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1 Preliminaries

In order to simplify the notation, we will use the monster model technique, i.e. we work inside M, where M = T'
is a saturated model of size k. & is larger than the cardinality of any object that we come across. By a model,
we mean an elementary submodel of M of size smaller than #. By a € A we mean a € Aln9th(@) By 4
model” we mean an elementary submodel of M of size smaller than k. We will mainly work with stable theories
(Definition 2.8).

Notation. We denote S™(A) the set of all consistent types over A in m variables (modulo change of
variables). S(A) = Upm<wS™(A) and by t(a, A) we mean the complete type of A (in M).

For mention some examples and properties, we will need the forking notion. We will follow the definition of
forking from [2], it is equivalent to the definition from [12]

Definition 1.1. For every finite set A of formulas, we define Ra(p,w), for all types p, in the following way.
1. Ra(p,w) >0 if p is consistent.
2. Ra(p,w) > a+ 1 if for all finite ¢ C p and n < w, there are A-types {q; ti<n, such that:

(a) for alli < j < n there are o(x,y) € A and b such that p(x,b) € ¢; and ~p(z,b) € q; or vice versa,
(b) for alli <n, Ra(qU g;,w) > a.
3. If « is limit, then Ra(p,w) > « if Ra(p,w) > B holds for all § < a.

We say that Ra(p,w) = « if « is the least ordinal such that Ra(p,w) 2 «. If such a does not exists, then we
say Ra(p,w) = co. We write Ra(p,w) = —1 if p is not consistent.

Definition 1.2. We say that a consistent formula p(z,a), a € M, forks over A if for all p = p(x) € S(A) the
following holds:
If pu{p(x,a)} is consistent, then there is a finite A such that for all finite A" O A, Ra/(pU{p(z,a)},w) <

R (p,w).

Definition 1.3. We say that p forks over A if there is a finite g C p such that Nq forks over A
Definition 1.4. We write a |4 B if t(a, AU B) does not fork over A.

Lemma 1.5 (Properties of forking, [2], [12]). Let AC B C C C D, a and b be arbitrary.

1. ala A

2. Ifala D, thenalp C.

3. If a Yo B, then there is ¢ € B such that a J4 c.

4. If alab, thenblaa

5 alaCifand onlyifala B andalp C.

6. If t(a, A) is algebraic, then a L4 B for all B.

7. If t(a, B) is algebraic and t(a, A) is not, then a Ya B.

2 Motivation: Classifiaction theory and GDST

The aim of this section is to explain why the isolation notions and primary models are important when study
the isomorphism relation of countable theories in Generalized Descriptive Set Theory (GDST). Some of the
notions defined in this section require definitions from the following sections for a full understanding. The idea
of presenting this notions without definition is to provide a simplify picture of the notions that we will deal with
in the following sections.

We will work under the general assumption that « is a regular uncountable cardinal that satisfies k = K
We will work only with first-order countable complete theories on a countable language, unless something else
is stated.

<K

Definition 2.1 (The Generalized Baire space). Let k be an uncountable cardinal. The generalized Baire space
is the set k" endowed with the following topology. For every n € k<%, define the following basic open set

Ny ={fer"[nCf}

the open sets are of the form |J X where X is a collection of basic open sets.



Definition 2.2 (The Generalized Cantor space). Let k be an uncountable cardinal. The generalized Cantor
space is the set 2% endowed with the following topology. For every n € 2<%, define the following basic open set

Ny={fe2"[ncr}
the open sets are of the form | J X where X is a collection of basic open sets.
Let us fix a bijection 7 : k<% — k and a countable relational language £ = {P,, | m € w}.

Definition 2.3. For every n € k* define the structure A, with domain & as follows.
For every tuple (a1,as,...,a,) in K"

(a1,as,...,a,) € P2 & the arity of Py, is n and n(m(m,ay,as, ..., a,)) > 0.

Definition 2.4. For every n € 2% define the structure A, with domain k as follows.
For every tuple (a1,as,...,a,) in &"

(a1,az,...,a,) € P & the arity of Py, is n and n(w(m, a1, az,...,a,)) = 1.

Notice that the previous method can also be used to encode structures with domain «, into functions o<,
Aq. The structure A, | « is not necessary coded by the function 7 | a.

Exercise 2.1. There is a club Cy such that for all o € Cr, Ay [ v = Ayjpa

With the structures coded by the elements of 2% and k", it is easy to define the isomorphism relation of
structures of size k in both spaces.

Definition 2.5 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary.
We define =% as the relation

{(n,6) e x k" | (A ET, A =T, Ay =2 Ae) or (A =T, Ac = T)}.

Definition 2.6. Assume T is a complete first order theory in a countable vocabulary. We define =% as the
relation

{(n,8) € 2" x 2" [(A, E T, Ac E T, Ay = Ag) or (Ay =T, Ag = T)}-

The collection of k-Borel subsets of k" is the smallest set that contains the basic open sets and is closed
under union and intersection both of length k. A k-Borel set is any set of this collection.

A function f: k* — k* is k-Borel, if for every open set A C x* the inverse image f~1[A] is a k-Borel subset
of X. Let F; and F5 be equivalence relations on x*. We say that F; is k-Borel reducible to Fs if there is a
k-Borel function f: k" — k" that satisfies

(7]76) €k — (f(n)’f(g)) € Es.

We call f a reduction of F; to Fs and we denote this by E; < Es. In the case f is continuous, we say that
F is continuously reducible to F5 and we denote it by Fy <. Fs.
Notice that 22 <. 22 holds for every theory T. From now on let us denote by =, both notions 2% and

~2

=~z

Question 2.7. Under which assumptions on theories T1 and Ty the following holds
ng e gTQ?

or even

=rn —p =07

2.1 Classifiable and non-classifiable theories

Shelah’s Main Gap Theorem gives us a notion of complexity, a theory is more complex if it has more models.
Thus, it gives us an idea on how the Borel-reducibility of the isomorphism relation of theories may behave. Let
us introduce the require notions to state Shelah’s Main Gap Theorem.

Definition 2.8. o We say that T is &-stable if for any set A, |A] <&, |S(A)| <E&.
o We say that T is stable if there is an infinite &, such that T is &-stable.

o We say that T is unstable if there is no infinite £, such that T is -stable.



o We say that T is superstable is there is an infinite & such that for all & > &, T is £ -stable.

Definition 2.9 (OTOP). A theory T has the omitting type order property (OTOP) if there is a sequence
(0m)m<w Of first order formulas such that for every linear order l there is a model M and n-tuples a;(t € 1) of
members of M, n < w, such that s <t if and only if there is a k-tuple ¢ of members of M, k < w, such that
for every m < w,

M E oml(c,as,at).

Definition 2.10 (DOP). A theory T has the dimensional order property (DOP) if there are F%-saturated
models (M;)i<3, Mo C My N Ma, My |y, Ma, and the F%-prime model over My U My is not F%-minimal over
My U Ms.

