]*"] = 0. For x,y € [H]"there exists 2{&’[H|" suchrthat

max(x Uy) < min(z), g(x Uzh=g(yUz) — 0, then £()= f(), | FI[H]"]| =
1 O

Lemma 4.11. Evertyy\Ramsey cardinal’is a completely Jonsson cardinal.

Proof. Fix a € P, and H < [V]<“ — V. Let L be the language with a predi-
cate for H and a constant for each element of Ua. Sincea € V,, |L| = a < «
and since « is inaccessible, the set T of types in £ has cardinality v < x. Let
¢ : T — < be a bijection,/define F : [x]<“ — v, F(a) = g(tp(a)). By the fact
4.10, there exists I C+[k}* such that F is constant on [I]" for every n € w, so
I is a set of indiscernibles ordinals.

Let f : w — w X w be a surjection such that f(k); < k for all k.

Let (Hy)new be an enumeration of the terms obtained by iterated appli-

cations of H, as in the proof of lemma 2.11. Fix a9 € Ua and define
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H* : [Ua]<% — Ua as H*(xq, ..., xx) = hf(k)o(xo,...,xf(k)l,l,io,. .., ip) if this
belongs to Ua and a4 in other case.

Let X' € Cy-Na, and X = cly(X' U I)~Clearly X €Cy and |X|\=k. Sup-
pose x € XN (Ua), then there exist'xg, x1,..., ¥y € X' and m € w, such
that x = Hy,(x0,. .., Xn, d0, .. .,if); since I is.a set of indiscernibles, x doesn’t
depend on iy, ...,i;. There exists k € w such that (k) = (m,n+ 1) and
by definition of H* we have H*(xgf. .., Xn, Xo, . . . Xp) = X, where x( appears
k — f(k); + 1 times, we conclude x'€ X'. We have shown XN (Ua) = X’ € a,

we conclude that x is a completely Jénsson'cardinal. O

Corollary 4.12. If « is a measurable cardinal then x is a completely J6nsson cardi-

nal limit of completely Jonsson cardinals.
Proof. Follows from theorem 4.4 and lemma 4.11. O]

Corollary 4.13. Given a cardinal A such that w < A < k and
S = Par(Vi), suppose that « is a limit of completely Jousson cardinals=Let j be a

generic embedding corresponding to Q2. Then j(A) = k.

Proof. Leta < j(A).

Claim: The set {b € Q3, : b IF &< ¥} is dense in'Q%,.

Proof of the claim: Let a € QS<K. Take X '€ V, such4hat there exists a func-
tion f : SX — A that represents « in Uy, let a’ =¥, clearly ' < a, and let
v < k be a completely Jénsson such that a’ &V;.

Define b as the set of sets | X|.< A, X C Vynthat satisfies:
e XN (Ua) € a.
e f(XN(Ua)) <o.t.(X M)

Fix a function F : [V, ]<“ — V,,, since 7 is completely J6nsson,
{XcV,n(Ua) €ean|XNy| =79} NCr # @; let Y be an element of that
set and Z a subset of Y N+ such that |Z| = A and 0.t.(Z) > f(Y N (Ua)).
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Since Y € Cr, we get Y N (Ua) C clp((Y'Q (Ua)) Uz)(Ua) C YN (Ua), then
clp((YN(Ua))Uz) € b. Therefore bye P, and since all-its elements has
cardinality less than A, b C Pgn(Vi) C S, we'conclude® & Q5<K, b < a’ and

bIF [flux <.

By the claim we get j(A) < x.Theother inequality is the corollary 3.17. [

4.2 Properties of Q°, when S = P, (V)

From now on we are going to focus on the case when S is of the form P, (Vy),

for some regular uncountable cardinal A < «.

The first property that we are going to study is wheh we have to cardinals
k1 < x2 what happens to the generic filters of Q5<2K2 when we restrict them
to the tower Q(j;l) Y

Lemma 4.14. Let A < ky. Suppose that ky.< K are-strongly inaccessible cardinals,
S1 = Pr(Vi,) and Sy = Py (Vy,).

Let G C QS<2K2 be a V-generic such that G N Q5<1K1 is also-a 'V-generic, and let a
be the set of sets | X| < A, X/< Vi, 14 such that for-every predense D C Q‘il,(l if
D € X then X N (Ud)'ed for some d.€ X N D.

Then a € G.

Proof. Let j : V — (M,E) be thé, generic embedding resulting from QS<2K2
with the generic G.

Suppose Z € j[Vi,+1] =-[Un] is predense in j(QS<1K1), so Z = j(D) for some
predense D in QS<1K1. By-assumption G N QS<1K1 is V-genericso GND # @, let
de GNDsoj(d) € j[Vi+1]

Since (Uj(d)) Nj[Vi,41] = jlUd] and d € G, by the corollary 3.14 (2),

(Uj(d)) Nj[Vi+1] € j(d). By corollary 3.17, |j[Vi,11]| < x2 < j(A), we con-
clude that in M, |j[Vi,41]] < A, j[Vig+1] < Vi,+1 and for every Z predense
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in j(Q2,), if Z € j[Vi+1] then there exists j(@) € Z N j[Vip1] such that
(Uj(d)) N j[Viy+1] € j(d), s0 j[Vi,41] € j(a)andiby corollary*3.14,a € G. [

Lemma 4.15. Let A < xy. Suppose that(k1\< «y are strongly inaccessible cardinals,
S1 = Pr(Vi,) and Sy = P (Vy,).

Let a be the set of sets | X| < A(Xo= Vi, 41 such that for every predense D C Qil,{l
if D € X then XN (Ud) € d for some d € X N D. If.a is stationary, then a forces
that G N QS<1K1 will be V-generic for Qil,cl, where G.is the generic filter for QS<2K2

Proof. Let G € QS<2K2 be a V-generic witha € G. It is easy to check that
GnN QS<1K1 is a filter using lifting and-projection.

