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1 Preliminaries

In order to simplify the notation, we will use the monster model technique, i.e. we work inside M, where M |= T
is a saturated model of size κ̄. κ̄ is larger than the cardinality of any object that we come across. By a model,
we mean an elementary submodel of M of size smaller than κ̄. By a ∈ A we mean a ∈ Alength(a). By “a
model” we mean an elementary submodel of M of size smaller than κ̄. We will mainly work with stable theories
(Definition 2.8).

Notation. We denote Sm(A) the set of all consistent types over A in m variables (modulo change of
variables). S(A) = ∪m<ωS

m(A) and by t(a,A) we mean the complete type of A (in M).
For mention some examples and properties, we will need the forking notion. We will follow the definition of

forking from [2], it is equivalent to the definition from [12]

Definition 1.1. For every finite set ∆ of formulas, we define R∆(p, ω), for all types p, in the following way.

1. R∆(p, ω) ≥ 0 if p is consistent.

2. R∆(p, ω) ≥ α+ 1 if for all finite q ⊆ p and n < ω, there are ∆-types {qi}i<n, such that:

(a) for all i < j ≤ n there are φ(x, y) ∈ ∆ and b such that φ(x, b) ∈ qi and ¬φ(x, b) ∈ qj or vice versa,

(b) for all i < n, R∆(q ∪ qi, ω) ≥ α.

3. If α is limit, then R∆(p, ω) ≥ α if R∆(p, ω) ≥ β holds for all β < α.

We say that R∆(p, ω) = α if α is the least ordinal such that R∆(p, ω) ̸≥ α. If such α does not exists, then we
say R∆(p, ω) = ∞. We write R∆(p, ω) = −1 if p is not consistent.

Definition 1.2. We say that a consistent formula φ(x, a), a ∈ M, forks over A if for all p = p(x) ∈ S(A) the
following holds:

If p∪{φ(x, a)} is consistent, then there is a finite ∆ such that for all finite ∆′ ⊇ ∆, R∆′(p∪{φ(x, a)}, ω) <
R∆′(p, ω).

Definition 1.3. We say that p forks over A if there is a finite q ⊆ p such that ∧q forks over A

Definition 1.4. We write a ↓A B if t(a,A ∪B) does not fork over A.

Lemma 1.5 (Properties of forking, [2], [12]). Let A ⊆ B ⊆ C ⊆ D, a and b be arbitrary.

1. a ↓A A.

2. If a ↓A D, then a ↓B C.

3. If a ̸↓A B, then there is c ∈ B such that a ̸↓A c.

4. If a ↓A b, then b ↓A a

5. a ↓A C if and only if a ↓A B and a ↓B C.

6. If t(a,A) is algebraic, then a ↓A B for all B.

7. If t(a,B) is algebraic and t(a,A) is not, then a ̸↓A B.

2 Motivation: Classifiaction theory and GDST

The aim of this section is to explain why the isolation notions and primary models are important when study
the isomorphism relation of countable theories in Generalized Descriptive Set Theory (GDST). Some of the
notions defined in this section require definitions from the following sections for a full understanding. The idea
of presenting this notions without definition is to provide a simplify picture of the notions that we will deal with
in the following sections.

We will work under the general assumption that κ is a regular uncountable cardinal that satisfies κ = κ<κ.
We will work only with first-order countable complete theories on a countable language, unless something else
is stated.

Definition 2.1 (The Generalized Baire space). Let κ be an uncountable cardinal. The generalized Baire space
is the set κκ endowed with the following topology. For every η ∈ κ<κ, define the following basic open set

Nη = {f ∈ κκ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.
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Definition 2.2 (The Generalized Cantor space). Let κ be an uncountable cardinal. The generalized Cantor
space is the set 2κ endowed with the following topology. For every η ∈ 2<κ, define the following basic open set

Nη = {f ∈ 2κ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Let us fix a bijection π : κ<ω → κ and a countable relational language L = {Pm | m ∈ ω}.

Definition 2.3. For every η ∈ κκ define the structure Aη with domain κ as follows.
For every tuple (a1, a2, . . . , an) in κ

n

(a1, a2, . . . , an) ∈ PAη
m ⇔ the arity of Pm is n and η(π(m, a1, a2, . . . , an)) > 0.

Definition 2.4. For every η ∈ 2κ define the structure Aη with domain κ as follows.
For every tuple (a1, a2, . . . , an) in κ

n

(a1, a2, . . . , an) ∈ PAη
m ⇔ the arity of Pm is n and η(π(m, a1, a2, . . . , an)) = 1.

Notice that the previous method can also be used to encode structures with domain α, into functions αα,
Aα. The structure Aη ↾ α is not necessary coded by the function η ↾ α.

Exercise 2.1. There is a club Cπ such that for all α ∈ Cπ, Aη ↾ α = Aη↾α

With the structures coded by the elements of 2κ and κκ, it is easy to define the isomorphism relation of
structures of size κ in both spaces.

Definition 2.5 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary.
We define ∼=κ

T as the relation

{(η, ξ) ∈ κκ × κκ | (Aη |= T,Aξ |= T,Aη
∼= Aξ) or (Aη ̸|= T,Aξ ̸|= T )}.

Definition 2.6. Assume T is a complete first order theory in a countable vocabulary. We define ∼=2
T as the

relation
{(η, ξ) ∈ 2κ × 2κ | (Aη |= T,Aξ |= T,Aη

∼= Aξ) or (Aη ̸|= T,Aξ ̸|= T )}.

The collection of κ-Borel subsets of κκ is the smallest set that contains the basic open sets and is closed
under union and intersection both of length κ. A κ-Borel set is any set of this collection.

A function f : κκ → κκ is κ-Borel, if for every open set A ⊆ κκ the inverse image f−1[A] is a κ-Borel subset
of X. Let E1 and E2 be equivalence relations on κκ. We say that E1 is κ-Borel reducible to E2 if there is a
κ-Borel function f : κκ → κκ that satisfies

(η, ξ) ∈ E1 ⇐⇒ (f(η), f(ξ)) ∈ E2.

We call f a reduction of E1 to E2 and we denote this by E1 ↪→B E2. In the case f is continuous, we say that
E1 is continuously reducible to E2 and we denote it by E1 ↪→c E2.

Notice that ∼=κ
T ↪→c

∼=2
T holds for every theory T . From now on let us denote by ∼=t both notions ∼=κ

T and
∼=2

T .

Question 2.7. Under which assumptions on theories T1 and T2 the following holds

∼=T1
↪→c

∼=T2
,

or even
∼=T1 ↪→B

∼=T2?

2.1 Classifiable and non-classifiable theories

Shelah’s Main Gap Theorem gives us a notion of complexity, a theory is more complex if it has more models.
Thus, it gives us an idea on how the Borel-reducibility of the isomorphism relation of theories may behave. Let
us introduce the require notions to state Shelah’s Main Gap Theorem.

Definition 2.8. • We say that T is ξ-stable if for any set A, |A| ≤ ξ, |S(A)| ≤ ξ.

• We say that T is stable if there is an infinite ξ, such that T is ξ-stable.

• We say that T is unstable if there is no infinite ξ, such that T is ξ-stable.
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• We say that T is superstable is there is an infinite ξ such that for all ξ′ > ξ, T is ξ′-stable.

Definition 2.9 (OTOP). A theory T has the omitting type order property (OTOP) if there is a sequence
(φm)m<ω of first order formulas such that for every linear order l there is a model M and n-tuples at(t ∈ l) of
members of M, n < ω, such that s < t if and only if there is a k-tuple c of members of M, k < ω, such that
for every m < ω,

M |= φm(c, as, at).

Definition 2.10 (DOP). A theory T has the dimensional order property (DOP) if there are F a
ω -saturated

models (Mi)i<3, M0 ⊆ M1 ∩M2, M1 ↓M0
M2, and the F a

ω -prime model over M1 ∪M2 is not F a
ω -minimal over

M1 ∪M2.

Definition 2.11. • We say that T is classifiable is T is superstable without DOP and without OTOP.

• We say that T is non-classifiable if it satisfies one of the following:

1. T is stable unsuperstable;

2. T is superstable with DOP;

3. T is superstable with OTOP;

4. T is unstable.

Theorem 2.12 ([12] Main Gap Theorem). For every T first order complete theory over a countable vocabulary.
Let I(T, α) denote the number of non-isomorphic models of T with cardinality α. One of the following holds:

1. If T is shallow superstable without DOP and without OTOP, then ∀α > 0 I(T,ℵα) ≤ ℶω1
(| α |).

2. If T is not superstable, or superstable and deep or with DOP or with OTOP, then for every uncountable
cardinal α, I(T, α) = 2α.

Question 2.13. Let T1 be a classifiable theory and T2 be a non-classifiable theory. Is ∼=T1
Borel-reducible (or

continuous) to ∼=T2
, i.e. ∼=T1

↪→B
∼=T2?

2.2 The successor case

The equivalent modulo non-stationary S (=κ
S) has been very important when study Question 2.13.

Definition 2.14. Given S ⊆ κ and β ≤ κ, we define the equivalence relation =β
S ⊆ βκ × βκ, as follows

η =β
S ξ ⇐⇒ {α < κ | η(α) ̸= ξ(α)} ∩ S is non-stationary.