Definition 2.11. o We say that T is classifiable is T is superstable without DOP and without OTOP.
o We say that T is non-classifiable if it satisfies one of the following:

1. T is stable unsuperstable;

2. T is superstable with DOP;
3. T is superstable with OTOP;
4. T is unstable.

Theorem 2.12 ([12] Main Gap Theorem). For every T first order complete theory over a countable vocabulary.
Let I(T, «) denote the number of non-isomorphic models of T with cardinality a.. One of the following holds:

1. If T is shallow superstable without DOP and without OTOP, then Yo > 0 I(T,N,) < 3, (| a |).

2. If T is not superstable, or superstable and deep or with DOP or with OTOP, then for every uncountable
cardinal o, I(T, o) = 2%,

Question 2.13. Let Ty be a classifiable theory and Tz be a non-classifiable theory. Is =1, Borel-reducible (or
continuous) to Zr,, i.e. Zp, —p Zp, ?

2.2 The successor case

The equivalent modulo non-stationary S (=%) has been very important when study Question 2.13.

Definition 2.14. Given S C k and 8 < k, we define the equivalence relation = C B x 8%, as follows
7 zg § —= {a<k|n(a)#E&(@)}NS is non-stationary.

Let 11 be a regular cardinal. We will denote by :ﬁ the relation zg when S = {a < & | ¢f(a) = u}. Notice
that 7 :ﬁ ¢ holds if and only if {a < K | ¢f (o) = p & n(a) = ()} contains an unbounded subset closed under
p-sequences.

The following is the usual Ehrenfeucht-Fraissé game but coded in a particular way for our purposes.

Definition 2.15. (Ehrenfeucht-Fraissé game) Fiz {X,} <, an enumeration of the elements of Px(k) and
{fy}<x an enumeration of all the functions with domain in P.(k) and range in Py(k). For every pair of
structures A and B with domain k and a < k, the EF%(A |4, B [+) is a game played by the players I and IT as
follows.

In the n-th move, first I choose an ordinal 3, < o such that X, C o, Xg, , C Xg, , and then II an ordinal
0, < a such that dom(fe,),rang(fs,) C a, Xg, < dom(fe,) Nrang(fe,) and fo, , C fo, (if n = 0 then
Xg, ., =0 and fo, , =0). The game finishes after w moves. The player II wins if Uicy, fo, : A [a— B [o is a
partial isomorphism, otherwise the player I wins.

We write I + EFS(A [, B o) if I has a winning strategy in the game EF%(A [,,B [). We write IT 1
EF5(A [, B [4) if IT has a winning strategy.

Lemma 2.16 ([4], Lemma 2.4). If A and B are structures with domain k, then the following hold:
o II+ EFS (A K, B k)<= 111 EF(A |a, B [a) for club-many «.
o It EF(A|K,B|K)< 11 EF:(Alqa,Bla) for club-many .
The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 2.17 ([12], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T that are
Lo c-equivalent are isomorphic.



Theorem 2.18 ([1], Theorem 10). Lo ,-equivalence is equivalent to EFY -equivalence.

From these two theorems we know that if T is a classifiable theory, then for any A and B models of T" with
domain &,
IITEF; (A B) < A=B

I1EFS(A,B) < A%B.

From the previous Lemma we know the following two hold for any A and B models of a classifiable theory (with
domain k):

e A B <<= 111 EFE(A |, B [a) for club-many a.
e A2 B<=11EF:(A |, B [4) for club-many a.

Lemma 2.19 ([3], Lemma 2). Let u < r be a regular cardinal and S;; = {a < k| cf(a) = p}. Assume T is a

classifiable theory and p < K is a reqular cardinal. If OK(Sﬁ) holds then =1 s continuously reducible to :Z'

By using Ehrenfeucht-Mostowski models, it is possible to construct for each f € 2% a model A/ such that
the following hold.

Lemma 2.20 ([10], Lemma 4.28). Suppose k = At = 2* and \* = \. If T is a countable complete unsuperstable
theory over a countable vocabulary, then for all f,g € 2%, f =2 g if and only if Af and A9 are isomorphic.
Even more, =2, —. .

Theorem 2.21 ([10], Corollary 4.12). Suppose k = AT = 2* and \* = \. If T is a countable complete
classifiable theory, and Ty is a countable complete unsuperstable theory, then Zr —. =p, and

ng (7L>C ng .

Theorem 2.22 ([11], Theorem 5.5). Suppose k = At =2}, 2¥ = ¢, and 2° > A = \1. Let T be a countable
complete classifiable theory and Ty be a countable complete non-classifiable theory. If To is superstable with
OTOP, or superstable with DOP, then

=1 e Zn, and =1,%p Sy

2.3 Inaccessible case

The previous results depend highly on $,(S%) and (S, ). This diamond principle holds under the assump-
tions k = AT = 2* and A = A\“*. For the case k inaccessible we will need to change the approach. Fortunately
there is a version of Lemma 2.19 for the generalized Baire space, which is a theorem of ZFC.

Lemma 2.23 ([4], Theorem 2.8). Assume T is a classifiable theory and pu < k is a regular cardinal. Then =
is continuously reducible to =j.

In the inaccessible case, the construction of the models is done by using primary models. The models Af
are constructed such that there is u < r such that for all f,g € ", f =] g holds if and only if Af and A9 are
isomorphic.

To show the construction, we will need to introduce the basics of isolation notions and constructible sets.

3 Isolation notions

In this section we will follow Hyttinen notes [2] and the fourth chapter of [12]. We will omit some proofs, these
ones can be found in [2] and [12].

3.1 Axioms and Examples

Let A be an infinite cardinal and Py the class of pairs (p, A) such that |A] < A and for some B D A, p € S(B).
Let F\ C Py be such that satisfies the following axioms:

I. F) is closed under the change of variables. If p € S(B), A C B and

q={2Wo:-- - Ym;@) | ©(Zo(0)s- -+ To(m); @) € P}

(where ¢ is a permutation of {0,...,m}), then (p, A) € F) if and only if (¢, A) € F).



IT.

III.
Iv.

X.

Fy is closed under automorphisms. For all automorphism f, (p, A) € F) holds if and only if (f(p), f[4]) €
F.

If a € AC B and |A| < A, then (t(a, B), A) € F).
If AC BCC Cdom(p), |B|l <Xand (p,A) € Fy, then (p | C, B) € F).

. If (t(aUb, B),A) € F, then (t(a, B), A) € F).
VL
VIL
VIII.
IX.

If |C| < Aand (t(aUC, B),A) € Fy, then (t(a, BUC),AUC) € F\.
If A,BCC, (t(bh,CUa),B) € Fy and (t(a,C), A) € F, then (t(a,C UD), A) € Fy.
If AC B, (t(a,BUC),AUC) € Fy and (t(C, B), A) € Fy, then (t(aUC, B), A) € F).