Let D C Q‘il,q be a maximal antichain in <QS<1K1 and assume that DN G = @.
Since ll"iz,{2 isdense and H ={X € S, : D € X} is a club, the set

{XNH: X € ]P‘iZKZ} is dense in Q5<2K2 so {XNH:X¢€ ]PS<2K2} MG # @, let
b be an element of this set, then there exists ¢ € G such that ¢ <.a-c < b
this means that for every Z € ¢, ZN (Ub) € b soD € Z and.c® (Ua) € a,
therefore ¢, <ap ={X €a:D € X}, and ap-£'G:

Claim: D is an antichain in Q‘iz,cz.
Proof of the claim: Assume that there exist dy,d> € D compatibles in Q5<2K2,
so there exists ¢ € Q%Kz such.that’'c < dy, < d; then¢(g)u(ua,) < d1 and

S .
C(udy)u(udy) < da but cuayu(ud;) € Q7@ contradiction.

Let A be a maximal antichain‘in QS<2K2 such that D C A, since G is generic,
there exists b € AN G, but ap € G s there exists ¢ € G such that ¢ < ap
and ¢ < b, so forevery Y € ¢, Y A(Wap) € ap then D € Y and there exists
d € DNY N (Uap) such thatYory (Uap) N (Ud) € d. Since d € D implies
Ud C Uap = Ua, we can define the following function.

Define F : ¢ — D, F(Y) = d with YN (Ud) € d. By normality there exists
d € Dsuchthatc = {Y €c:F(Y)=d} € Q% and ¢’ <c. Since d € V,,

we get Ud C V41 = Uap C Uc = Uc' soc’ <d,butc CcC b soc <b,
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contradicting that d,b € A, a maximal antichain. ]

With these two lemmas we can conclude that,G N Q‘il,q iSHa generic filter

if and only if a € G. Thus/for future applications we will only check this

element if it is in G.

The semi-proper sets have some interesting, properties that are really useful
when we want to work with'some stationary towers and apply its properties,
with these sets it isspossible to,apply the previous lemmas easily. The next
theorems are the principal @pplication of these sets, but these are not the
only way to use the semi-proper sets, the proof of the theorem 5.9 is based

on the idea of a semi-proper set.

Definition 4.16. For a predense subset D C QS,, we defitie sp(D) as the set of
sets X < Vi1, | X| < A such that:

e There exists Y < Vi1 such that X C¥and |Y| <A\
o Y NV, end-extends X N V,.
e YN (Ud) € d for some d€ YND

D is semi-proper if sp(D). contains a elub of P(Vi41):

One interesting property of these sets is that one can find for every stationary
setd € QS<]K1 a condition stronger that d in Q5<2K2.

If we assume that D- ©-Q32, is a\predense subset that is semi-proper and
d € D, then the set X; = {X<€ sp(D) :d € XA XN (Ud) € d} is stationary;
to see this assume that there exists g : VK<+“1’ — Vi1 such that Co N Xy = @;
since D is semi-properiand we know that there exists H : VK<+“{ — V11 such
that every X € Cp satisfies X € Cg, X € sp(D) and d € X; by the proof
of the theorem 2.11, (Cy)y contains a club C of Ud, since d is stationary,
dNC # @, therefore there exists X € (Cp)yy such that X = Y N (Ud) € d for

some Y € Cy thend € Y and Y € X,;: contradiction, since Cy N X; = @.
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Definition 4.17. A cardinal 6 is a Woodin cardinal’if for all A~C) 'V there are
arbitrarily large x < & such that for all 6 < ¢ thereexists anélententary embedding
j: V. — M with critical point k such that j(x) > 6, Vo CM, and

ANVy=j(A) NV,

It follows that if § is a Woodincardinal then there exists an unbounded set
of measurable cardinals, and by corollary 4.12,:4\is a limit of completely

Jonsson cardinal. Thus j(A) = d¢

The following lemma is a well knewnyresult, the result is an if and only

if but we are going to show only the direction that is useful for us.

Lemma 4.18. If § is a Woodin cardinal, then for each function f 6 — & there

exists an elementary embedding j : V. — M with critical pointsy)»< & such that

flnl €y and Vip)q) € M.

Proof. Given a function f : § — 6, let A = f, take 7y a cardinal that testifies
that ¢ is a Woodin cardinal for A and let a_ = sup{f(p) 41" p < 7}. Since
j(f)NVy=fNVyand f(y) < a thenj(f)(y) € V, and since V,*C' M then
Vi(f)(v) C M; suppose exists p < 7 such that o <vf(p) < asince cp(j) = v
we get a < j(77) < j(f)(p), a contradictionsf-is closed. in ¥ O

The Woodin cardinal lets us use some nice propetties of the stationary tower,
one of this properties is that thetowers Qi s-are'well founded (theorem 4.22).
The following results can be obtain with other cardinals that are not Woodin,

see [Lar04], [Fuc10].

Theorem 4.19. Suppose that 6 isya Woodin cardinal. For each sequence < D, :
a < 8 > of predense subsets of QS ; there exists a strongly inaccessible cardinal

¥ < d such that for every « <y, Dy N Q5<7 is predense in Q5<7 and semi-proper.

Proof. Let f : § — § be a increasing function such that
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1. If v < ¢ is an ordinal closed under f, then'for « < 6, D, N QSQ is

ih OS
predense in Q2.

2. For v < ¢ an ordinal closed under f. If « < J is/such that D, N in is

not semi-proper then exists b € Dy N V(. .compatible with
a = {X= V1 JXP< min(q,A)A X ¢ sp(Dq ﬂQiy)}

a € Q2. since D,AQY, is not semi-proper, a C P (V,41) and

{X : X < V,4q}is a club.

By the lemma 4.18, exists—j.: V — M with cp(j) = v < 4, f[y] C v and
Viipym+w € M. Therefore by (1) Dy N in is predense in qu for & <
7, j(De) NQL, = DaNQL, and Vi C M, 50 Py(Vyi1)\sp(Da NQ2.)
is stationary in P, (V1) if and only if M = Ry (Vyi1)\sp(Da NQZ,) is
stationary in P (V,11).