Let µ be a regular cardinal. We will denote by =β
µ the relation =β

S when S = {α < κ | cf(α) = µ}. Notice

that η =β
µ ξ holds if and only if {α < κ | cf(α) = µ & η(α) = ξ(α)} contains an unbounded subset closed under

µ-sequences.
The following is the usual Ehrenfeucht-Fräıssé game but coded in a particular way for our purposes.

Definition 2.15. (Ehrenfeucht-Fräıssé game) Fix {Xγ}γ<κ an enumeration of the elements of Pκ(κ) and
{fγ}γ<κ an enumeration of all the functions with domain in Pκ(κ) and range in Pκ(κ). For every pair of
structures A and B with domain κ and α < κ, the EFκ

ω(A ↾α,B ↾α) is a game played by the players I and II as
follows.
In the n-th move, first I choose an ordinal βn < α such that Xβn ⊂ α, Xβn−1 ⊆ Xβn , and then II an ordinal
θn < α such that dom(fθn), rang(fθn) ⊂ α, Xβn

⊆ dom(fθn) ∩ rang(fθn) and fθn−1
⊆ fθn (if n = 0 then

Xβn−1
= ∅ and fθn−1

= ∅). The game finishes after ω moves. The player II wins if ∪i<ωfθi : A ↾α→ B ↾α is a
partial isomorphism, otherwise the player I wins.

We write I ↑ EFκ
ω(A ↾α,B ↾α) if I has a winning strategy in the game EFκ

ω(A ↾α,B ↾α). We write II ↑
EFκ

ω(A ↾α,B ↾α) if II has a winning strategy.

Lemma 2.16 ([4], Lemma 2.4). If A and B are structures with domain κ, then the following hold:

• II ↑ EFκ
ω(A ↾ κ,B ↾ κ) ⇐⇒ II ↑ EFκ

ω(A ↾α,B ↾α) for club-many α.

• I ↑ EFκ
ω(A ↾ κ,B ↾ κ) ⇐⇒ I ↑ EFκ

ω(A ↾α,B ↾α) for club-many α.

The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 2.17 ([12], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T that are
L∞,κ-equivalent are isomorphic.
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Theorem 2.18 ([1], Theorem 10). L∞,κ-equivalence is equivalent to EFκ
ω-equivalence.

From these two theorems we know that if T is a classifiable theory, then for any A and B models of T with
domain κ,

II ↑ EFκ
ω(A,B) ⇐⇒ A ∼= B

I ↑ EFκ
ω(A,B) ⇐⇒ A ≇ B.

From the previous Lemma we know the following two hold for any A and B models of a classifiable theory (with
domain κ):

• A ∼= B ⇐⇒ II ↑ EFκ
ω(A ↾α,B ↾α) for club-many α.

• A ≇ B ⇐⇒ I ↑ EFκ
ω(A ↾α,B ↾α) for club-many α.

Lemma 2.19 ([3], Lemma 2). Let µ < κ be a regular cardinal and Sκ
µ = {α < κ | cf(α) = µ}. Assume T is a

classifiable theory and µ < κ is a regular cardinal. If ♢κ(S
κ
µ) holds then ∼=T is continuously reducible to =2

µ.

By using Ehrenfeucht-Mostowski models, it is possible to construct for each f ∈ 2κ a model Af such that
the following hold.

Lemma 2.20 ([10], Lemma 4.28). Suppose κ = λ+ = 2λ and λω = λ. If T is a countable complete unsuperstable
theory over a countable vocabulary, then for all f, g ∈ 2κ, f =2

ω g if and only if Af and Ag are isomorphic.
Even more, =2

ω ↪→c
∼=T .

Theorem 2.21 ([10], Corollary 4.12). Suppose κ = λ+ = 2λ and λω = λ. If T1 is a countable complete
classifiable theory, and T2 is a countable complete unsuperstable theory, then ∼=T1

↪→c
∼=T2

and

∼=T2 ̸↪→c
∼=T1 .

Theorem 2.22 ([11], Theorem 5.5). Suppose κ = λ+ = 2λ, 2ω = c, and 2c ≥ λ = λω1 . Let T be a countable
complete classifiable theory and T2 be a countable complete non-classifiable theory. If T2 is superstable with
OTOP, or superstable with DOP, then

∼=T1 ↪→c
∼=T2 and ∼=T2 ̸↪→B

∼=T1 .

2.3 Inaccessible case

The previous results depend highly on ♢κ(S
κ
ω) and ♢κ(S

κ
ω1
). This diamond principle holds under the assump-

tions κ = λ+ = 2λ and λ = λω1 . For the case κ inaccessible we will need to change the approach. Fortunately
there is a version of Lemma 2.19 for the generalized Baire space, which is a theorem of ZFC.

Lemma 2.23 ([4], Theorem 2.8). Assume T is a classifiable theory and µ < κ is a regular cardinal. Then ∼=T

is continuously reducible to =κ
µ.

In the inaccessible case, the construction of the models is done by using primary models. The models Af

are constructed such that there is µ < κ such that for all f, g ∈ κκ, f =κ
µ g holds if and only if Af and Ag are

isomorphic.
To show the construction, we will need to introduce the basics of isolation notions and constructible sets.

3 Isolation notions

In this section we will follow Hyttinen notes [2] and the fourth chapter of [12]. We will omit some proofs, these
ones can be found in [2] and [12].

3.1 Axioms and Examples

Let λ be an infinite cardinal and Pλ the class of pairs (p,A) such that |A| < λ and for some B ⊇ A, p ∈ S(B).
Let Fλ ⊆ Pλ be such that satisfies the following axioms:

I. Fλ is closed under the change of variables. If p ∈ S(B), A ⊆ B and

q = {φ(y0, . . . , ym; ā) | φ(xσ(0), . . . , xσ(m); ā) ∈ p}

(where σ is a permutation of {0, . . . ,m}), then (p,A) ∈ Fλ if and only if (q, A) ∈ Fλ.
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II. Fλ is closed under automorphisms. For all automorphism f , (p,A) ∈ Fλ holds if and only if (f(p), f [A]) ∈
Fλ.

III. If a ∈ A ⊆ B and |A| < λ, then (t(a,B), A) ∈ Fλ.

IV. If A ⊆ B ⊆ C ⊆ dom(p), |B| < λ and (p,A) ∈ Fλ, then (p ↾ C,B) ∈ Fλ.

V. If (t(a ∪ b, B), A) ∈ Fλ, then (t(a,B), A) ∈ Fλ.

VI. If |C| < λ and (t(a ∪ C,B), A) ∈ Fλ, then (t(a,B ∪ C), A ∪ C) ∈ Fλ.

VII. If A,B ⊆ C, (t(b, C ∪ a), B) ∈ Fλ and (t(a,C), A) ∈ Fλ, then (t(a,C ∪ b), A) ∈ Fλ.

VIII. If A ⊆ B, (t(a,B ∪ C), A ∪ C) ∈ Fλ and (t(C,B), A) ∈ Fλ, then (t(a ∪ C,B), A) ∈ Fλ.

IX. If ⟨Bi | i < δ⟩ is an increasing sequence of sets, p ∈ S(
⋃

i<δ Bi) and for all i < δ, (p ↾ Bi, A) ∈ Fλ, then
(p,A) ∈ Fλ.

X. If (p,A) ∈ Fλ and dom(p) ⊆ B, then there are A′ ⊆ B and q ∈ S(B) such that p ⊆ q and (q, A′) ∈ Fλ.

We write (t(C,B), A) ∈ Fλ if for every c ∈ C, (t(c,B), A) ∈ Fλ.

Definition 3.1. Let us define F t
λ to be the set of all pairs (p,A) ∈ Pλ that satisfies: For all (p,A) ∈ F t

λ, there
is q ⊆ p ↾ A such that |q| < λ and q ⊢ p.

Lemma 3.2 ([2], [12]). F t
λ satisfies axioms I to IX. If λ > |T | and T is λ-stable, then it also satisfies axiom X.

Definition 3.3. Let us define F s
λ to be the set of all pairs (p,A) ∈ Pλ such that p ↾ A ⊢ p.

Lemma 3.4 ([2], [12]). F s
λ satisfies axioms I to IX. If λ > |T | and T is λ-stable, then it also satisfies axiom X.

Proof. Axioms I to IV are easy to show.

V. Let a, b, A,B be such that (t(a∪b, B), A) ∈ Fλ. By the definition of F s
λ , we know that t(a∪b, A) ⊢ t(a∪b, B).

So t(a,A) ⊢ t(a,B).

VI. Let a,A,B,C be such that (t(a ∪ C,B), A) ∈ Fλ. Let b be such that b |= t(a,A ∪ C). Therefore
b⌢C |= t(a ∪ C,A). Since (t(a ∪ C,B), A) ∈ Fλ, b

⌢C |= t(a ∪ C,B). We conclude that b |= t(a,B ∪ C).

VII. Let us show that if A,B ⊆ C, (q1, B) ∈ F s
λ where q1 = t(b, C ∪ a) and (p,A) ∈ F s

λ where p = t(a,C), then
(p1, B) ∈ F s

λ , where p1 = t(a,C ∪ b).
Let q = q1 ↾ A. Let us first show that if a1 and b1 are such that a1 |= p and b1 |= q, then a⌢1 b1 |= t(a⌢b, C).
Since t(a1, C) = t(a,C), there is an elementary map f such that f ↾ C = idC and f(a) = a1. On the
other hand B ⊆ C, and (q,B) ∈ F s

λ . So t(b, C) ⊢ t(b, C ∪ a) and t(b, C) ⊢ t(b, C ∪ a1). Therefore
t(a⌢b, C) = t(a⌢1 b1, C).