If (B; | i < 0) is an increasing sequence of sets, p € S(|J
(pa A) S F)\-

If (p,A) € Fy and dom(p) C B, then there are A’ C B and ¢ € S(B) such that p C ¢ and (g, A’) € F).

s Bi) and for all i < 4, (p | B;, A) € F, then

We write (¢(C, B), A) € F} if for every c € C, (t(c, B), A) € F).

Definition 3.1. Let us define F} to be the set of all pairs (p, A) € Py that satisfies: For all (p, A) € F}, there
is ¢ Cp| A such that |q| < X and g F p.

Lemma 3.2 (2], [12]). F{ satisfies azioms I to IX. If A > |T'| and T is \-stable, then it also satisfies axiom X.
Definition 3.3. Let us define F5 to be the set of all pairs (p, A) € P\ such thatp [ At p.
Lemma 3.4 ([2], [12]). F} satisfies axioms I to IX. If A > |T| and T is A-stable, then it also satisfies aziom X.

Proof. Axioms I to IV are easy to show.

V.

VL

VII.

VIIIL

Let a,b, A, B be such that (t(aUb, B), A) € F». By the definition of Fy, we know that ¢(aUb, A) - t(aUb, B).
So t(a, A) F t(a, B).

Let a, A, B,C be such that (t(a U C,B),A) € Fy. Let b be such that b = t(a, A U C). Therefore
b~C EtlaUC,A). Since (t(aUC, B),A) € Fy, b~C E t(aUC, B). We conclude that b = t(a, BUC).
Let us show that if A, B C C, (¢1, B) € F§ where ¢1 = t(b,C'Ua) and (p, A) € F§ where p = t(a,C), then
(p1, B) € F§, where p; = t(a, C UDb).

Let ¢ = g1 | A. Let us first show that if a; and by are such that a; | p and by = ¢, then a7 by | t(a™b, C).
Since t(ay,C) = t(a,C), there is an elementary map f such that f | C' = idc and f(a) = a;. On the
other hand B C C, and (q,B) € F;. So t(b,C) F t(b,C Ua) and ¢(b,C) F ¢(b,C U ay). Therefore
t(a™b,C) =t(a7 by, C).

So t(a1,CUb) =t(a,CUD). Thus pF p;1. Finally (t(a,C), A) € F§ implies (t(a,C Ub), A) € F¥.
Let p =t(a, BUC), ¢ =t(C,B) and r = t(a U C, B), such that (p, AUC) € F\ and (¢, A) € F\.

Claim 3.5. Suppose p’ and q¢' are such that dom(p') = AUC, dom(q') = A, are closed under conjuction,
are p' = p and ¢’ q. Then define 1’ by

{(Fzd)[W(Ta, e, xa; b)) A O(ze,2q;0%)] | 0,07 € A c,d € C,p(za;¢,d, b)) € P, 0(ze, x4;0%) € ¢'}.
Then r' b r.
Proof. Let by and ¢ be such that by € B and ¢(24, xc, bg) € r. Thereis ¢ € ¢such that a™¢ | ¢(2q, xc, bo).
Therefore, p' b ¢(xq4,c,b) € p. So, there is ¥ (z4,c¢,d,b1) € p’ with d € C, by € A C B, and
UV(xa,c,d,b1) F (g, c by).
Let by = b7 bp and denote by ¢*(x., x4, b2) the formula
Vo[V (Xa, Te, Ty b1) = ©(Ta, T, bo)]-

Thus ¢™d | ¢*(x¢, x4, b2), hence ¢* € q. Since ¢’ - ¢, ¢’ F ¢* and there are by € A and (¢, xq,b3) € ¢
such that
M = Vo Veq[0(x., z4,b3) = @ (ze, 24, b2)].
We conclude that
Elxd['()/](xaa Te, Xd, bl) A e(xcv Xd, bB)} = Sa(l.ay L, bO)a
the claim follows form the fact that Jxg[w(xq, Te, g, b1) A 0(2c, 24,b3)] € 77 O



IX. Let us suppose, towards contradiction, that p € S(|J, 5 B;) and for all i < 6, (p [ B;,A) € F), and
(p,A) ¢ F). So there is a = p | A such that a [~ p. Therefore, there is ¢(z) € p such that a doesn’t
satisfies p(z). There is i < §, such that ¢(x) € p | B;. Sincea =Ep | Aand (p | B;,A) € F, p E| B;.
Thus a satisfies p(x), a contradiction.

X. Let us suppose, towards contradiction, that there are p, A and B are such that (p, A) € Fy and for all
q € S(B) such that p C g, for all A’ D A, (¢, A") ¢ F§. Therefore, for all n € 25*, we can find p,,, 4, C B
such that the following hold:

e pp=plAand Ay = 4
for all n, Py € S(An), An“(O) = Anﬁ(l) and |A77A(0) — Aﬁ‘ < w;

if n is an initial segment of &, then p, C pg;

if & = length(n) is limit, then p,, = Ug<abyis;

for all 7, p,~ (o) is contradictory with p,~(1).

Since |A] < X and |A,~ (o) — Ay| < w holds for all n € 2<*, B’ = U, co<x Ay and |B’ < A|. It is clear that for all
&,m € 2%, pe and p, are contradictory. Thus |S(B’)| > A, a contradiction. O

Definition 3.6. We say that a relation R(x) of M is over A if it is definable by some formula p(z,a), a € A.

Definition 3.7. We say that an equivalence relation E(x,y) in M is finite, if the number of equivalence classes
s finite.

Let us denote by F'E(A) the set of all finite equivalence relations over A.

Definition 3.8. We define stp(a, A), the strong type of a over A, to be the set
{E(z,a) | E € FE(A)}.

Lemma 3.9 (Properties of strong types, [2], [12]). Let A C B, a and b be arbitrary.

1. If stp(a, A) = stp(b, A), a la B and b la B, then stp(a, B) = stp(b, B).

2. stp(a, A) - t(a, A).

3. If stp(a, A) = stp(b, A), a la B and b la B, then t(a, B) =t(b, B).

4. If A is a model, then t(a, A) F stp(a, A).

5. If A is a model, t(a, A) =t(b,A), a la B and bl B, then stp(a, B) = stp(b, B).

6. There is ¢ such that stp(c, A) = stp(a, A) and ¢ La B.
Definition 3.10. Let us define F to be the set of all pairs (p, A) € Py such that for some a |=p, stp(a, A) F p.
Lemma 3.11 ([2], [12]). Let (p, A) € Py. Then (p, A) € FY if and only if for all a |=p, stp(a, A) - p.

Proof. Let us suppose, towards contradiction, that there are a,b |= p and ¢ such that stp(a, A) - p, stp(b, A) =
stp(e, A) and ¢ = p. Choose f € Aut(dom(p)) such that f(b) = a. Let o’ = f(c). Then stp(a’, A) = stp(a, A)
but o’ £ p, a contradiction. O

Exercise 3.1. Show that Fi C F§ C F{.