Let a be as in (2) and assume D, N Q5<7 istnot semi-proper, then exists

b € j(Dy) N Mj5)(,) compatible with.q inj(QZ.,).-Sifice V(f)(;) 1 C M then
bis stationary in V and ¢ = {X C{Wa)U (Ub) <XV (Ua) e\ XN (UD) € b}
is stationary in P((Ua) U (Ub)).

Choose j(J) < 7 a regular cardinal such’ that Vs.D,”"€ V. Since the sets
X <V, form a club,the sets X-such that-{ab,j [ V,41,j(V,42)} € X
is a club and ¢ is a’stationaty set, exists X-'€ c such that X N (Ue) € ¢,
X < Vyand {a,b,j [ Vo,{1,j(Vy42) }<€ X. Since a is stationary in P(V,41)
and a C Py (V1) werget [ XN¥, 14| < yand XNV, = XN (Ua) € a,
therefore j(X N V,11) € j(a).given us j[X N V,41] € j(sp(Da NQZ.)).

Note that since Vjf) (46 € M, XN V11 € M as j[XNV,41] € M then
j 1 (XNV,11) € M, Bythe way we chose X, j[IX NV, 4] C X.

Let < be a well order of j(V7+1) in MN X and Y the Skolem closure of
{a,b}Uj [ (XN Vyq1) U(XN(Uc)) in j(Vy41), Y can be computed in M,
Y e M,and Y C X, all these sets are subsets of X.

Clearly j(XNV,41) C Y. By the way we chose X, b € X and X N (Ub) € b.
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Since 1 is closed under f, j(f)(v) < j(v), and by (2), b‘€)/(Q%,) and
b € j(Da) N Mj(f)(,), then b € ]'((Q‘i7 NDg),s0b € Y ﬁj(@‘i7 N,D,) and
XN (Uc)N(Ub) C YN (Ub) this is XA(Ub) C Y'A(UDb), buty C X so
XN (Ub) =YN(Ub) €b. Since v =cp(j) we get XNV, = j(XAV,11)NV,,
so Y NV, end-extend j(X N V,54) N V,.

We conclude j(XNV,41) € j(sp(Da N in)) a contradiction. O

Corollary 4.20. Suppose that ¢ is-an ordinal, 6“is a Woodin cardinal and « is a
limit ordinal such that { < d.<-cf(x). Let YNS Vi be countable with {,6 € Y.

Then there exists a countable Y' < V. such.that:
e YCY.
° Y/OV§:YHV§.

e For each predense D C Q_s with D € Y/, there exists’d &D NY' such that
Y Nn(ud) ed.

Proof. Let e : w — w be such that for everyise w, e(i)<<~i'and e~ (i) is
infinite, and let ¢* : w — w define by e* (/) ={{j < i;e(j)=e(i)}}:

We will build a chain < Y; : i < w >(of countable elementary.submodels of
Vi, a sequence < d; : i < w > of elements of Qz; and a-set {D; 1] < w}

such that:

1. Yo=Y.

N

. Forevery i < w, { D;: j=<w} lists the predense subsets of Qs in Y;.

@

CForalli<j<wY; QY

4. For every i < w, if { is the)supremum of { and sup(|J ((Ud;) N4)) then
j<i
Yig1 N Vg =Y;N Vg

5. For every i < w, d; € Dg(l()l) NY; and Y;41 N (Ud;) € d;.
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And finally Y = U{Y; : i < w} works\To construct’such sets by induction
assume Y;, {D]’:/ 11" <iNj < wland d; for j < ivare given such that they
satisfy 1-5. By the theorem 4.19-and the fact'3.10, there €xists a strongly inac-

X
<i (

cessible ¢ > U (U ((Ud;)18)) in Y; sueh/that Dg(i)i) Q¢ is semi-proper.
)

Claim: There exists ¥* < Vg4 containing ¥; 1 Vz 1 such that Y* N V; end-
extends Y; N Vz and Y* NAUd) € d for some d € Y*N Dee(l()l)
Proof of the claim: Let F be the function in Vzyq, F @ [Veiq]<Y — Ve
such that Cr C Dj,fl()l) N Qg since’Y; < Vi then Y; N Vg is closed under F,

YiNVey € sp(Di,E?l.) N Qegpand let Y* < Vg1 be the set that testifies this.

Let d; be the d of theclaim and since Y; < V,,
Yiiq = {f(S) 2f:V§ — VK/\fE YA sve Y*QV§}

is a countable substructure of Vi and contains Y;, so j.<.i, Yii1 N (Udj) € d;

anin+1ﬂVCQY*HV§:YiﬂV§gYi+1ﬂV§. O

The following remark relates the previous.corollary with. the set a defined

in the theorem 4.15.

Remark. The set #0f the lemma~4.15 is stationary when x; is a Woodin
cardinal. If ¢ is a Woodin-cardinal, { <¢.0"and § < «x a cardinal such that
0 < cf(x). Let F be @ function F+V4 — V1. Therefore there exists
g Vi3 — Vjyq such that CgnC 'Cr and if Y € C, then Y < Vjyq. Let
X be countable such thatX < Vi, and g,(,6 € X. By the corollary 4.20,
there exists X' < Vi with X' N V1 € a and X C X/, therefore g € X’ and
X' NVsq € Cq.

Theorem 4.21. Suppose J is a strongly inaccessible cardinal, and let § < & such
that for each sequence < Dy : a < 1 > of predense subsets of Q3 there exists

a strongly inaccessible cardinal «y < & such that for every « < 17, Dy N QS<7 is
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predense and semi-proper. Let G be a V-generic contained in Q3 s7then (M, E) is

closed under sequences of length i in V[G].