So t(a1, C ∪ b) = t(a,C ∪ b). Thus p ⊢ p1. Finally (t(a,C), A) ∈ F s
λ implies (t(a,C ∪ b), A) ∈ F s

λ .

VIII. Let p = t(a,B ∪ C), q = t(C,B) and r = t(a ∪ C,B), such that (p,A ∪ C) ∈ Fλ and (q,A) ∈ Fλ.

Claim 3.5. Suppose p′ and q′ are such that dom(p′) = A∪C, dom(q′) = A, are closed under conjuction,
are p′ ⊢ p and q′ ⊢ q. Then define r′ by

{(∃xd)[ψ(xa, xc, xd; b1) ∧ θ(xc, xd; b
2)] | b1, b2 ∈ A, c, d ∈ C,ψ(xa; c, d, b

1) ∈ p′, θ(xc, xd; b
2) ∈ q′}.

Then r′ ⊢ r.

Proof. Let b0 and φ be such that b0 ∈ B and φ(xa, xc, b0) ∈ r. There is c ∈ c such that a⌢c |= φ(xa, xc, b0).
Therefore, p′ ⊢ φ(xa, c, b0) ∈ p. So, there is ψ(xa, c, d, b1) ∈ p′ with d ∈ C, b1 ∈ A ⊆ B, and

ψ(xa, c, d, b1) ⊢ φ(xa, c, b0).

Let b2 = b⌢1 b0 and denote by φ∗(xc, xd, b2) the formula

∀xa[ψ(xa, xc, xd, b1) → φ(xa, xc, b0)].

Thus c⌢d |= φ∗(xc, xd, b2), hence φ
∗ ∈ q. Since q′ ⊢ q, q′ ⊢ φ∗ and there are b3 ∈ A and θ(xc, xd, b3) ∈ q′

such that
M |= ∀xc∀xd[θ(xc, xd, b3) → φ∗(xc, xd, b2)].

We conclude that
∃xd[ψ(xa, xc, xd, b1) ∧ θ(xc, xd, b3)] ⊢ φ(xa, xc, b0),

the claim follows form the fact that ∃xd[ψ(xa, xc, xd, b1) ∧ θ(xc, xd, b3)] ∈ r′.
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IX. Let us suppose, towards contradiction, that p ∈ S(
⋃

i<δ Bi) and for all i < δ, (p ↾ Bi, A) ∈ Fλ, and
(p,A) /∈ Fλ. So there is a |= p ↾ A such that a ̸|= p. Therefore, there is φ(x) ∈ p such that a doesn’t
satisfies φ(x). There is i < δ, such that φ(x) ∈ p ↾ Bi. Since a |= p ↾ A and (p ↾ Bi, A) ∈ Fλ, p |=↾ Bi.
Thus a satisfies φ(x), a contradiction.

X. Let us suppose, towards contradiction, that there are p, A and B are such that (p,A) ∈ F s
λ and for all

q ∈ S(B) such that p ⊆ q, for all A′ ⊇ A, (q′, A′) /∈ F s
λ . Therefore, for all η ∈ 2≤λ, we can find pη, Aη ⊆ B

such that the following hold:

• p() = p ↾ A and A() = A;

• for all η, pη ∈ S(Aη), Aη⌢(0) = Aη⌢(1) and |Aη⌢(0) −Aη| < ω;

• if η is an initial segment of ξ, then pη ⊆ pξ;

• if α = length(η) is limit, then pη = ∪β<αpη↾β ;

• for all η, pη⌢(0) is contradictory with pη⌢(1).

Since |A| < λ and |Aη⌢(0) −Aη| < ω holds for all η ∈ 2<λ, B′ = ∪η∈2<λAη and |B′ ≤ λ|. It is clear that for all
ξ, η ∈ 2λ, pξ and pη are contradictory. Thus |S(B′)| > λ, a contradiction.

Definition 3.6. We say that a relation R(x) of M is over A if it is definable by some formula φ(x, a), a ∈ A.

Definition 3.7. We say that an equivalence relation E(x, y) in M is finite, if the number of equivalence classes
is finite.

Let us denote by FE(A) the set of all finite equivalence relations over A.

Definition 3.8. We define stp(a,A), the strong type of a over A, to be the set

{E(x, a) | E ∈ FE(A)}.

Lemma 3.9 (Properties of strong types, [2], [12]). Let A ⊆ B, a and b be arbitrary.

1. If stp(a,A) = stp(b, A), a ↓A B and b ↓A B, then stp(a,B) = stp(b, B).

2. stp(a,A) ⊢ t(a,A).

3. If stp(a,A) = stp(b, A), a ↓A B and b ↓A B, then t(a,B) = t(b, B).

4. If A is a model, then t(a,A) ⊢ stp(a,A).

5. If A is a model, t(a,A) = t(b, A), a ↓A B and b ↓A B, then stp(a,B) = stp(b, B).

6. There is c such that stp(c, A) = stp(a,A) and c ↓A B.

Definition 3.10. Let us define F a
λ to be the set of all pairs (p,A) ∈ Pλ such that for some a |= p, stp(a,A) ⊢ p.

Lemma 3.11 ([2], [12]). Let (p,A) ∈ Pλ. Then (p,A) ∈ F a
λ if and only if for all a |= p, stp(a,A) ⊢ p.

Proof. Let us suppose, towards contradiction, that there are a, b |= p and c such that stp(a,A) ⊢ p, stp(b, A) =
stp(c, A) and c ̸|= p. Choose f ∈ Aut(dom(p)) such that f(b) = a. Let a′ = f(c). Then stp(a′, A) = stp(a,A)
but a′ ̸|= p, a contradiction.

Exercise 3.1. Show that F t
λ ⊆ F s

λ ⊆ F a
λ .

Lemma 3.12 ([2], [12]). If T is stable, then F a
λ satisfies axioms I to IX. If T is a superstable countable theory

over a countable vocabulary, then it also satisfies axiom X.

Definition 3.13. Let us define F f
λ to be the set of all pairs (p,A) ∈ Pλ that p does not fork over A.

Lemma 3.14 ([2], [12]). If T is stable, then F f
λ satisfies axioms I to X.
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3.2 Models

Definition 3.15. We say that (A, (ai, Bi)i<α) is an Fλ-construction over A if for all i < α, (t(ai, Ai), Bi) ∈ Fλ,
where Ai = A∪

⋃
j<i aj. We say that C is Fλ-constructible over A if there is an Fλ-construction (A, (ai, Bi)i<α)

over A such that C = A ∪
⋃

i<α ai.

Definition 3.16. We say that C is (Fλ, κ)-saturated if for all B ⊆ C of size smaller than κ and p ∈ S(B) the
following holds:

If A is such that (p,A) ∈ Fλ, then p is realized in C.

Definition 3.17. We denote by µ(Fλ) the least cardinal µ such that for all κ ≥ µ and C, if C is (Fλ, µ)-
saturated, then it is (Fλ, κ)-saturated. If such µ does not exists, then we say µ(Fλ) = ∞.

Definition 3.18. We say that (Fλ, κ)-primary over A if it is Fλ-constructible over A and (Fλ, κ)-saturated.

Lemma 3.19 ([12]). For all A and κ there is an (Fλ, κ)-primary set over A. If µ(Fλ) < ∞, then there is an
Fλ-primary set over A.

Sketch of the proof. Let us construct by induction the sequence ⟨(aα, Bα)⟩, such that pα = t(aα, Aα), (pα, Bα) ∈
Fλ, where Aα = A ∪

⋃
{ai | i < α}, and Aθ = A ∪

⋃
{ai | i < θ} is (Fλ, κ)-saturated.

Let α be such that for all i < α we have defined ai and Bi. Suppose that Aα is not (Fλ, κ)-saturated.
Therefore, there is at least one tuple (q, C) ∈ Fλ, C ⊆ dom(q) ⊆ Aα, |dom(q)| < κ, such that q is not realized
in Aα. Let us define for any (q, C) tuple of this kind,

j(q) = min(i|i ≤ α, dom(q) ⊆ Ai).

Let us choose (qα, Cα) with j(qα) minimal. By Axiom X, there is a pair (pα, Bα) ∈ Fλ, such that qα ⊆ pα and
pα ∈ S(Aα). Finally choose aα, such that aα |= pα. It is clear that if Aα is (Fλ, κ)-saturated we are done.
Thus, it is enough to show that for some α < ((|A|+ 2)κ+|T |)+, Aα is (Fλ, κ)-saturated.

We say that C is Fλ-saturated if it is (Fλ, |C|+)-saturated. Notice that C is Fλ-saturated if and only if C
is (Fλ, µ(Fλ))-saturated.

Definition 3.20. We say that C is Fλ-primitive over A if for all Fλ-saturated B ⊇ A there is an elementary
embedding f : C → B such that f ↾ A = idA.

Definition 3.21. We say that C is Fλ-prime over A if it is Fλ-primitive and Fλ-saturated.

Lemma 3.22 ([12]). If C is Fλ-constructible over A, then it is Fλ-primitive over A and so Fλ-primary sets
over A are Fλ-prime over A.

Lemma 3.23 ([12]). If T is superstable, then for all λ and A, F a
λ -prime models over A are F a

λ -primary over
A.

Definition 3.24. We say that C is Fλ-atomic over A if for all c ∈ C, there is B ⊆ A such that (t(c, A)), B) ∈
Fλ.