Lemma 3.12 (2], [12]). If T is stable, then FY satisfies azioms I to IX. If T is a superstable countable theory
over a countable vocabulary, then it also satisfies axiom X.

Definition 3.13. Let us define F{ to be the set of all pairs (p, A) € Py that p does not fork over A.

Lemma 3.14 ([2], [12]). If T is stable, then Ff satisfies axioms I to X.



3.2 Models

Definition 3.15. We say that (A, (a;, B;)i<a) i an Fx-construction over A if for alli < «, (t(a;, A;), B;) € Fi,
where A; = AU, _; a;. We say that C is F-constructible over A if there is an F-construction (A, (a;, Bi)i<a)
over A such that C = AU

i<o @i

Definition 3.16. We say that C is (Fy, k)-saturated if for all B C C of size smaller than x and p € S(B) the
following holds:
If A is such that (p, A) € Fy, then p is realized in C.

Definition 3.17. We denote by u(Fy) the least cardinal p such that for all kK > p and C, if C is (Fx,u)-
saturated, then it is (Fy, k)-saturated. If such u does not exists, then we say p(Fy) = oo.

Definition 3.18. We say that (Fy, k)-primary over A if it is Fx-constructible over A and (F, k)-saturated.

Lemma 3.19 ([12]). For all A and k there is an (Fx, k)-primary set over A. If p(Fy\) < oo, then there is an
F\-primary set over A.

Sketch of the proof. Let us construct by induction the sequence ((aq, Ba)), such that p, = t(aqa, Aa), (Pas Ba) €
Fy, where A, = AU H{a; | i < a}, and Ag = AUJ{a; | i < 0} is (Fy, k)-saturated.

Let « be such that for all i < a we have defined a; and B;. Suppose that A, is not (F), k)-saturated.
Therefore, there is at least one tuple (¢,C) € F, C C dom(q) C A,, |[dom(q)| < &, such that ¢ is not realized
in A,. Let us define for any (g, C) tuple of this kind,

J(q) = min(ili < a,dom(q) C Ay).

Let us choose (g4, Cy) with j(gs) minimal. By Axiom X, there is a pair (pa, Ba) € Fa, such that ¢, C p, and
Do € S(A,). Finally choose a,, such that a, | po. It is clear that if A, is (F),k)-saturated we are done.
Thus, it is enough to show that for some a < ((|A| 4+ 2)*HTH* A, is (Fy, k)-saturated. O

We say that C is Fy-saturated if it is (F}, |C|")-saturated. Notice that C' is Fy-saturated if and only if C
is (Fy, u(Fy))-saturated.

Definition 3.20. We say that C is Fx-primitive over A if for all Fx-saturated B 2 A there is an elementary
embedding f : C — B such that f | A=1ida.

Definition 3.21. We say that C is F-prime over A if it is Fx-primitive and F-saturated.

Lemma 3.22 ([12]). If C is Fx-constructible over A, then it is Fy-primitive over A and so Fx-primary sets
over A are Fy-prime over A.

Lemma 3.23 ([12]). If T is superstable, then for all X and A, F{-prime models over A are F{-primary over
A.

Definition 3.24. We say that C is Fx-atomic over A if for all ¢ € C, there is B C A such that (t(c, A)),B) €
Fy.

Lemma 3.25 ([2], [12]). Let A be a regular cardinal. If C is Fy-constructible over A, then it is Fx-atomic over
A.

Theorem 3.26 ([2], [12]). Let A be a regular cardinal. Fy-primary sets over A are unique up to isomorphism
over A (i.e. f an isomorphism with f | A =1ida).

4 Strong DOP

From now on we will work only with superstable theories.

4.1 Definitions
We will follow Section 2.2 of [9].

Definition 4.1. We say that a model M is F-minimal over A if M is F\-saturated and there is no F-saturated
model N, ACN C M.

Definition 4.2. A superstable theory T has the dimensional order property (DOP) if there are FZ%-saturated
models (M;)i<3, Mo C My N Ma, My |y, Ma, and the F&-prime model over My U My is not F%-minimal over
My U M.



Definition 4.3. Let p,q € S(A). We say that p is orthogonal to q, p L q, if for all a,b and B O A the following
holds:
If a realizes p, b realizes q, a o B, and b l4 B, then a lp b.

Definition 4.4. We say that p € S(A) is orthogonal to B C A, p L B, if p is orthogonal to every q € S(A)
which does not fork over B.

Fact 4.5 (][9], Fact 2.7). Let B,D C M, M a F®-saturated model over BUD, and p € S(M). If p is orthogonal
to D and p does not fork over BU D, then for every a |=p | BU D the following holds: a |pup M implies
tp(a, M) L D.

Proof. Notice that since M is a model, then every complete type over M is stationary. Let p € S(M) and
B, D C M such that p is orthogonal to D and p does not fork over B U D. Suppose, towards a contradiction,
that there is a such that a |=p | BUD, a {pup M and tp(a, M) [ D. Therefore, there are N and ¢, D C N,
such that a |ps N, clp M UN, and a [y c.

Let b be such that b = p, there is f € Aut(M,D U B) such that f(a) = b. Denote by N’ the image f(N).
Choose b such that V' | pup M UN’ and stp(b/, BUD) = stp(b, BUD). We know that a |gup M and a |y N,
then by transitivity we get a {pup M U N. Therefore a |gup N, since f € Aut(M, D U B) we conclude that
blpeup N'. Since stp(t/, BUD) = stp(b, BUD) and ¥ | pup N’ we conclude that tp(b, N'UB) = tp(b’, N' U B),
there is h € Aut(M, N’ U B) such that h(b) = b'. On the other hand, by the way we chose b, we know that
blpup M. Since stp(t/, BU D) = stp(b, BU D) and ¥/ |pup M, then tp(b', M) = tp(b, M) = p. We conclude
that there is F' € Aut(M, B U D) such that F(a) = b and tp(b’, M) L D. Denote by ¢ the image F(c).
Choose ¢” such that tp(¢”, N'UBUV) = tp(d, N'UBUV) and ¢ | ny'upuy M. Since b’ | guns M, then by
transitivity we get ¢’ {nup M, so ¢’ | nup M. On the other hand ¢ |p M UN, so ¢ p BU N, since
F € Aut(M,BU D), we get ¢ |p BUN’. By the way chose ¢’ we know that tp(¢”, N’ U B) = tp(c/, N' U B),
therefore ¢’/ |p BU N’ and by transitivity we get ¢’ |p M UN'.

We conclude that ¢’ [y N' and ¢’ | p M, since & [y N’ and tp(b/, M) L D, we get b’ [+ ¢’. By the way we
chose ¢’ we know that tp(¢, N'Ub) = tp(c’, N'UbV), so b [y . Since F € Aut(M, BU D), we conclude that
a N ¢, a contradiction. O

Fact 4.6. [9] A type p € S(B U C) is orthogonal to C, if for every F%-primary model, M, over B U C' there
exists a non-forking extension of p, ¢ € S(M), orthogonal to C.