Proof. Fix ag € Q5< s and a term 7 for/an #-sequence of (M, E)-ordinals. For
each « < 77, choose a maximal antichain A, C Qi s such thatfer each b € A,
there exists f € Ord® such that B+ (&)~ [f]c. By fact 3.10, there exists a

strongly inaccessible cardinal 7y < 6 such that

e ag, 1 €V,.

o Voo <y, Ay N in is predense and semi-proper.
Let a be the set of sets X < V.4 such that

1. |X| < min{y, A}.

2. XN (Uag) € ap.

3. for every « € X Ny there exists b € X N A, N Q5<7 such that
XN (Ub) €b.

Claim: a € Q‘i 5

Proof of the claim: It is enough to show that a isstationary ifWP(V,,1). Fix
H: [V,1]<“ — V,1. Since ads stationary;.ay’ is stationary, by lemma 2.9
and lemma 2.15 we can chooseé*X, € ag‘s such that Xp"= V,, |Xo| = w, and
ap, H,v, < ANHQSQ ta < 7 >€ Xgand {A“ﬂQSQ Ya € XoNny} C Xo.
Define an elementary chain < X, &« € X A#%=> as follows, for B € Xo Ny
a limit ordinal Xz = U{X, > a < B,a €XgNn}. Leta € Xo Ny with X,
given such that X, < Vs and |X,|“< min{y,A}. Since A, N qu is semi-
proper then there exists F : [V,14]<“ — V,41 such that Cr C A, NQZ,,
since X, < Vs and A, N QSQ € X, therefore X, NV, 41 € sp(Aa N Q5<7). Let
Y < V,41 such that X, NV, C Y, YNV, end-extends X, NV, and for
somed € YNX,NVyyq, YN (Ud) € d; since X, <V,
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is an elementary substructure of Vs, Xy NV, = YWV, ‘and X, 11 N (Ub) € b
for some b € A, N QSQ N Xyt1-

Let X = U{X, : & € XpNy}=Since |Xp/"= w and for every a« € XpNy,
| Xy| < min{y, A} then X satisfies (1).

We have X < Vs whichidmplies X'V, is closed under H.

Note that for every w < B, withva, B € Xo.77 we have X, Ny = Xo Ny
and X, NV, end-extends Xz NV,, so XNy = XoNny and XNV, end-
extends Xy N V,, which means that X NV, satisfies (2). And for each
a € X Ny there exists b € Xgyi ™A, N QS<7 such that X, 1 N (Ub) € b but
Xu+1 N (Ub) = XN (Ub) se-X satisfies (3). We conclude that 4 is stationary.

Note that by the definition of a4, a < ag, so the set of conditions in Qi 5
with elements X < V, ;1 and that satisfies (1) and (3),is a dense set. So we
can assume a € G for some ay.

By the properties of a, for each X € a and{a ‘€ X N7 there exists

be XNA,N Q5<7 such that X N (Ub) ‘€/b. Since b_& A,, by the way we
defined A, there is a function f,4))€ Ord” such’that b |F [f(b,a)]c ~ T(&).
Define f as a function from-gto V such that f(X) (@)= f.) (X N (Ub)),
f(X) is a function with domain X Ny; thus [f] iswa function in (M, E) with
domain j[#].

Fix « < 57 and a, = {X €@ « € X}fasin Lemma 4.15, a, € G. Let
b € GN A, then theredexists ¢ € .G such that ¢ < a4, ¢c < bso Y € ¢,
Y N (Uay) € a, therefore’a € Y andthere exists d € A, NQ%,NY N (Uay)
such that Y N (Ua,) M (Ud) €d,butd € A, N QS then Ud C Ua, C Uc and
Y N (Uay) N (Ud) =Y N (Od).

Define F : ¢ = Ay, F(X) = d withd € A,NQ3,NY and YN (Ud) € d; by
normality there exists d € A, such that ¢’ = {Y € c: F(Y) =d} € Q%; and
¢ <d, butc <b, weconclude d = b.

Therefore a I+ [f]c(j(&)) = T(&). We conclude that f represents in (M, E)
the function from j[z] to M given by j(a) — 15(«), Tc € M. O



P/\(VK)
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—

N
4.2. Proper@%i,c

Theorem 4.22. Suppose 6 is a Woodin ca

is wellfounded and M<° C M in V|G

Proof. Follows from theorem 4.19
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Chapter 5

Applications

“ Don’t cry because it's over, smile because it happened.

- Dr. Seuss

5.1 Generic Absoluteness

In Namba forcing the cofinality of w, is change to w witheut collapsing
w1; using the stationary tower this can be‘generalized in ‘such a way that
the cofinality of A a regular cardinal can\be changed.to any other regular

cardinal without collapsing the cardinals below ‘A,

Example 5.1. Let 6 be a Woodin-cardinal and ¢ < A < é-regular cardinals. The
seta = {a < A:cf(a) = v} is stationary in P(A), m € Ps. Suppose G is a
Vgeneric such that a € G and let j besthe associated generic embedding, by corollary
3.14 j[Ua] € j(a), JA] € {& <A : cf (h=3(1)} 50 j[A] € j(A), thus A € G
and since A is reqular cp(j) = A. Wetonclude cf(A) = j(y) = 7 in M. Since
M= C M in V|G|, cf(A) = j(y= v in V|[G] and the cardinals below A\ are

preserve.

The first applications of the stationary tower were in absoluteness results,

the first one that we are going to show is about the theory of Chang models.
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Definition 5.1. We call L(Ord) the Chimgmodel and-it'is defined as
L(Ord?“) = U L(Pu(a))
a€O0rd
Definition 5.2. If M is aset (class) such that every.member of X has rank less
than some ordinal in M. \We let
M(X)= [ U LMV XNVp)
aeMNOrd BeMna
A set of w-sequences of ordinals ¢ is closed under finite sequences if for
each finite subset a of ¢ there’is a z € ¢ such that z recursively codes each
member of a.
In a transitive model M of ZF, a set x is generic over M if it exists in a generic
extension of M, x induces a generic extension and we call M[x]| the minimal

extension of M that contains x as an element.