Lemma 3.25 ([2], [12]). Let λ be a regular cardinal. If C is Fλ-constructible over A, then it is Fλ-atomic over
A.

Theorem 3.26 ([2], [12]). Let λ be a regular cardinal. Fλ-primary sets over A are unique up to isomorphism
over A (i.e. f an isomorphism with f ↾ A = idA).

4 Strong DOP

From now on we will work only with superstable theories.

4.1 Definitions

We will follow Section 2.2 of [9].

Definition 4.1. We say that a model M is Fλ-minimal over A if M is Fλ-saturated and there is no Fλ-saturated
model N , A ⊆ N ⊊M .

Definition 4.2. A superstable theory T has the dimensional order property (DOP) if there are F a
ω -saturated

models (Mi)i<3, M0 ⊂ M1 ∩M2, M1 ↓M0
M2, and the F a

ω -prime model over M1 ∪M2 is not F a
ω -minimal over

M1 ∪M2.
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Definition 4.3. Let p, q ∈ S(A). We say that p is orthogonal to q, p ⊥ q, if for all a, b and B ⊇ A the following
holds:

If a realizes p, b realizes q, a ↓A B, and b ↓A B, then a ↓B b.

Definition 4.4. We say that p ∈ S(A) is orthogonal to B ⊆ A, p ⊥ B, if p is orthogonal to every q ∈ S(A)
which does not fork over B.

Fact 4.5 ([9], Fact 2.7). Let B,D ⊆M , M a F a
ω -saturated model over B∪D, and p ∈ S(M). If p is orthogonal

to D and p does not fork over B ∪ D, then for every a |= p ↾ B ∪ D the following holds: a ↓B∪D M implies
tp(a,M) ⊥ D.

Proof. Notice that since M is a model, then every complete type over M is stationary. Let p ∈ S(M) and
B,D ⊆ M such that p is orthogonal to D and p does not fork over B ∪D. Suppose, towards a contradiction,
that there is a such that a |= p ↾ B ∪D, a ↓B∪D M and tp(a,M) ̸⊥ D. Therefore, there are N and c, D ⊆ N ,
such that a ↓M N , c ↓D M ∪N , and a ̸↓N c.
Let b be such that b |= p, there is f ∈ Aut(M, D ∪ B) such that f(a) = b. Denote by N ′ the image f(N).
Choose b′ such that b′ ↓B∪D M ∪N ′ and stp(b′, B ∪D) = stp(b, B ∪D). We know that a ↓B∪D M and a ↓M N ,
then by transitivity we get a ↓B∪D M ∪N . Therefore a ↓B∪D N , since f ∈ Aut(M, D ∪ B) we conclude that
b ↓B∪D N ′. Since stp(b′, B∪D) = stp(b, B∪D) and b′ ↓B∪D N ′ we conclude that tp(b,N ′∪B) = tp(b′, N ′∪B),
there is h ∈ Aut(M, N ′ ∪ B) such that h(b) = b′. On the other hand, by the way we chose b, we know that
b ↓B∪D M . Since stp(b′, B ∪D) = stp(b, B ∪D) and b′ ↓B∪D M , then tp(b′,M) = tp(b,M) = p. We conclude
that there is F ∈ Aut(M, B ∪D) such that F (a) = b′ and tp(b′,M) ⊥ D. Denote by c′ the image F (c).
Choose c′′ such that tp(c′′, N ′ ∪ B ∪ b′) = tp(c′, N ′ ∪ B ∪ b′) and c′′ ↓N ′∪B∪b′ M . Since b′ ↓B∪N ′ M , then by
transitivity we get c′′b′ ↓N ′∪B M , so c′′ ↓N ′∪B M . On the other hand c ↓D M ∪ N , so c ↓D B ∪ N , since
F ∈ Aut(M, B ∪D), we get c′ ↓D B ∪N ′. By the way chose c′′ we know that tp(c′′, N ′ ∪ B) = tp(c′, N ′ ∪ B),
therefore c′′ ↓D B ∪N ′ and by transitivity we get c′′ ↓D M ∪N ′.
We conclude that c′′ ↓M N ′ and c′′ ↓D M , since b′ ↓M N ′ and tp(b′,M) ⊥ D, we get b′ ↓N ′ c′′. By the way we
chose c′′ we know that tp(c′, N ′ ∪ b′) = tp(c′′, N ′ ∪ b′), so b′ ↓N ′ c′. Since F ∈ Aut(M, B ∪D), we conclude that
a ↓N c, a contradiction.

Fact 4.6. [9] A type p ∈ S(B ∪ C) is orthogonal to C, if for every F a
ω -primary model, M , over B ∪ C there

exists a non-forking extension of p, q ∈ S(M), orthogonal to C.

Definition 4.7. Let I be a set of infinite sequences. We say that I is indiscernible over A if for all ak, bk ∈ I,
k < n, a ∈ A, and ϕ(x0, . . . , xn−1, y) the following holds:

If for all k < k′, n, ak ̸= ak′ , and bk ̸= bk′ , then

M |= ϕ(a0, . . . , an−1, a) ↔ ϕ(b0, . . . , bn−1, a).

Definition 4.8. Let I be an infinite indiscernible set. We define Av(I, A), the average type of I over A, to be
the set:

{φ(x, a) | a ∈ A, |{b ∈ I | M |= φ(b, a)}| ≥ ω}.

Lemma 4.9 ([12], X.2 Lemma 2.2). Let M0 ⊂ M1 ∩M2 be F a
ω -saturated models, M1 ↓M0 M2, M F a

ω -atomic
over M1 ∪M2 and F a

ω -saturated. Then the following conditions are equivalent:

1. M is not F a
ω -minimal over M1 ∪M2.

2. There is an infinite indiscernible I ⊆M over M1 ∪M2.

3. There is a type p ∈ S(M) orthogonal to M1 and to M2, p not algebraic.

4. There is an infinite I ⊆ M indiscernible over M1 ∪M2 such that Av(I,M) is orthogonal to M1 and to
M2.

Lemma 4.10 ([6], Theorem 2.1). Let M0 ≺ M1,M2 be F a
ω -saturated models, such that M1 ↓M0

M2. Let M3

be an F a
ω -prime model over M1 ∪M2 and let I ⊆M3 be an indiscernible over M1 ∪M2 such that Av(I,M3) is

orthogonal to M1 and to M2. If (Bi)i<3 are sets such that:

• B0 ↓M0
M1 ∪M2.

• B1 ↓M1∪B0 B2 ∪M2.

• B2 ↓M2∪B0 B1 ∪M1.

Then
tp(I,M1 ∪M2) ⊢ tp(I,M1 ∪M2 ∪i<3 Bi).
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Definition 4.11. We say that {ai | i < α} is independent over A if for all i < α, ai ↓A ∪{aj | j < α, j ̸= i}.

Lemma 4.12 ([9], Lemma 2.10). Let M0 ⊂M1 ∩M2 be F a
ω -saturated models, M1 ↓M0

M2, M3 F
a
ω -atomic over

M1 ∪M2 and F a
ω -saturated. Then the following conditions are equivalent:

1. There is a non-algebraic type p ∈ S(M3) orthogonal to M1 and to M2, that does not fork over M1 ∪M2.

2. There is an infinite indiscernible I ⊆M3 over M1 ∪M2 that is independent over M1 ∪M2.

3. There is an infinite I ⊆M3 indiscernible overM1∪M2 and independent overM1∪M2, such that Av(I,M3)
is orthogonal to M1 and to M2.

Proof. 3 ⇒ 2. It is clear.
3 ⇒ 1. By 3, we know that there is an infinite I ⊆ M3 indiscernible over M1 ∪M2 and independent over

M1 ∪M2, such that Av(I,M3) is orthogonal to M1 and to M2. Then it is enough to show that for that I,
indiscernible over M1 ∪M2, the type Av(I,M3) does not fork over M1 ∪M2.
Let b be such that b |= Av(I,M3), then I ∪ {b} is indiscernible over M1 ∪M2 and b ↓I M3.
Since I is independent over M1 ∪M2, then for all J finite subset of I and a ∈ I\J , a ↓M1∪M2

J . Therefore
b ↓M1∪M2 J holds for all J finite subset of I, because of the finite character we conclude that b ↓M1∪M2 I. By
transitivity b ↓M1∪M2 M3, we conclude that Av(I,M3) does not fork over M1 ∪M2.

2 ⇒ 3. By 2, we know that there is an infinite indiscernible I ⊆ M3 over M1 ∪ M2 that is independent
over M1 ∪M2. Then it is enough to show that for that I, indiscernible over M1 ∪M2, the type Av(I,M3) is
orthogonal to M1 and to M2.
Suppose, towards a contradiction, that Av(I,M3) is not orthogonal to M1. There is a countable set J ⊆ I, such
that Av(J,M3) is not orthogonal to M1. Therefore, Av(J, J) is not orthogonal to some r ∈ S(M1).
Without loss of generality, we can assume that J = J ′ ∪ {an|n < ω}, for some |J ′| < ω such that Av(J, J)
does not fork over J ′ and Av(J, J ′) is stationary. Let {bn|n < ω} be such that for every n < ω, bn |= r and
bn ↓M1

M1 ∪M2 ∪ J ∪ {bm|m ̸= n}. Therefore, there is k < ω such that tp(a⌢0 · · ·⌢ ak,M1 ∪M2 ∪ J ′) and
tp(b⌢0 · · ·⌢ bk,M1 ∪M2 ∪ J ′) are not weakly orthogonal.
Since M3 is F a

ω -atomic over M1 ∪M2, there is a finite B ⊆ M1 ∪M2 such that stp(I ′, B) ⊢ tp(I ′,M1 ∪M2),
where I ′ = J ′ ∪ {an|n < k}.
Since tp(a⌢0 · · ·⌢ ak,M1 ∪M2 ∪ J ′) is stationary and T is superstable, there is a finite set C ⊆ M1 ∪M2, that
satisfies:

1. tp(b⌢0 · · ·⌢ bk, C) is stationary.