Definition 4.7. Let I be a set of infinite sequences. We say that I is indiscernible over A if for all ay, by € I,
k<n,a€A, and ¢(xg,...,xn_1,y) the following holds:
If for all k < k' ,n, ar # ax, and by, # by, then

M ': QS(G,(), .. .,an,l,a) <~ ¢(b0, .. .,bn,l,a).

Definition 4.8. Let I be an infinite indiscernible set. We define Av(I, A), the average type of I over A, to be
the set:
{o(z,a) [ac A, {be I | M= p(ba)} 2w}

Lemma 4.9 ([12], X.2 Lemma 2.2). Let My C My N My be F%-saturated models, My |y, M2, M F2%-atomic
over My U My and F2-saturated. Then the following conditions are equivalent:

1. M is not FS-minimal over My U M.
2. There is an infinite indiscernible I C M over My U Ms.
3. There is a type p € S(M) orthogonal to My and to My, p not algebraic.

4. There is an infinite I C M indiscernible over My U My such that Av(I, M) is orthogonal to My and to
M.

Lemma 4.10 ([6], Theorem 2.1). Let My < My, My be E%-saturated models, such that My |y, M. Let Ms
be an F%-prime model over My U My and let I C Mz be an indiscernible over My U Ms such that Av(I, M3) is
orthogonal to My and to M. If (B;);<3 are sets such that:

o BO \LMO M1 @] MQ.
e By lauB, B2 U Ms,.
e Bs |am,uB, B1UM;.

Then
tp(1, My U Mz) = tp(I, My U My U;<3 B;).



Definition 4.11. We say that {a; | i < a} is independent over A if for alli < o, a; a U{a; | j < o, 5 # i}.

Lemma 4.12 ([9], Lemma 2.10). Let My C M; N My be F2-saturated models, My |, Ma, Ms FS%-atomic over
My U My and E2-saturated. Then the following conditions are equivalent:

1. There is a non-algebraic type p € S(Ms) orthogonal to My and to Ms, that does not fork over My U M.
2. There is an infinite indiscernible I C M3 over My U My that is independent over My U Ms.

3. There is an infinite I C M3 indiscernible over M1 UM and independent over M1UMa, such that Av(I, M3)
is orthogonal to My and to M.

Proof. 3 = 2. It is clear.

3 = 1. By 3, we know that there is an infinite I C M3 indiscernible over M; U M5 and independent over
M, U Ms, such that Av(I, M3) is orthogonal to M; and to Ms. Then it is enough to show that for that I,
indiscernible over M; U M, the type Av(I, M3) does not fork over My U My.

Let b be such that b |= Av(I, M3), then I U {b} is indiscernible over M; U M3 and b |1 Ms.

Since I is independent over M; U My, then for all J finite subset of I and a € I\J, a {arun, J. Therefore
b lar,un, J holds for all J finite subset of I, because of the finite character we conclude that b Jas,unr, I. By
transitivity b {ar,ua, Ms, we conclude that Av(I, M3) does not fork over My U Ms.

2 = 3. By 2, we know that there is an infinite indiscernible I C Mjs over M; U My that is independent
over My U Ms. Then it is enough to show that for that I, indiscernible over M; U My, the type Av(I, Ms) is
orthogonal to M; and to Ms.

Suppose, towards a contradiction, that Av(I, M3) is not orthogonal to M;. There is a countable set J C I, such
that Av(J, M3) is not orthogonal to M. Therefore, Av(J,J) is not orthogonal to some r € S(Mj).

Without loss of generality, we can assume that J = J' U {a,|n < w}, for some |J'| < w such that Av(J,J)
does not fork over J' and Av(J, J') is stationary. Let {b,|n < w} be such that for every n < w, b, = r and
bn dar, My UMy U J U {by|m # n}. Therefore, there is k < w such that tp(ag -+~ ag, M7 U My U J') and
tp(by -+ b, M1 U M3 U J') are not weakly orthogonal.

Since M3 is F%-atomic over My U Ms, there is a finite B C M; U My such that stp(I', B) & tp(I', My U My),
where I' = J' U {a,|n < k}.

Since tp(ag -+~ ax, M1 U M2 U J') is stationary and T is superstable, there is a finite set C C M; U My, that
satisfies:

1. tp(bg -+~ b, C) is stationary.
2. JIUBU(CQMQ)Uba\"'Abk \LCli M;.

3. ag - ak YBucuy by T by

Since M, is F2-saturated, there is ¢i~ - - ¢ € M such that stp(bg -+ bg, CNMy) = stp(cq -7 ek, CNM7).
By the way b3 -+ 7 by was chosen, we know that b, |, My U My U J U {by,|lm # n} holds for every
n < w, by transitivity we conclude that b3 .- by la, M2 U J'. By transitivity and the item 2 we get
that by -~ br Jonn, M1 U Mo U J and by -+ b denn, BU(C N Mz) U J. On the other hand, since
¢y e € My, by the item 2 we get that ¢ -+~ ¢p € My Lenn, BU(C N My) U J'. We conclude that
stp(bg™ -+~ bk, CUBUJ') = stp(cq -+ ¢, CUBUJ'). Therefore, there is f € Saut(M,C U B U J'), such
that f(bg - " bg) =¢5 - ¢k

By the item 3 we know that ag™ - " ar UJ Yp by -~ b UC, so flag -+ " ap)UJ Ypcg "¢ UC and
stp(flay -~ ar)UJ', B) Vitp(f(ay -+~ ar)UJ’, M1 UMs). This contradicts that stp(I’, B) b tp(I', M1 UMy).
The same argument works to show that Awv(J, M3) is orthogonal to M.

1 = 3. Let us show that p [ BU M; U M, is realized in M3, for every finite B C Ms, such that p does
not fork over B and p | B is stationary.

Without loss of generality, we can assume that for | € 0,1,2, tp(B, M;) does not fork over B N M; and
tp(B, M1 U M) does not fork over B N (M; U Ms). Let ¢ realize p, by € My, bs € My, and B; = B N M,
for I € {0,1, 2}.