Definition 5.3. Let M be a transitive modelof ZFC, o a set\(class) of w-sequences

of ordinals, each generic over M and closed under finite sequences, and either
Ord“ A M(o)=\c

or

P aM(o) =0

for some ordinal p. Let 6 be an ordinal in M such that My has cardinality 6 in M.
M(o) is a symmetric extension of M for.coll(w, < 6) if in some set generic exten-

sion of M there exists-air. M-generic filter G C coll(w, < ) such that
o = JH{Ord“ N M[G | o] : « < 5}
or

o= JHp" MG | a] : & <5}

The following results will be used in the proof of lemma 5.4, the proofs can

be found in [Lar04] pp 124-125.
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e If M is a transitive set (or class) model of ZFC, « is a limit ordinal in
M and x and y are sets such that {x; | exists in‘a generic extension
of M by forcing in My, then either.y € M[x]or.y exists in*a forcing
extension of M[x|by forcing it (M |x])y.

e If P and Q are partial-Orders such that forcing with Q makes (2F')V
countable, then there is a P—name 1 for a partial order such that

Q=PxrT.

Lemma 5.4. Let M be a transitive model of ZFC, and 6 a strong limit cardinal in
M. o C Ord® a set (class) of countablé sequiences of ordinals, each generic over M
and closed under finite sequences, such that Ord“ N M(c) = o or p* " M(o) =0
for some ordinal p. Then M(o)\is'a symmetric extension of M for coll(w, < &) if

and only if
1. Each x € o is M-generic for some forcing IP € Mj.
2. 6 =sup{wM : x € ¢}.

Proof. =The definition of symmetric extension gives
o ={0rd“ N MI[G | a] : « < 6} whichimplies (1) and since G G collw, < ¢)
we get (2).

<« Define IP a partial order consisting, of stes ¢ such,that for some a < 4,
x € 0, g is an M-generic filter in Mx] contained in coll(w, < «), ordered by
extension.

By (1) and (2), IP # @, since for every« < ¢ there exists x € ¢ such that « is
countable in M[x]. And by (1) P eM(0).

Let Gp be an M(0)-generic forP.and H = UGp. Note that H C coll(w, < ),
H # @.

If p <gq, p € H then for some g € Gp, p,q € gsoq € H.

If p,q € H then there exists g,,¢; € Gp with p € g, and g € g, so there
exists ¢ € Gp, § < gp, §; then p,q € g therefore there exists » € g such that
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r<p,q.

H is a filter, indeed an M-generic; to'prove that, let D be a dense subset of
coll(w, < d) in M and g an M<generic for coll(w, < 1), for some 1 < .

Since D is dense, for every p € coll(wy< 1) there exists ¢ € D such that
g < p, this implies g Meoll (w, < 1).< p, therefore the set

{gNcoll(w,< 1) : gv€ D} iscdense in coll(w;< 1), since g is M-generic in
coll(w, < 1), there exists“p € D such that p Ncoll(w,< 1) € g, and there
exists 7' < ¢ such that,p /e coll(w, < 1"). Since ¢ is strong limit in M, then
there exists x € ¢ and an M-generic ¢’ C coll(w, < 7') in M[x] such that

p € ¢ and ¢’ < g. We conclude p € H.

U{Ord* NnM[H | a]*a <6} C o
Since H Ncoll(w, < a) € M(c) for every o < 6 so
IRM[Hﬁcoll(w,<ac)] C IRM(O’) C Ordv N M(O’) — 0.

o CU{OrdN"M[H | a] : ax < 6}

We are going to prove that for €ach'x € g-there exists w. < ¢ such that
x € M[HNcoll(w, < a)]. Working in M(c), fix x € oywe are going to show
that D, = {g € P : x €/M]g]} is densevin P. Lety € 0, ¢ C coll(w, < 7)
an M-generic, § € PRAM]y|. Ifx=¢ M][g],sinee ¢ is closed under finite
sequences then {x,y} exists itva generic extension of M forcing in M, then
X exists in a forcing generic extension of-M|g] forcing in (M(g]),  for some
n' <.

Choose z € ¢ such that M, 4 isicountable in M(z] and x, y are in M|z].
Therefore exists ¢’ C coll(w, < 7') an M-generic in M[z] and ¢’ < g, we

conclude x € M[¢’],since x € M|z]. O

Lemma 5.5. Suppose that  is a Woodin cardinal which is a limit of Woodin cardi-
nal. Let G C Qg be V-generic. Then V((Ord®)VCl) is a symmetric extension of
V for coll(w, < 6).
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Proof. Let j : V. — M be the embedding corresponding to~G)in Q5. By
corollary 4.13 and theorem 4.22 j(w;) =9,

sup{wy™ 1 x € (0rd“)VICl} € M, and-d = sup{@ ¥ : x €, (Qrd®)VIFl},
(Ord«)VIG! satisfies the second conditien of lemma 5.4.

By a previous remark G N Q_gnis)V-generic.when ¢’ is a,Woodin cardinal.
Therefore the set A of strongly inaccessible cardinals'A < ¢ such that

G NQ., is V-generic for Q.,, is cofinal below J: Let x € (Ord«)VIG!, then
there exists A; (i < w) a maximal Q. s-antichain in V each one deciding the i-
th element of x. And for each™A; there exists A < d suchthat GNA; NQ.) #

@, since 6 = wY (6]

and A is cofinal,.there exists A < J such that for every
i<w,GNANQ.) # DsoxeV[GNQ,,| and is V-genric, satisfying the
first condition of lemma 5.4.

The lemma 5.4 finish the proof. O

The following result can be found in [Rael0] (Proposition 2.54) and is used
in the proof of theorem 5.6 (second paragraph).