2. J ′ ∪B ∪ (C ∩M2) ∪ b⌢0 · · ·⌢ bk ↓C∩M1 M1.

3. a⌢0 · · ·⌢ ak ̸↓B∪C∪J′ b⌢0 · · ·⌢ bk.

SinceM1 is F
a
ω -saturated, there is c

⌢
0 · · ·⌢ ck ∈M1 such that stp(b⌢0 · · ·⌢ bk, C∩M1) = stp(c⌢0 · · ·⌢ ck, C∩M1).

By the way b⌢0 · · ·⌢ bk was chosen, we know that bn ↓M1
M1 ∪ M2 ∪ J ∪ {bm|m ̸= n} holds for every

n < ω, by transitivity we conclude that b⌢0 · · ·⌢ bk ↓M1 M2 ∪ J ′. By transitivity and the item 2 we get
that b⌢0 · · ·⌢ bk ↓C∩M1 M1 ∪ M2 ∪ J ′ and b⌢0 · · ·⌢ bk ↓C∩M1 B ∪ (C ∩ M2) ∪ J ′. On the other hand, since
c⌢0 · · ·⌢ ck ∈ M1, by the item 2 we get that c⌢0 · · ·⌢ ck ∈ M1 ↓C∩M1

B ∪ (C ∩M2) ∪ J ′. We conclude that
stp(b⌢0 · · ·⌢ bk, C ∪ B ∪ J ′) = stp(c⌢0 · · ·⌢ ck, C ∪ B ∪ J ′). Therefore, there is f ∈ Saut(M, C ∪ B ∪ J ′), such
that f(b⌢0 · · ·⌢ bk) = c⌢0 · · ·⌢ ck.
By the item 3 we know that a⌢0 · · ·⌢ ak ∪ J ′ ̸↓B b⌢0 · · ·⌢ bk ∪ C, so f(a⌢0 · · ·⌢ ak) ∪ J ′ ̸↓B c⌢0 · · ·⌢ ck ∪ C and
stp(f(a⌢0 · · ·⌢ ak)∪J ′, B) ̸⊢ tp(f(a⌢0 · · ·⌢ ak)∪J ′,M1∪M2). This contradicts that stp(I

′, B) ⊢ tp(I ′,M1∪M2).
The same argument works to show that Av(J,M3) is orthogonal to M2.

1 ⇒ 3. Let us show that p ↾ B ∪ M1 ∪ M2 is realized in M3, for every finite B ⊆ M3, such that p does
not fork over B and p ↾ B is stationary.

Without loss of generality, we can assume that for l ∈ 0, 1, 2, tp(B,Ml) does not fork over B ∩ Ml and
tp(B,M1 ∪M2) does not fork over B ∩ (M1 ∪M2). Let c realize p, b1 ∈ M1, b2 ∈ M2, and Bl = B ∩Ml,
for l ∈ {0, 1, 2}.

Since T is superstable, there is C ⊆ M0 such that bl ↓Bl∪C M0 ∪ Bl, for l ∈ 1, 2. Since B ↓B0
M0, then

B ↓B0
C and C ↓B0

B. Let q be a type over M3 that extends tp(C,B) and does not fork over B0. Then q ↾M1

is orthogonal to p and parallel to stp(C,B), so stp(C,B) is orthogonal to p. Therefore

stp(c,B) ⊢ stp(c,B ∪ C). (1)
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Since b1 ∪ B1 ↓M0 M2, then b1 ↓M0∪B1 M2 ∪ B1. By the way C was chosen, b1 ↓B1∪C M0 ∪ B1, by transitivity
b1 ↓B1∪C M2 ∪B1. Since B1 ∪C ⊆M2 ∪B, then stp(b1, C ∪B) is parallel to some complete type over M1 and
orthogonal to p. Therefore stp(b1, C ∪B) is orthogonal to stp(c, C ∪B) and

stp(c, C ∪B) ⊢ stp(c,B ∪ C ∪ b1). (2)

Since b2 ∪ B2 ↓M0
M1, then b2 ↓M0∪B1

M1 ∪ B2. By the way C was chosen, b2 ↓B2∪C M0 ∪ B2, by transitivity
b1 ↓B2∪C M1 ∪B2. Since B2 ∪C ⊆M1 ∪B, then stp(b2, C ∪B ∪ b1) is parallel to some complete type over M2

and orthogonal to p. Therefore stp(b2, C ∪B ∪ b1) is orthogonal to stp(c, C ∪B ∪ b1) and

stp(c, C ∪B ∪ b1) ⊢ stp(c,B ∪ C ∪ b1 ∪ b2). (3)

From (4), (5) and (6), we conclude stp(c,B) ⊢ stp(c,B ∪ b1 ∪ b2).
We conclude that stp(c,B) ⊢ p ↾ B ∪M1 ∪M2. Since M3 is F a

ω -saturated and B is finite, then p ↾ B ∪M1 ∪M2

is realized in M3.

Let B0 ⊆ M1 ∪ M2 be finite such that p does not fork over B0 and p ↾ B0 is stationary. We know that
for every n there is bn ∈ M3 such that for Bn = B0 ∪ {bi|i < n}, bn realizes p ↾ Bn ∪M1 ∪M2. We conclude
that I = {bn|n < ω} is indiscernible and p = Av(I,M3), so Av(I,M3) is orthogonal to M1 and to M2.
To show that I is independent over M1 ∪ M2, notice that for every a |= p, a ↓M1∪M2 M3. Therefore,
a ↓M1∪M2 {bi|i < n} holds for every a |= p ↾M1 ∪M2 ∪ {bi|i < n}, especially bn ↓M1∪M2 {bi|i < n}.

Definition 4.13. We say that a superstable theory T has the strong dimensional order property (S-DOP) if the
following holds:
There are F a

ω -saturated models (Mi)i<3, M0 ⊂ M1 ∩M2, such that M1 ↓M0
M2, and for every M3 F

a
ω -prime

model over M1 ∪M2, there is a non-algebraic type p ∈ S(M3) orthogonal to M1 and to M2, such that it does
not fork over M1 ∪M2.

In [5] Hrushovski and Sokolvić proved that the theory of differentially closed fields of characteristic zero
(DCF) has eni-DOP, so it has DOP. The reader can find an outline of this proof in [8]. We will show that the
models used in [8] also testify that the theory of differentially closed fields has S-DOP. We will focus on the
proof of the S-DOP property:

There are F a
ω -saturated models (Mi)i<3, M0 ⊂M1 ∩M2, such that M1 ↓M0

M2, and for every M3 F
a
ω -prime

model over M1 ∪M2, there is a non-algebraic type p ∈ S(M3) orthogonal to M1 and to M2, such that it does
not fork over M1 ∪M2.

For more on DCF (proofs, definition, references) can be found in [7].

Definition 4.14. A differential field is a field K with a derivation map δ : K → K wit the properties:

• δ(a+ b) = δ(a) + δ(b)

• δ(ab) = aδ(b) + bδ(a)

We call δ(a) the derivative of a and we denote by δn(a) the nth derivative of a. For a differential field K we
denote by K{x1, x2, . . . , xn} the ring

K[x1, x2, . . . , xn, δ(x1), δ(x2), . . . , δ(xn), δ
2(x1), δ

2(x2), . . . , δ
2(xn), . . .]

The derivation map δ is extended in K{x1, x2, . . . , xn} by δ(δm(xi)) = δm+1(xi). We call K{x1, x2, . . . , xn} the
ring of differential polynomials over K.

Definition 4.15. We say that a diferential field K is differentially closed if for any differential field L ⊇ K and
f1, f2, . . . , fn ∈ K{x1, x2, . . . , xn} the system f1(x1, x2, . . . , xn) = f2(x1, x2, . . . , xn) = fn(x1, x2, . . . , xn) = 0
has solution in L, then it has solution in K.

Let K be a saturated model of DFC, k ⊆ K and a ∈ Kn, we denote by k⟨a⟩ the differentially closed subfield
generated by k(a). If A ⊆ K and for all n, every nonzero f ∈ k{x1, x2, . . . , xn}, and all a1, a2, . . . , an ∈ A it
holds that f(a1, a2, . . . , an) ̸= 0, then we say that A is δ-independent over k.

For all k ⊆ K denote by kdif the differential closure of k in K.

Theorem 4.16 (Hrushovski, Sokolvić). Suppose K0 is a differentially closed field with characteristic zero, {a, b}
is δ-independent over K0, K1 = K0⟨a⟩dif , K2 = K0⟨b⟩dif , K = K0⟨a, b⟩dif , and p the non-forking extension of
pa+b in K. Then K1 ↓K0

K2, p ⊥ K1, and p ⊥ K2.

Corollary 4.17 ([9], Corollary 2.16). DFC has the S-DOP.