Since T' is superstable, there is C C My such that b; \p,uc Mo U By, for | € 1,2. Since B |p, My, then

Blp, C and C |p, B. Let ¢ be a type over M3 that extends tp(C, B) and does not fork over By. Then ¢ | M;
is orthogonal to p and parallel to stp(C, B), so stp(C, B) is orthogonal to p. Therefore

stp(e, B) F stp(c, BUC). (1)
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Since by U By Ly, Ma, then by [a,up, M2 U By. By the way C was chosen, by |p,uc Mo U By, by transitivity
b1 IB,uc MU By. Since By UC C My U B, then stp(b;, C U B) is parallel to some complete type over M7 and
orthogonal to p. Therefore stp(by, C'U B) is orthogonal to stp(c,C'U B) and

stp(e,C' U B) F stp(c, BUC Uby). (2)

Since be U By |ar, M1, then bs |a,up, M1 U Ba. By the way C was chosen, bs | p,uc Mo U Ba, by transitivity
b1 IB,uc M1 U Bs. Since Bo UC C My U B, then stp(be, C'U BUby) is parallel to some complete type over Ms
and orthogonal to p. Therefore stp(bs, C' U B U by) is orthogonal to stp(c,C' U B Ub;) and

stp(c, CUBUby) b stp(c, BUC Uby Ubsg). (3)

From (4), (5) and (6), we conclude stp(c, B) - stp(c, BU by U by).
We conclude that stp(c, B) Fp | BUM; U Ms. Since Mz is F%-saturated and B is finite, then p | BU M; U Mo
is realized in M3.

Let By € M; U M5 be finite such that p does not fork over By and p | By is stationary. We know that
for every n there is b, € M3 such that for B, = By U {b;|i < n}, b, realizes p | B,, UMy U M5. We conclude
that I = {b,|n < w} is indiscernible and p = Av(I, M3), so Av(I, M3) is orthogonal to M; and to M.

To show that I is independent over M; U Ms, notice that for every a & p, a {a,unm, Ms. Therefore,
a danum, {bili < n} holds for every a =p | My U Ms U {b;|i < n}, especially by, {ar,unr, {bili < n}. O

Definition 4.13. We say that a superstable theory T has the strong dimensional order property (S-DOP) if the
following holds:

There are F%-saturated models (M;);<3, My C My N Ma, such that My Ly, Mo, and for every Ms E2-prime
model over My U My, there is a non-algebraic type p € S(M3) orthogonal to My and to Ms, such that it does
not fork over My U Ms.

In [5] Hrushovski and Sokolvié¢ proved that the theory of differentially closed fields of characteristic zero
(DCF) has eni-DOP, so it has DOP. The reader can find an outline of this proof in [8]. We will show that the
models used in [8] also testify that the theory of differentially closed fields has S-DOP. We will focus on the
proof of the S-DOP property:

There are F2-saturated models (M;);<3, My C My N Mz, such that My {n, Ma, and for every My E2-prime
model over My U Ma, there is a non-algebraic type p € S(Ms) orthogonal to My and to Ms, such that it does
not fork over My U Ms.

For more on DCF (proofs, definition, references) can be found in [7].

Definition 4.14. A differential field is a field K with a derivation map 6 : K — K wit the properties:

e §(a+b)=4d(a)+ 4(b)

e 5(ab) = ad(b) + bd(a)

We call 6(a) the derivative of a and we denote by 6™ (a) the nth derivative of a. For a differential field K we
denote by K{x1,xs,...,x,} the ring

Klxy,xa, ... 20, 0(x1),0(x2),...,6(xn),0%(21),0%(x2), ..., 0% (x), .. ]

The derivation map 6 is extended in K{z1,2a,...,2,} by 6(6™(z;)) = 6™ (z;). We call K{xq,z2,...,2,} the
ring of differential polynomials over K.

Definition 4.15. We say that a diferential field K is differentially closed if for any differential field L © K and
fisfo, ooy fn € K{z1,22,..., 20} the system fi(z1,22,...,2n) = fo(x1,22,...,2n) = fulx1,22,...,2,) =0
has solution in L, then it has solution in K.

Let K be a saturated model of DFC, k C K and a € K™, we denote by k{a) the differentially closed subfield
generated by k(a). If A C K and for all n, every nonzero f € k{x1,z2,...,2,}, and all a1,as,...,a, € A it
holds that f(a1,as,...,a,) # 0, then we say that A is §-independent over k.

For all £ C K denote by k%S the differential closure of k in K.

Theorem 4.16 (Hrushovski, Sokolvié¢). Suppose Ky is a differentially closed field with characteristic zero, {a,b}
is d-independent over Ko, K1 = Ko(a)®, Ky = Ko(b)%f, K = Kq{a,b)¥f, and p the non-forking extension of
Datb n K. Then Ki |k, Ko, p L K1, and p L Ks.

Corollary 4.17 ([9], Corollary 2.16). DFC has the S-DOP.

Proof. Let a, b, K1, K5, and p be as in Theorem 4.16. By Theorem 4.16 it is enough to show that p does not
fork over K1 U K3. By the way p was defined, we know that p does not fork over a + b, therefore p does not
fork over {a,b}. Since {a,b} is d-independent over Ky, K; = Ko{a)?/ and Ky = Ky(b)%/, we conclude that p
does not fork over K; U K. O]
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4.2 Trees

Definition 4.18. Let A be an uncountable cardinal. A coloured tree is a pair (t,c), where t is a kT, (A +2)-tree
and c is a map c: ty — &\{0}.

Definition 4.19. Let (t,¢) be a coloured tree, suppose (I)a<y s a collection of subsets of t that satisfies:

e for each a < K, I, is a downward closed subset of t.

° Ua<nfa=t.
o ifa< <K, then I, C Ig.

o if v is a limit ordinal, then I, = U(K7 I,.

e for each a < K the cardinality of 1, is less than k.
We call (In)a<s a filtration of t.

Order the set A X k X k X £ X k lexicographically, (a1, aa, ag, g, as) > (51, B2, B3, Ba, Bs) if for some 1 < k < 5,
ap > B and for every i < k, a; = ;. Order the set (A X k X k X k X K)=* as a tree by inclusion.
Define the tree (Ir,dy) as, Iy the set of all strictly increasing functions from some 6 < A to x and for each 7
with domain A, d¢(n) = f(sup(rang(n))).
For every pair of ordinals @ and 8, @ < 8 < k and i < A define

R(a, B,i) = U {n:i,7) = [o, B)|n strictly increasing}.
i<j<X

Definition 4.20. Assume & is an inaccessible cardinal. If « < f < k and o, 8,7 # 0, let {Pffﬁh < Kk} be an
enumeration of all downward closed subtrees of R(c, B,1) for all i, in such a way that each possible coloured tree
appears cofinally often in the enumeration. And the tree Py is (I7,dy).

This enumeration is possible because & is inaccessible; there are at most
|Uica P(R(a, B,1))] <A x k= downward closed coloured subtrees, and at most £ x <" = k coloured trees.
Denote by Q(Pfj"ﬁ) the unique ordinal number 7 such that P,?'ﬂ C R(a, B,1).

Definition 4.21. Assume k is an inaccessible cardinal. Define for each f € k" the coloured tree (Jy,cy) by the
following construction.

For every f € k" define J; = (Jy,cs) as the tree of alln:s — A x k%, where s < X\, ordered by extension, and
such that the following conditions hold for alli,j < s:

Denote by n;, 1 < i <5, the functions from s to k that satisfies, n(n) = (m(n),n2(n), ns(n), na(n),ns(n)).

1. nlnelJy foralln <s.

n is strictly increasing with respect to the lexicographical order on A x r*.