Let IP be a partial order, G a generic filter en<IP and Y a set of ordinals in
V[G]. For every p € IP the statement p.€ IP/Y is equivalent to the existence
of a P-generic filter H over V with Y& = Y andp, & H.

Theorem 5.6. Suppose that 6is.a Woodin<cardinal which~is"a limit of Woodin
cardinals. Then for every H V-generic contained in.coll(w, < &), there exists an

elementary embedding j : L(Ord® )Y~—>L(Ord« ) VIH

Proof. Let G C Q.; be V-generic and jg 1 V — M the corresponding em-
bedding. By lemma 5.5 V((Ord“)y¥“i¢l) is a symmetric extension of V for
coll(w, < ), so there is a V-generic filter H' contained in coll(w, < J) such
that (Ord®)VIC] = (Ord«)V(@) = (Ord®)VH'l (here o = (Ord“)VI6]), and no-
tice that by theorem 4.22 (Ord*)VI¢l = (Ord“)M in V[G], so

L(Ord@)VIH'] = L(Ord“)M,

Therefore the restriction jg : L(Ord“)V — L(Ord“)M = L(Ord*)VIH is ele-
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mentary.

In the proof of the lemma 5.4 H“was defined from a generic Gp with the
forcing P, forcing in V[G]|, so~H' is in V[G][Gp], therefore there exists a
generic 1 in V[H'| such that V{H'|[h] =V]|G][Gp].

Consider the formula“‘g =“There.is'a generic i and in the generic extension
there is a parameter g, such that i (x, y,ghdefines an elementary embed-

ding.” where ¢(x,y, g) says that the generic embedding of L(Ord“)" asso-

VIH

ciated to ¢ maps x inte y. Then ¥[H'] = ¢ and there exists p I ot (w,<s) 97

since coll(w, < J) is ' weakly homogeneous then 1 Iy (¢, <5) ¢ SO

V[H] E ¢. O

The following theorem is due to Solovay, [Sol70], the proof is also in [Kan03].

Theorem 5.7 (Solovay). Suppose that « is an inaccessible cardinal and G is a V-
generic contained in coll(w, < x). Then in V]G], every setlof reals definable from
a countable sequence of ordinals is Lebesguiemeasurable,‘hais the Baire property and

has the perfect set property.

Corollary 5.8. If there exists aWoodin cardinal which isla limit of Woodin cardi-
nals, then every set of reals in the Chang. model is Lebesque measurable, has the

Baire property and hasytheperfect sét property.

Proof. Let 6 be a Woodin cardinal which-is’a limit of Woodin cardinals and
G a V-generic contained in coll(w,<d). By theorem 5.7, every set of reals in
L(Ord“)VIC] is Lebésgtie measurable, has the Baire property and has the per-
fect set property, but by theorem 5.6, there exists an elementary embedding
j i L(Ord?)V — L(Ord®)V1¢l, so every set of reals in L(Ord“)V is Lebesgue

measurable, has the Baire property and has the perfect set property. O

Suppose 0 is a Woodin cardinal and « > ¢ is a strongly inaccessible. By a
previous remark we know that the set a defined in the lemma 4.15 is sta-

tionary, but it is also compatible with all the conditions of Q.;. To show
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this it is enough to show that for every d € QZ'the set a ('d"4+1 is station-
ary, following the same argument we can.choese { <.4,asva cardinal with
d € Vg, and for every F : V§%, — Vs, 1 ‘we choose g'and X in the.same way
but with the extra assumption X M V'€ dVe, this)is possible because 4 is
stationary and X was just an element of a club, now by the corollary 4.20 we
know that there exists X' < Vi such that X' N Vs, &a; X' NVs,q € Cr and
X'NV;=XNV; €d%, X' NVsy €41

The condition a is compatible.in, P, with every condition of Q;, such that
if G C P is a V-generic filter with a € G,then GNQ; is a V-generic filter
for Q.4, and j(wq) = 6 where j : Vu=s (M, E) is the embedding correspond-
ing to G. Finally if j/ : V — N is the corresponding embedding to G N Q;,
then the elementary embedding k : N — (M, E) given by k([flgna.,) = [flc
is such that j = ko '.

Theorem 5.9. Under the assumption of the continuum hypothesis. Suppose there
are class many Woodin cardinals. For every Woodin cardinal 6,.being G C Qs a
V-generic filter, with induced embedding j : V <= M. Then every real in M satisfies
the same %3 formulas in M and in V[G].

Proof. Lets proceed by contradiction. Assume there exists,a’binary formula
¢ with quantifiers over the reals, G CQ.;a V-genericfilter, T a Q.;-name
for a set of reals, b € G a condition,in Q.;, f : 2 R a function such that
b forces that ¢([f]c, T¢) holds:in V|G| butdA C Re([f]s, A) does not hold
in M. Let ¢’ be a Woodin cardinal bigger than é.

By the previous comments we knew:that there exists a condition b € P_y,
such that there exists G’ C P «sna V-generic that satisfies G = G' N Q. and
j'(w1) = 0, where |’ is the associated embedding j' : V — M'.

Since M<% C M in V[G'] then ¢ € M and ¢([f]g, Tc) holds in M’, but
j(w1) = j'(w1) and CH holds in V, therefore M and M’ have the same reals,
so 3JA C R¢([f]g, A) holds in M. The other direction is trivial. O
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5.2 Forcing axioms

In [Wo099] the reader can find{many applications of the“stationary tower,
specially for P, and Q,.(We are going to finish this.chapter by showing

an relation between the stationary towers and the forcing axioms.