Proof. Let a, b, K1, K2, and p be as in Theorem 4.16. By Theorem 4.16 it is enough to show that p does not
fork over K1 ∪K2. By the way p was defined, we know that p does not fork over a + b, therefore p does not
fork over {a, b}. Since {a, b} is δ-independent over K0, K1 = K0⟨a⟩dif , and K2 = K0⟨b⟩dif , we conclude that p
does not fork over K1 ∪K2.
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4.2 Trees

Definition 4.18. Let λ be an uncountable cardinal. A coloured tree is a pair (t, c), where t is a κ+, (λ+2)-tree
and c is a map c : tλ → κ\{0}.

Definition 4.19. Let (t, c) be a coloured tree, suppose (Iα)α<κ is a collection of subsets of t that satisfies:

• for each α < κ, Iα is a downward closed subset of t.

•
⋃

α<κ Iα = t.

• if α < β < κ, then Iα ⊂ Iβ.

• if γ is a limit ordinal, then Iγ =
⋃

α<γ Iα.

• for each α < κ the cardinality of Iα is less than κ.

We call (Iα)α<κ a filtration of t.

Order the set λ×κ×κ×κ×κ lexicographically, (α1, α2, α3, α4, α5) > (β1, β2, β3, β4, β5) if for some 1 ≤ k ≤ 5,
αk > βk and for every i < k, αi = βi. Order the set (λ× κ× κ× κ× κ)≤λ as a tree by inclusion.
Define the tree (If , df ) as, If the set of all strictly increasing functions from some θ ≤ λ to κ and for each η
with domain λ, df (η) = f(sup(rang(η))).
For every pair of ordinals α and β, α < β < κ and i < λ define

R(α, β, i) =
⋃

i<j≤λ

{η : [i, j) → [α, β)|η strictly increasing}.

Definition 4.20. Assume κ is an inaccessible cardinal. If α < β < κ and α, β, γ ̸= 0, let {Pα,β
γ |γ < κ} be an

enumeration of all downward closed subtrees of R(α, β, i) for all i, in such a way that each possible coloured tree
appears cofinally often in the enumeration. And the tree P 0,0

0 is (If , df ).

This enumeration is possible because κ is inaccessible; there are at most
|
⋃

i<λ P(R(α, β, i))| ≤ λ× κ = κ downward closed coloured subtrees, and at most κ× κ<κ = κ coloured trees.

Denote by Q(Pα,β
γ ) the unique ordinal number i such that Pα,β

γ ⊂ R(α, β, i).

Definition 4.21. Assume κ is an inaccessible cardinal. Define for each f ∈ κκ the coloured tree (Jf , cf ) by the
following construction.
For every f ∈ κκ define Jf = (Jf , cf ) as the tree of all η : s → λ× κ4, where s ≤ λ, ordered by extension, and
such that the following conditions hold for all i, j < s:
Denote by ηi, 1 ≤ i ≤ 5, the functions from s to κ that satisfies, η(n) = (η1(n), η2(n), η3(n), η4(n), η5(n)).

1. η ↾ n ∈ Jf for all n < s.

2. η is strictly increasing with respect to the lexicographical order on λ× κ4.

3. η1(i) ≤ η1(i+ 1) ≤ η1(i) + 1.

4. η1(i) = 0 implies η2(i) = η3(i) = η4(i) = 0.

5. η2(i) ≥ η3(i) implies η2(i) = 0.

6. η1(i) < η1(i+ 1) implies η2(i+ 1) ≥ η3(i) + η4(i).

7. For every limit ordinal α, ηk(α) = supβ<α{ηk(β)} for k ∈ {1, 2}.

8. η1(i) = η1(j) implies ηk(i) = ηk(j) for k ∈ {2, 3, 4}.

9. If for some k < λ, [i, j) = η−1
1 {k}, then

η5 ↾ [i, j) ∈ P
η2(i),η3(i)
η4(i)

.

Note that 7 implies Q(P
η2(i),η3(i)
η4(i)

) = i.

10. If s = λ, then either

12



(a) there exists an ordinal number m such that for every k < m η1(k) < η1(m), for every k′ ≥ m

η1(k) = η1(m), and the color of η is determined by P
η2(m),η3(m)
η4(m) :

cf (η) = c(η5 ↾ [m,λ))

where c is the colouring function of P
η2(m),η3(m)
η4(m) .

Or

(b) there is no such ordinal m and then cf (η) = f(sup(rang(η5))).

The following lemma is a variation of Lemma 4.7 of [4]. In [4] Lemma 4.7 refers to trees of height ω+2 and
the relation =κ

ω, nevertheless the proof is the same in both cases.

Lemma 4.22 ([9], Lemma 2.3). Suppose κ is an inaccessible cardinal. Then for every f, g ∈ κκ the following
holds

f =κ
ω g ⇔ Jf ∼= Jg

For each α < κ define Jα
f as

Jα
f = {η ∈ Jf |rang(η) ⊂ λ× (β)4 for some β < α}.

Notice that (Jα
f )α<κ is a filtration of Jf and every η ∈ Jf has the following properties:

1. sup(rang(η4)) ≤ sup(rang(η3)) = sup(rang(η5)) = sup(rang(η2)).

2. When η ↾ k ∈ Jα
f holds for every k ∈ λ, sup(rang(η5)) ≤ α. If in addition η /∈ Jα

f , then sup(rang(η5)) = α.

4.3 Constructing models

We will study only the superstable theories with S-DOP. Instead of write F a
ω -constructible, F

a
ω -atomic, F a

ω -
saturated and F a

ω -saturated we will write a-constructible, a-atomic, a-primary, a-prime and a-saturated. From
now on T will be a superstable theory with S-DOP, unless otherwise stated. We will denote by λ the cardinal
(2ω)+.

Definition 4.23. • Let us define the dimension of a type p ∈ S(A) in M by: dim(p,M) = min{|J | : J ⊆
M , J is a maximal independent sequence over A, and ∀a ∈ J, a |= p}

• Let us define the dimension of an indiscernible I over A inM by: dim(I, A,M) = min{|J | : J is equivalent
to I and J is a maximal indiscernible over A in M}. If for all J as above dim(I, A,M) = |J |, then we
say that the dimension is true.

Lemma 4.24 ([12], Lemma III 3.9). Let T be a superstable theory. If I is a maximal indiscernible set over A
in M , then |I|+ ω = dim(I,A,M) + ω, and if dim(I, A,M) ≥ ω, then the dimension is true.

Theorem 4.25 ([12], Theorem IV 4.9). If M is an a-primary model over A, and I ⊆ M is an infinite
indiscernible set over A, then dim(I, A,M) = ω.

For any indiscernible sequence I = {ai | i < γ}, we will denote by I ↾α the sequence I = {ai | i < α}. Since
T has the S-DOP, there are a-saturated models A,B, C of cardinality 2ω and an indiscernible sequence I over
B ∪ C of size κ that is independent over B ∪ C such that

1. A ⊂ B ∩ C, B ↓A C.

2. Av(I,B ∪ C) is orthogonal to B and to C.

3. If (Bi)i<3 are sets such that:

(a) B0 ↓A B ∪ C.
(b) B1 ↓B∪B0

B2 ∪ C.
(c) B2 ↓C∪B0

B1 ∪ B.

Then,
tp(I,B ∪ C) ⊢ tp(I,B ∪ C ∪i<3 Bi).
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By the existence property of forking, for any D ⊇ A there is F ∈ Aut(A) such that for all c ∈ B, stp(F (c),A) =
stp(c,A) and F (c) ↓A D (the same holds for C). For every ξ ∈ (Jf )<λ and every η ∈ (Jf )λ ((Jf )λ are the
elements of Jf at the level λ and (Jf )<λ are the elements of Jf at levels below λ), let Bξ

∼=A B, A ⪯ Bξ, and
Cη ∼=A C, A ⪯ Cη, such that the models (Bξ)ξ∈(Jf )<λ

and (Cη)η∈(Jf )λ satisfy the following:

• Bξ ↓A
⋃
{Bζ , Cθ | ζ ∈ (Jf )<λ ∧ θ ∈ (Jf )λ ∧ ζ ̸= ξ}.

• Cη ↓A
⋃
{Bζ , Cθ | ζ ∈ (Jf )<λ ∧ θ ∈ (Jf )λ ∧ θ ̸= η}.

We can choose this models due to the existence property and the finite character. Notice that all ξ ∈ (Jf )<λ

and η ∈ (Jf )λ, satisfy

Bξ ∪ Cη ↓A
⋃

{Bζ , Cθ | ζ ∈ (Jf )<λ ∧ θ ∈ (Jf )λ ∧ ζ ̸= ξ ∧ θ ̸= η}.

Let Fξη be an automorphism of the monster model such that Fξη ↾ C : C → Cη and Fξη ↾ B : B → Bξ are
isomorphisms and Fξη ↾ A = id. Denote the sequence I by {wα | α < κ}. For all η ∈ (Jf )λ and every ξ < η, let
Iξη = {bα | α < cf (η)} be an indiscernible sequence over Bξ ∪Cη of size cf (η), that is independent over Bξ ∪Cη,
and satisfies:

• tp(Iξη,Bξ ∪ Cη) = tp(Fξη(I ↾ cf (η)),Bξ ∪ Cη).

• Iξη ↓Bξ∪Cη

⋃
{Bζ , Cθ | ζ ∈ (Jf )<λ ∧ θ ∈ (Jf )λ} ∪

⋃
{Iζθ | ζ ̸= ξ ∨ θ ̸= η}.