2.

3

4. m(
5. ma(
6. m(
7. For every limit ordinal o, (o) = sups<a{n(8)} for k € {1,2}.
8 m (i) =m(j) implies ne(i) = i (j) for k € {2,3,4}.

9. If for some k < X\, [i,5) = ny *{k}, then

ns 1 [i,7) € P:f((iz))»ns(z).

Note that 7 implies Q(P:j((;))’"?’(i)) =1,

10. If s = A, then either
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(a) there exists an ordinal number m such that for every k < m ni(k) < ni(m), for every k' > m
prm).ns(m)

m (k) = ni(m), and the color of n is determined by 72 (m)

cr(n) = cns [ [m, A))

PW2(m)JI3(m) )

where ¢ is the colouring function of ()

Or
(b) there is no such ordinal m and then cy(n) = f(sup(rang(ns))).

The following lemma is a variation of Lemma 4.7 of [4]. In [4] Lemma 4.7 refers to trees of height w + 2 and
the relation =[, nevertheless the proof is the same in both cases.

Lemma 4.22 ([9], Lemma 2.3). Suppose k is an inaccessible cardinal. Then for every f,g € k™ the following
holds
f =9 Jr=J,

w

For each o < k define JJ%“ as

J§ ={n € Jyrang(n) C A x (B)* for some B < a}.
Notice that (J]?‘)(KN is a filtration of Jy and every € Jy has the following properties:

L. sup(rang(mns)) < sup(rang(ns)) = sup(rang(ns)) = sup(rang(nz))-
2. When [ k € J¢ holds for every k € A, sup(rang(ns)) < a. If in addition n ¢ J¢, then sup(rang(ns)) = a.

4.3 Constructing models

We will study only the superstable theories with S-DOP. Instead of write F%-constructible, F%-atomic, F2-
saturated and FS-saturated we will write a-constructible, a-atomic, a-primary, a-prime and a-saturated. From
now on 71" will be a superstable theory with S-DOP, unless otherwise stated. We will denote by A the cardinal
(2.

Definition 4.23. o Let us define the dimension of a type p € S(A) in M by: dim(p, M) = min{|J|: J C
M, J is a maximal independent sequence over A, and Va € J,a = p}

o Let us define the dimension of an indiscernible I over A in M by: dim(I, A, M) = min{|J| : J is equivalent
to I and J is a maximal indiscernible over A in M}. If for all J as above dim(I, A, M) = |J|, then we
say that the dimension is true.

Lemma 4.24 ([12], Lemma III 3.9). Let T be a superstable theory. If I is a mazximal indiscernible set over A
in M, then |I| +w = dim(I, A, M)+ w, and if dim(I, A, M) > w, then the dimension is true.

Theorem 4.25 ([12], Theorem IV 4.9). If M is an a-primary model over A, and I C M 1is an infinite
indiscernible set over A, then dim(I,A, M) = w.

For any indiscernible sequence I = {a; | i < v}, we will denote by I [, the sequence I = {a; | i < a}. Since
T has the S-DOP, there are a-saturated models A, B,C of cardinality 2* and an indiscernible sequence Z over
B UC of size x that is independent over B U C such that

1. AcBnC,BlaC.
2. Av(Z,BUC) is orthogonal to B and to C.
3. If (B;)i<3 are sets such that:

(a) By la BUC.
(b) B1 iBuBo By UC.
(C) By irCUBO By U B.

Then,
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By the existence property of forking, for any D O A there is F' € Aut(A) such that for all ¢ € B, stp(F(c), A) =
stp(c, A) and F(c) Ja D (the same holds for C). For every { € (Jf)<x and every n € (Jf)x ((Jf)x are the
elements of Jy at the level A and (J¢)< are the elements of Jy at levels below \), let B¢ =4 B, A =< B¢, and
Cy =4 C, A= C,, such that the models (B¢)ee(s,)-, and (Cp)pe(s,), satisty the following:

o Be LalU{Bc,Co | ¢ € (Jp)ax N € (JpaNC#EL
o CplaU{Bc,Co | C € (Jr)ex NO € (Jp)x N0 #n}.
We can choose this models due to the existence property and the finite character. Notice that all £ € (Jy)<x

and n € (Jy)x, satisfy

BeUCy la | 1B, Co | ¢ € (Jp)ax N € (JAAC#END #n).

Let F¢, be an automorphism of the monster model such that F¢, [ C:C — C, and Fg, [ B: B — B¢ are
isomorphisms and Fg, | A = id. Denote the sequence 7 by {w, | @ < k}. For all n € (J¢) and every £ <7, let
I¢y = {bs | a < cf(n)} be an indiscernible sequence over Be UC,, of size c¢(n), that is independent over B¢ UC,;,
and satisfies:

o tp(len, Be UCy) = tp(Fey(Z [ c£(n)), Be UCy).
o Iey dseue, U{BeCo | C € (Jr)axNb e (T UU{Ico | C#EV O #n}.
To recap, B, Cy, and I, satisfy the following:
1. Av(Igy, Be UC,) is orthogonal to Be and to C,,.
2. If (B;)i<3 are sets such that:
(a) Bo la Be UG,
(b) By J’BgUB() Bs UCn.
(C) By *LCT,UBO B U Bg.
Then,
tp(Len, Be UC,) F tp(Iey, Be UC, Uics B;).
3. Ien deuc, U{Be,Co | € (Jp)ax N0 € (Jp)a UULco | C#EV O #n}.

Definition 4.26. Let 'y be the set \J{B¢,Cp, Iey | € € (Jf)an An € (Jp)AAE < n} and let AT be the a-primary
model over I'y. Let I'} be the set UH{B:,Chpy Ien | E,m € JFNE < n}.

Fact 4.27 ([9], Fact 3.6). If « is such that o* < f(a), sup({cy(n)}tness) < o, then |1—“}‘H| = f(a).

Lemma 4.28 ([9], Lemma 3.7). For every £ € (Jf)<x, 1 € (Jf)A, € <1, let pey be the type Av(Iey | w, Iey |
wUB:UC,). If cp(n) > w, then dim(pey, AY) = c;(n).

Proof. Denote by S the set I, [ wUBe UCy, 50 pey = Av(Iey [ w, S).
Suppose, towards a contradiction, that dim(pe,, A7) # c;(n). Since I, C AS, then dim(pey, AY) > c;(n).
Therefore, there is an independent sequence I = {a;|i < cy(n)*} over S such that I C A and Va € I, a |= pgy.

Claim 4.29. I, [ wU I is indiscernible over Bg UC,,.

Proof. We will show by induction on «, that I¢, [ w U {a;|i < o} is indiscernible over B¢ UC,,.
Case o = 0.
Since ag = pey, then tp(ag, S) = Av(le,, [ w,S) and I, [ w U {ae} is indiscernible over Be U C,,.