Lemma 5.10. Suppose that § is'a Woodin cardinal, A = 6 a regular cardinal and
S = Pr(Vs). Let G C Q%5 = P, be a V-generic and j : V. — (M,E) the
associated elementary embedding. Then. j(Vs) C Vs[G], where
Vs[Gl= U Ls(Va, GN Vo)
x<o

Proof. Claim: For every.a < ¢ there exists a cardinal « < B < ¢ such that
j(B) = B

Proof of the claim: Let a € P_, by lifting a’ = aV% < afor some a < 1, with
Ua C V,, since ¢ is a completely Jonsson cardinal f such that+y,a’ € Vg, thus
{ZCVg:|ZNB| =BAZNV, €a'} is stationary in Vg and stronger than a,

therefore the set

{bePss b l-3p € (w:d) j(B) = B}

is dense in P 5 and the ¢laim follows-by ‘genericity:

Let t € j(Vs), by the claim we know thab,there exists ¢ < ¢ a completely
Jonsson cardinal such that't-€ j(V,,); therefore cp( ﬁ,‘;) > yand t € jy (V,),
but by the corollary 3.14"Uy, is computed from G N V> then we conclude
that t € Ls(Vy42, GV 40). 0

Lemma 5.11. Suppose ¢ is @ Woodin cardinal and A is a reqular uncountable car-
dinal. Let S = P (V5), .G a V-generic and M the generic ultrapower.
Then Vs[G] = H)'°) € HM,

Proof. Claim: Hy '“) ¢ HM.

Proof of the claim: Working in V[G]. Suppose x € H;/[G] is transitive. Let o
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be a cardinal and E C «a X a, such that (¢, E) = (x, €).

Let h : & X & — a denote the Godel pairing;and f : « =,V a function such
that f(B) = 1 if and only if h~1(B) € Ex~Then since'M<° C M,f>¢ M and
x € M, since (B,v) € E< f(h(B, 7)) =1

Claim: V5[G] = H;/[G].

Proof of the claim: Suppose x € Vy[G]|, so exists a;7y < J such that
x € L,(V,, GNV,). So it is enough'to show: L, (V,, GNV,,) € H;/[G} for every

v, 0 < 0.

To prove this, lets do an induction-over <y to prove that
° LIY(V“, GNV,) <6é.

o Vx € L, (V,, GNV,): |x| < 4.

From this follows L (V,,GNV,) € H;/{G].

If v+ = 0 it is easy to see that since ¢ is inaccessible in V;_V,>€ H;s and
since GNV, C V,, v satisfies the inequalities. For the successor step,
note that since ¢ is inaccessible in V, for every ¢ <0, |L,(Vy,GAV,y)| <
max({| Vx|, w}) - 7v. Thus L1 (Ve, GOVy) < d and for every xIn I 1(Ve, GN
Vi), |x] < &. The limit case follews from the‘successor step.

(G]

For the other direction let x<& H;/ ,~Xx‘is”determined’ by less than A an-

tichains, each one meeting G ina Vyfora < 6 (inV),x € |J Ls(Va, GNV,).0O
a<d

Note that when A = ¢ the lemuma 5.11 is the other inclusion of the lemma

5.10 and the equality holds in the lemma'5.11 too. To show the equality of

5.11 we argument that since ¢ is inaccessible in V, j(4) is inaccessible in M so
M _ M : M M M M q I

Vj( 5 = H i(6)" Therefore since H{" C H i(0) Hy" C V].( 5" Since j is elementary;,

HM C j(V;) and finally since A = 4, by lemma 5.10 H¥ C V;[G].

Lemma 5.12 (Viale). Let §,A, S and G be as in the lemma 5.11, and j the generic
embedding. Then for every v < cp(j), Q2 ; preserve the stationary subsets of .
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Proof. Let a be a stationary subset of ynGa V-generic)for Q° ; and C a Q5 ;-
name for a club subset of 7. Then'C% e HX[G], by ‘the lemma 5.11 C© € HQA
and there exists a subset X &.V; and a‘function f 8% — X such that
[fluy, = CC, therefore {x,&€ S¥ : f(x) is'aclub} € Uxsand f(x) Na # @ for
all these x, thus {x € 8% 1 f(x) Na s @} € Ux( We conclude

M = [f]Nj(a) # @, and since j(y) = v, j(a)h=aand M = [flNa #©. O

Note that the towers R} “preserve the.stationary subsets of <y for every y < A,
since cp(j) = A forevery G V-generic.

Before we state the next property of the stationary tower we need to fix some
notation and to mentipfinsome concepts.

Given two forcing notions P, Q. We say that IP completely embeds into Q if

there exists a map 7 : IP — Q such that
e i(1p) = 1g.
e p1 <p p2 implies i(p1) <q i(p2).
e pi1 and p; are compatible if and only ifi(py) and i(p2) are compatible.
e If A is a maximal antichain in IP then i(A) is.a maximal antichain.

For a forcing notion IR and a céondition p €dP) we denote by IP | p the set
{(x,y) € P : x < p}, the restriction of.IP to the conditions below p. B(IP)
denotes the complete boolean algebra:such that IP can be embeds in B(IP) by
a dense embedding:“For more about forcing with complete boolean algebras,
the reader can check [Jec03] or[Kun11], the respective section in the forcing
chapter. Finally, for a parxtial order IP, x an uncountable regular cardinal and
X < Hy, an X-generic filter for P is a filter G that intersects every dense

subset of P, D € X,in X,i.e. DNGNX # @.

Theorem 5.13. Assume there are class many Woodin cardinals. Let A be a regular

cardinal, and P a partial order. Then the following are equivalent:
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1. {X < Hjp+ : | X| < A and there is an X-generic filter for P¥’is stationary.

2. P completely embeds into QS 5 | b for some Woodin ‘cardinal 5, S-="P) (V;)

and some stationary set b € Q3 .

Proof. 1 — 2. For each X € { X< Hp+ : [X[ <A} and there’is an X-generic
filter for P} = a let Fx € V be an X-generic filter for, P Let 6 be a Woodin
cardinal such that |[P|,A < 6 and<S = P,(V;). Define ¢ : S — Ua as
2(X) = Fx if X € a and x (a fixed element of Ua) in other case. Then, G
being a generic filter for Q° ;such that 1’ G we get {x € S"7 : ¢(x) is an

x-generic filter for P} € Uy, therefore {g] is a V-generic filter for P and
i:P— B(Q%; |a)

p—llp€gllls

is a complete embedding.