To recap, Bξ, Cη, and Iξη satisfy the following:

1. Av(Iξη,Bξ ∪ Cη) is orthogonal to Bξ and to Cη.

2. If (Bi)i<3 are sets such that:

(a) B0 ↓A Bξ ∪ Cη.
(b) B1 ↓Bξ∪B0 B2 ∪ Cη.
(c) B2 ↓Cη∪B0

B1 ∪ Bξ.

Then,
tp(Iξη,Bξ ∪ Cη) ⊢ tp(Iξη,Bξ ∪ Cη ∪i<3 Bi).

3. Iξη ↓Bξ∪Cη

⋃
{Bζ , Cθ | ζ ∈ (Jf )<λ ∧ θ ∈ (Jf )λ} ∪

⋃
{Iζθ | ζ ̸= ξ ∨ θ ̸= η}.

Definition 4.26. Let Γf be the set
⋃
{Bξ, Cη, Iξη | ξ ∈ (Jf )<λ ∧ η ∈ (Jf )λ ∧ ξ < η} and let Af be the a-primary

model over Γf . Let Γα
f be the set

⋃
{Bξ, Cη, Iξη | ξ, η ∈ Jα

f ∧ ξ < η}.

Fact 4.27 ([9], Fact 3.6). If α is such that αλ < f(α), sup({cf (η)}η∈Jα
f
) < α, then |Γα+1

f | = f(α).

Lemma 4.28 ([9], Lemma 3.7). For every ξ ∈ (Jf )<λ, η ∈ (Jf )λ, ξ < η, let pξη be the type Av(Iξη ↾ ω, Iξη ↾
ω ∪ Bξ ∪ Cη). If cf (η) > ω, then dim(pξη,Af ) = cf (η).

Proof. Denote by S the set Iξη ↾ ω ∪ Bξ ∪ Cη, so pξη = Av(Iξη ↾ ω, S).
Suppose, towards a contradiction, that dim(pξη,Af ) ̸= cf (η). Since Iξη ⊂ Af , then dim(pξη,Af ) > cf (η).
Therefore, there is an independent sequence I = {ai|i < cf (η)

+} over S such that I ⊂ Af and ∀a ∈ I, a |= pξη.

Claim 4.29. Iξη ↾ ω ∪ I is indiscernible over Bξ ∪ Cη.

Proof. We will show by induction on α, that Iξη ↾ ω ∪ {ai|i ≤ α} is indiscernible over Bξ ∪ Cη.
Case α = 0.
Since a0 |= pξη, then tp(a0, S) = Av(Iξ,η ↾ ω, S) and Iξη ↾ ω ∪ {a0} is indiscernible over Bξ ∪ Cη.

Suppose α is an ordinal such that for every β < α, Iξη ↾ ω ∪ {ai|i ≤ β} is indiscernible over Bξ ∪ Cη.
Therefore, Iξη ↾ ω ∪ {ai|i < α} is indiscernible over Bξ ∪ Cη. By the way I was chosen, we know that
aα ↓S {ai|i < α} and aα |= pξη. Since Iξη ↾ ω ∪ {ai|i < α} is indiscernible over Bξ ∪ Cη, then Av(Iξη ↾
ω, S ∪ {ai|i < α}) = Av(Iξη ↾ ω ∪ {ai|i < α}, S ∪ {ai|i < α}), therefore Av(Iξη ↾ ω ∪ {ai|i < α}, S ∪ {ai|i < α})
does not fork over S. Since Av(Iξη ↾ ω ∪ {ai|i < α}, S ∪ {ai|i < α}) is stationary, we conclude that
tp(aα, S ∪ {ai|i < α}) = Av(Iξ,η ↾ ω ∪ {ai|i < α}, S ∪ {ai|i < α}) and Iξ,η ↾ ω ∪ {ai|i ≤ α} is indiscernible over
Bξ ∪ Cη.

In particular Iξη ↾ ω ∪ I is indiscernible, and Iξη is equivalent to I.
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Claim 4.30. tp(Iξη,Bξ ∪ Cη) ⊢ tp(Iξη,Γf\Iξη) and Iξη is indiscernible over Γf\Iξη.

Proof. Define:

B0 =
⋃

{Br ∪ Cp|r ̸= ξ ∧ p ̸= η} ∪
⋃

{Irp|r ̸= ξ ∧ p ̸= η}

B1 =
⋃

{Br ∪ Cp|r ̸= ξ ∧ p ̸= η} ∪
⋃

{Irp|p ̸= η}

B2 =
⋃

{Br ∪ Cp|r ̸= ξ ∧ p ̸= η} ∪
⋃

{Irp|r ̸= ξ}

Notice that by the way we chose the sequences Ixy, for every r < p it holds that

Irp ↓Br∪Cp

⋃
{Bζ , Cθ|ζ, θ ∈ Jf} ∪

⋃
{Iζθ|ζ ̸= r ∨ θ ̸= p}.

Let J be a finite subset of {Irp|r ̸= ξ ∧ p ̸= η}, J = {Ii|i < m}, then

I0 ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η} Bξ ∪ Cη

and
I1 ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η}∪I0 Bξ ∪ Cη,

by transitivity
I0 ∪ I1 ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η} Bξ ∪ Cη.

In general, if n < m− 1 is such that

{Ii|i ≤ n} ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η} Bξ ∪ Cη,

then since
In+1 ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η}∪

⋃
{Ii|i≤n} Bξ ∪ Cη

we conclude by transitivity that

{Ii|i ≤ n+ 1} ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η} Bξ ∪ Cη.

We conclude ⋃
J ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η} Bξ ∪ Cη.

Because of the finite character we get that⋃
{Irp|r ̸= ξ ∧ p ̸= η} ↓⋃{Br∪Cp|r ̸=ξ∧p ̸=η} Bξ ∪ Cη.

By the way we chose the models Bx and Cy, we know that

Bξ ∪ Cη ↓A
⋃

{Br ∪ Cp|r ̸= ξ ∧ p ̸= η},

by transitivity we conclude B0 ↓A Bξ ∪ Cη.
Notice that for every p ̸= η, ξ < p we have

Iξp ↓Bξ∪Cp

⋃
{Bζ , Cθ|ζ, θ ∈ Jf} ∪

⋃
{Iζθ|ζ ̸= ξ ∨ θ ̸= p}

so
Iξp ↓Bξ∪B0

Cη ∪
⋃

{Iζθ|ζ ̸= ξ ∨ θ ̸= p}.

From this we can conclude, in a similar way as before, that for every finite J ⊆ {Iξp|p ̸= η} it holds that⋃
J ↓Bξ∪B0

Cη ∪
⋃

{Iζθ|ζ ̸= ξ}.

Because of the finite character we get that⋃
{Iξp|p ̸= η} ↓Bξ∪B0

Cη ∪
⋃

{Iζθ|ζ ̸= ξ}.

Since
⋃
{Br ∪ Cp|r ̸= ξ ∧ p ̸= η} ⊆ B0 and

⋃
{Irp|r ̸= ξ ∧ p ̸= η} ⊆ B0, then we conclude

B1 ↓Bξ∪B0 Cη ∪B2.

Using a similar argument, it can be proved that

B2 ↓Cη∪B0
Bξ ∪B1.

To summary, the following holds:
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• B0 ↓A Bξ ∪ Cη,

• B1 ↓Bξ∪B0
Cη ∪B2,

• B2 ↓Cη∪B0
Bξ ∪B1,

by the way the sequences Ixy were chosen (item 2), we can conclude that tp(Iξη,Bξ ∪ Cη) ⊢ tp(Iξη,Γf\Iξη) and
since Iξη is indiscernible over Bξ ∪ Cη, then Iξη is indiscernible over Γf\Iξη.

By Claim 4.7.1 we know that tp(I,Bξ ∪ Cη) = tp(Iξη,Bξ ∪ Cη), therefore by Claim 4.7.2 tp(I,Bξ ∪ Cη) ⊢
tp(Iξη,Γf\Iξη). We conclude that tp(I,Bξ ∪ Cη) ⊢ tp(I,Γf\Iξη) and since I is indiscernible over Bξ ∪ Cη, then
I is indiscernible over Γf\Iξη.

Claim 4.31. There are I ′, I∗ ⊆ I such that |I ′| = cf (η)
+ and I ′ ↓(Γf\Iξη)∪I∗ Iξη.

Proof. Let us denote the elements of Iξη by bi, Iξη = {bi|i < cf (η)}. Since T is superstable, we know that
for every α < cf (η) there is a finite Bα ⊆ I ∪ {bi|i < α} such that bα ↓(Γf\Iξη)∪Bα

I ∪ {bi|i < α}. Define
I∗ = (

⋃
α<cf (η)

Bα)∩I and I ′ = I\I∗, notice that |I∗| ≤ cf (η), so |I ′| = cf (η)
+. Because of the finite character,

to prove that I ′ ↓(Γf\Iξη)∪I∗ Iξη, it is enough to prove that I ′ ↓(Γf\Iξη)∪I∗ {bi|i < α} holds for every α < cf (η).
Let us prove this by induction on α > 0.

Case: α = 1.
By the way B0 was chosen, we know that b0 ↓(Γf\Iξη)∪B0

I, and this implies
I ′ ↓(Γf\Iξη)∪I∗ b0.

Case: α = β + 1.
Suppose β is such that I ′ ↓(Γf\Iξη)∪I∗ {bi|i < β} holds. By the way Bβ was chosen, we know that bβ ↓(Γf\Iξη)∪Bβ

I ∪ {bi|i < β} and Bβ ⊆ I ∪ {bi|i < β}. Therefore bβ ↓(Γf\Iξη)∪I∗∪{bi|i<β} I
′ and by the induction hypothesis

and transitivity, we conclude that {bi|i ≤ β} ↓(Γf\Iξη)∪I∗ I ′. So I ′ ↓(Γf\Iξη)∪I∗ {bi|i < α}.

Case: α is a limit ordinal.
Suppose α is a limit ordinal such that I ′ ↓(Γf\Iξη)∪I∗ {bi|i < β} holds for every β < α. Therefore, for ev-
ery finite A ⊆ {bi|i < α} we know that I ′ ↓(Γf\Iξη)∪I∗ A. Because of the finite character, we conclude that
I ′ ↓(Γf\Iξη)∪I∗ {bi|i < α}.

Claim 4.32. I ′ is is indiscernible over Γf ∪ I∗, in particular I ′ is is indiscernible over Γf .

Proof. Let {c0, c1, . . . , cn} and {c′0, c′1, . . . , c′n} be disjoint subsets of I ′ with n elements, such that i ̸= j implies
ci ̸= cj and c′i ̸= c′j . We will prove that the following holds for every m ≤ n

tp({c′0, . . . , c′m−1, cm, cm+1, cn},Γf ∪ I∗) = tp({c′0, . . . , c′m−1, c
′
m, cm+1, . . . , cn},Γf ∪ I∗).

By Claim 4.7.3, we know that {c0, c1, . . . , cn} ∪ {c′0, c′1, . . . , c′n} ↓(Γf\Iξη)∪I∗ Iξη, so
cm ↓(Γf\Iξη)∪I∗∪{c′0,...,c′m−1,cm+1,...,cn} Iξη and c′m ↓(Γf\Iξη)∪I∗∪{c′0,...,c′m−1,cm+1,...,cn} Iξη.

Since {cm, c′m} ∪ I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn} is indiscernible over (Γf\Iξη), and
{c0, c1, . . . , cn} ∩ {c′0, c′1, . . . , c′n} = ∅, then

cm |= Av(I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn}, (Γf\Iξη) ∪ I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn})

and
c′m |= Av(I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn}, (Γf\Iξη) ∪ I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn}).

We know that Av(I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn}, (Γf\Iξη) ∪ I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn}) is stationary,
we conclude that

tp(cm,Γf ∪ I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn}) = tp(c′m,Γf ∪ I∗ ∪ {c′0, . . . , c′m−1, cm+1, . . . , cn})

and
tp({c′0, . . . , c′m−1, cm, cm+1, . . . , cn},Γf ∪ I∗) = tp({c′0, . . . , c′m−1, c

′
m, cm+1, . . . , cn},Γf ∪ I∗)

as we wanted.
Since

tp({c′0, . . . , c′m−1, cm, cm+1, . . . , cn},Γf ∪ I∗) = tp({c′0, . . . , c′m−1, c
′
m, cm+1, . . . , cn},Γf ∪ I∗)
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holds for every m ≤ n, we conclude that

tp({c0, . . . , cn},Γf ∪ I∗) = tp({c′0, . . . , c′n},Γf ∪ I∗).

To finish the proof, let {c0, c1, . . . , cn} and {c′0, c′1, . . . , c′n} be subsets of I ′ with n elements, such that i ̸= j
implies ci ̸= cj and c′i ̸= c′j . Since I ′ is infinite, then there is {c′′0 , c′′1 , . . . , c′′n} ⊆ I ′ such that {c′′0 , c′′1 , . . . , c′′n} ∩
({c0, c1, . . . , cn} ∪ {c′0, c′1, . . . , c′n}) = ∅. Therefore

tp({c0, . . . , cn},Γf ∪ I∗) = tp({c′′0 , . . . , c′′n},Γf ∪ I∗) = tp({c′0, . . . , c′n},Γf ∪ I∗),

we conclude that I ′ is is indiscernible over Γf ∪ I∗.

Let J ⊂ Af be a maximal indiscernible set over Γf such that I ′ ⊆ J . By Lemma 4.2 |J | + κ(T ) =
dim(J,Γf ,Af ) + κ(T ). Since T is superstable, κ(T ) < ω < |J | and we conclude that κ(T ) < dim(J,Γf ,Af ) +
κ(T ). Therefore κ(T ) < dim(J,Γf ,Af ) and by Lemma 4.2 the dimension is true, dim(J,Γf ,Af ) = |J |. So
dim(J,Γf ,Af ) > ω a contradiction with Theorem 4.3.

Theorem 4.33 ([9], Theorem 4.1). Assume f, g are functions from κ to Card∩κ\λ such that f(α), g(α) > α++

and f(α), g(α) > αλ. Then Af and Ag are isomorphic if and only if f and g are =κ
λ equivalent.

This lemma has a long proof we will sketch the proof. One direction is easy, for the other direction we proceed
by contradiction, we assume that f and g are not =κ

λ equivalent and there is an isomorphism Π : Af → Ag.
Then we construct an a-primary model F , and find ξ < η and a ∈ Iξη such that

Π(a) ↓Π(Bξ∪Cη) F.

By using a, we will construct a independent indiscernible sequence (bi)i<f(α)+ over Π(Bξ ∪ Cη) in Ag. Finally,
we use Π and (bi)i<f(α)+ to construct a sequence (ci)i<f(α)+ indiscernible and independent over Bξ ∪ Cη with
c0 ∈ Iξη, which is a contradiction with Lemma 4.28.

Proof. Sketch. From right to left. If f and g are =κ
λ equivalent then Jf and Jg are isomorphic. Let G : Jf → Jg

a colored trees isomorphism, the proof follows by showing that G defines an embedding H : Γf → Γg and this
one can be extended to an isomorphism between Af and Ag.

From left to right. For every α define Aα
f = Γα

f ∪
⋃
{afi | i < α}, clearly Aα

f is not necessary a model.

Suppose that Af and Ag are isomorphic but f and g are not =κ
λ equivalent.

Denote by Π : Af → Ag an isomorphism. There are α and η such that f(α) > g(α), Π(Aα
f ) = Aα

g and
cf (η) = f(α). There is X ⊂ Γg of size 2ω such that Π(Cη) ⊂ D, where D is the a-primary model over X. There

is β < α such that X ∩ Γα
f ⊂ Γβ

f , and ξ such that Bξ ⊂ Γα
f \Γ

β
f .

Denote by E the a-primary model over X∪Γα+1
g . There is a ∈ Iξη such that Π(a) /∈ E and Π(a) ↓Π(Bξ∪Cη) F ,

where F is the a-primary model over E ∪
⋃
{Bζ , Iζθ | ζ < θ ∧ Cθ ⊆ X\Γα+1

g }.
Since Ag is a-atomic, there is a finite B ⊆ F ∪ Γg such that (tp(Π(a), F ∪ Γg), B) ∈ F a

ω . There is Y such
that B\F ⊂ Y and S = {r ∈ Jg | (r ∈ (Jg)<λ ∧ Br ⊂ Y) ∨ (r ∈ (Jg)λ ∧ Cr ⊂ Y)} is finite.

Let S̄ be the smallest subtree of Jg that is closed under predecessors and contains S. Define X = {r ∈
Jg | (r ∈ (Jg)<λ ∧ Br ⊂ X) ∨ (r ∈ (Jg)λ ∧ Cr ⊂ X)} and X̄ as the smallest subtree of Jg that is closed under
predecessors and contains X . Let {ui}i<f(α)+ be a sequence of subtrees of Jg with the following properties:

• u0 = S̄

• Every ui is a tree isomorphic to u0.

• If i ̸= j, then ui ∩ uj = u0 ∩ (X̄ ∪ Jα+1
g ).

• Every ζ ∈ dom(cg) ∩ u0 satisfies cg(ζ) = cg(Gi(ζ)), where Gi is the isomorphism between u0 and ui.

With these subtrees we can find a sequence {bi}i<f(α)+ of elements of Ag such that for all i < f(α)+, tp(bi, F ) =
tp(Π(a), F ) and bi ↓F

⋃
j<i bj . Since Π(a) ↓Π(Bξ∪Cη) F , then bi ↓Π(Bξ∪Cη)

⋃
j<i bj holds for all i < f(α)+.

We conclude that (bi)i<f(α)+ is an indiscernible sequence over Π(Bξ ∪Cη) and independent over Π(Bξ ∪Cη).
Since Π is an isomorphism, we obtain in Af a sequence (ci)i<f(α)+ indiscernible over Bξ ∪ Cη and independent

over Bξ ∪ Cη. So dim(pξη,Af ) ≥ f(α)+ a contradiction with Lemma 4.28 (dim(pξη,Af ) = f(α)).

Lemma 4.34 ([9], Corollary 5.1). If κ is inaccessible, and T is a theory with S-DOP, then =κ
λ ↪→c

∼=T .

Theorem 4.35 ([9], Corollary 5.2). If κ is an inaccessible and T1 is a classifiable theory and T2 is a superstable
theory with S-DOP, then ∼=T1

↪→c
∼=T2

.

17



5 Questions

Question 5.1. Let κ be an inaccessible cardinal, T1 a classifiable theory, and T2 a non-classifiable theory. Is
∼=T1

↪→c
∼=T2

a theorem of ZFC?

Question 5.2 (J. Baldwin). Does there exists a superstable theory with DOP that does not have S-DOP?
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