2 — 1. Let a € Q% be a conditions such that P completely ‘embeds into
Q5 | a. Thus if G is a V-generic such that a € G, H = i (G) is a V-generic
for P and H € V;[G]|, by lemma 5.11 H € M, thus( H,= [f]y, for) some
X C Vs and a function f : SX — X/ therefore b = {M € SX 1. f(M) is an
M-generic filter for P} € Uy, in-particular for'seme X - Hjp[+, so bH,, . s
stationary in Hp+| and since the sets M < H)p+| form@-club in H)p+| we are

done. O

Remark. in the previous theorem in 2. ifcb is compatible with a, (a, was
defined in the corollary 3.18) then {X < Hjp+ : XN A € A[X| < A and there

is an X-generic filter for IP} is statienary. Therefore

1. {X < Hpj+ : XN A € A|X| < A and there is an X-generic filter for P}

is stationary.

2. IP completely embeds into R} | b for some Woodin cardinal 6, S =

Py (V;) and some stationary set b € IR}.
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Definition 5.14. Given a cardinal A and“a partial order'P, we say that FA, (IP)
holds if for every collection of A denSe subsets of I, there is a-filter G C P that

intersects every set of the collection.

The following theorem.is a generalization of the theorem 2.53 of [Wo0099],
this theorem and the previous one give us a relation between forcing axioms
and the stationary tower. The teader can find the proof for the special case
when A = w, in [Wo099] pp 41; heré we are going to show the general case

and the proof is due-te Matteo Viale'in [Via] pp 15.

Theorem 5.15 (Viale). Let’A ="a™ be a successor cardinal, P a partial order such
that (P, <) = (x, <) for some x € Card and « < |P|. Then the following are

equivalent.
1. FA.(P).

2. {X < Hppp+ : XN A € A, |X| < Aand there’is an X-generic filter for P} is

stationary.

Proof. 1 — 2. Choose 8 > A such)that P €\Hp and My~ Hy such that
P € My, « C My and |My| =-a. Therefore by FA,(IP)/ there exists a filter H
which meets all the dense sets in Mj:

Define M; as
M; ={ac€ Hp:Ire Myn¥"33 € H(gl-a = 1)}

Claim: M; < H,.
Proof of the claim: Let ¢(xo, «+. xX5) be a first order formula and ay, ..., 4, €
M such that Hy = 3x@(aaq,- .. ,a,). Let T, ..., T € Mo N VF be such that

for each i there exists g, € H such that g; IF a; = 7;, and
- 3x € HY ¢(x, Tl,...,Tn)HX
Since P € Hy there exists T € Hy such that

I+ q)(T,T1,...,Tn)HX ANTEV



5.2.<Porcing axioms

By the way we chose My, we know that T € My VWP and_that there exists
g € Hsuch thatg |- 7; = a; and q IF T = a fot some a € Hy. By the definition
of My, a € My and Hy |= ¢(a,ay,...,ay):

Claim: H is M;-generic.

Proof of the claim: Let D € My be a dense’subset of IR.~There exists T € My
and g € H such that g IF T = Dfand I 7 is a-dense subset of IP which
belongs to V.

Since My < Hp, there exists T/ € M, such that IF T/ € TN H,therefore there
exists r < g, r € Hand p € Pesuch that r IF 7/ = pand r IF T = D,
rlEpe HNDand p >r, p €HND, and p € M;.

Since H is a filter and by the definition of M there is a injective function
from M; into Mo N VP, and My C M, we conclude | Mg} ="|My| =«
Choose o« < B, B € MiNA, T € My and q € H¢such that Ik ‘T € A and
q Ik T = B. Pick a P-name ¢, € VP N M such that I ¢, :-a"= T is a bijec-
tion which belongs to V, and there exists <7, r € H such'that r I[F.¢: = ¢
for some ¢ € V. Since &« C M then ¢fa]= f C M; and M; N A €.

Given a function f : [Hyg|<% —"Hp, and X< Hy such'that P € X, « C X,
|X|] = a« and X € Cy. By the previous claimsy, there exists M; < Hp
such that M; € Cr, MiNA € A)M;| < A and there is an M;-generic
filter for IP. Therefore {X <“HpNA €41,|X| < A and there is an X-
generic filter for P} is stationary. Pfojecting this set in Hjp+ we obtain
that {X < Hpp|+ : XN A € A, |X]| <Aand there is an X-generic filter for P}

is stationary.

2 — 1. Suppose there exists {Dg} g, such that for every filter G C IP there
exists v < a such that GN D,,.
Let F : [Hp+]=“ — Hp|+ be a function such that F(®) = a, F(a) = (Dg)p<a
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where (Dg)g<, is an enumeration of the dense sets:"Note that Dg € Hp+
and the same with the enumeration. Let C be the club such that X € C
implies X € Cr and X < Hfpp. For everynX € C, %(Dg)p<x € C, and
if X NA is transitive we get'a’ C X, therefore Dg € X for each f < a and
CN{X < Hpj+ : XMAD € AX[.< A and there is an X-generic filter for
P} =@. O

Corollary 5.16. Assume-there are class wmnany Woodin cardinals. Let A = a™ be a
successor cardinal, P-a-partial order such that (P, <) = (x, <) for some x € Card
and « < |P|.

Then FA,(PP) implies that B completely embeds into Q5 | b for some Woodin

cardinal §, S = P, (V) and some stationary set b € Q5< 5

Corollary 5.17 (Viale). Assume there are class many Woodin cardinals. Let A =
a™ be a successor cardinal, P a partial order such that (P, <).=.(x, <) for some

k € Card and o < |IP|. Then the following are equivalent.
1. FA,(P).

2. P completely embeds into R\ b for soirtesWoodin ¢ardinal 6, S = Py (V)

and some stationary set b-€ R}.
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