Suppose « is an ordinal such that for every 8 < «, I, | wU {a;i < B} is indiscernible over Be U C,,.
Therefore, I, | wU {a;|i < o} is indiscernible over B¢ U C,. By the way I was chosen, we know that
ao 1s {a;|i < a} and aq = pey. Since Igy, [ wU {a;|i < a} is indiscernible over B¢ U Cy, then Av(Ig, |
w,SU{a;li < a}) = Av(Ilg, [ wU{a;li < a}, S U{a;|i < a}), therefore Av(Ig, | wU {a;|i < a}, SU{a;li < a})
does not fork over S. Since Av(ley, | wU {a;]i < a},S U {a;|i < a}) is stationary, we conclude that
tp(aa, SU{a;|i < a}) = Av(le, | wU{aili < a}, SU{a;|i < a}) and I, | w U {a;]i < a} is indiscernible over
Bg @] CW' O]

In particular I, [ wU I is indiscernible, and I¢, is equivalent to I.
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Claim 4.30. tp(Ig,;, B: UCy) F tp(Ie,, T'f\Iey) and Igy is indiscernible over I' f\I¢y.
Proof. Define:
By = J{B, UCIr #Enp#n} ULyl # EAp # 0}
By = J{B, UCylr # & Ap #n} U Tplp # n}
By =B, uCylr # € np #n} U J{Lnplr # €}
Notice that by the way we chose the sequences I, for every r < p it holds that
Iy 18,uc, U{BQCGKaG €Jrtu UUC&K #rVo#ph.
Let J be a finite subset of {I,p,|r # { Ap #n}, J = {I;|i < m}, then
To LB, uc,lrenpzny Be UGy
and
L byis,ue, lrzenpnyur, Be U C,
by transitivity
TIo U L dygs,uc, Ir#enptnt Bs U Cy-
In general, if n < m — 1 is such that
{IZ|Z < ’Il} iU{BTUCP‘7"5"55/\105"571} Bf U Cm

then since
Inv1 LB, ue, IreAp£nyoU Lili<n} Be UGy

we conclude by transitivity that

{Lili <n+1} Lo, lreenpzny Be UCh.
We conclude
U J Ly, ue, [renpzny Be UCy.
Because of the finite character we get that

U{I7'P|T 7& § ADp 7& 7]} \lfU{BTVUCph';ﬁg/\p;ﬁn} Bf U C’r/-

By the way we chose the models B, and C,, we know that

Be UCy ba | (B UClr # Enp # ),

by transitivity we conclude By |4 B: UC,,.
Notice that for every p # n, £ < p we have

Iep Vscuc, | H{Be:Col¢,0 € Jp} U J{TcolC # €V 0 # p}
S0
Iep .Uy Cy U\ {TcolC # £V 60 # p).
From this we can conclude, in a similar way as before, that for every finite J C {I¢p|p # n} it holds that
U7 bseumo Cr U J{Tcol¢ # €3
Because of the finite character we get that
U{I£p|p #n} lsus, Cp U U{I<9|C # ¢}
Since U{B, UCp|r # & Ap # n} C By and J{I,p|r # £ A p # n} C By, then we conclude
By {B.uB, Cy U Ba.
Using a similar argument, it can be proved that

B3 le,uB, Be U By.
To summary, the following holds:
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L BO \I/.A Bf U Cna
L4 Bl \LBEUBO C’I] ) BQ?
e Bs lc,uB, Be U Bu,

by the way the sequences I, were chosen (item 2), we can conclude that tp(I¢,, Be UCy) F tp(Iey, I'f\1Iey) and
since I¢, is indiscernible over B¢ UC,;, then I¢, is indiscernible over T'f\I¢,. O

By Claim 4.7.1 we know that tp(I,Be U Cy;) = tp(Ien, Be UCy), therefore by Claim 4.7.2 tp(I,B: UCy) +
tp(Ien, T ¢ \I¢y). We conclude that tp(I,Be UCy) F tp(I,T'¢\I¢,) and since I is indiscernible over B¢ UC,,, then
I is indiscernible over T'f\I¢,.

Claim 4.31. There are I',I* C I such that |I'| = cs(n)* and I' L \1,, )01+ Len-

Proof. Let us denote the elements of I, by b;, Iey, = {b;|i < cs(n)}. Since T is superstable, we know that
for every o < cs(n) there is a finite B, C I U {b;|i < a} such that by L(r,\1.,)uB, I U{bili < a}. Define
I = (Ua<cf(n) B,)NI and I' = I\I*, notice that [I*| < ¢¢(n), so |I'| = cg(n)*. Because of the finite character,

to prove that I |(p\ 1, ur- Ien, it is enough to prove that I" L\, yur- {bi]i < a} holds for every a < c¢(n).
Let us prove this by induction on o > 0.

Case: a = 1.
By the way By was chosen, we know that by |(r,\r.,)uB, I, and this implies
I" Lr p\1eyyur+ bo-

Case: =+ 1.

Suppose S is such that I’ L\ ge,) oI {b;]i < B} holds. By the way B was chosen, we know that bg LT\ Ien)UBs
Tu{bili < B} and Bg C I U{b;li < B}. Therefore bg |(r,\1.,)ur-uin;ji<py I and by the induction hypothesis
and transitivity, we conclude that {b;[i < B8} L, \r.,yur- I'- So I" Lir o1, ur- 1bili < a}.

Case: « is a limit ordinal.
Suppose « is a limit ordinal such that I’ L\ Ieyur- {b;li < B} holds for every § < «a. Therefore, for ev-
ery finite A C {b;|i < a} we know that I" |(r,\z.,)ur- A. Because of the finite character, we conclude that

I Lrp\1e,yure {bili < a}. O
Claim 4.32. I’ is is indiscernible over I'y U I*, in particular I' is is indiscernible over I';.

Proof. Let {co,c1,...,cn} and {c, ¢, ..., ¢} be disjoint subsets of I’ with n elements, such that ¢ # j implies
¢ # ¢ and ¢ # c}. We will prove that the following holds for every m < n

tp({chs -+ s Con1s Cmy Cmt1,Cn }, D UTY) = tp({chs - oy 1y oy Con1s ooy Cn J, T UTT).

By Claim 4.7.3, we know that {co,c1,...,cn} U{ch,ch,. o e} bop\te, ure Len, 0

Cm LT P\ Ten)UT* ULl sy semptseonent Len B0 Con L\ Te )UT=ULeh ety semaen} Len-
Since {¢m, ), }UIT* U{ch, ..., Ch_1,Cm+1,--.,Cn} is indiscernible over (I'f\I¢,), and
{co,c1,.. . ent N{ch,chy. ..y} =0, then

Cm = AV U{ch, .oy Cy s Cmtty - s Cn by (Dp\Ien) U U{ch, ..o €1, Cmtts -1 Cn})
and

C B AV U{ch, oy Oy Cntty - s Cn by (Dp\Ien) U U{ch, ..o €1, Cmtas - -1 Cn })-
We know that Av(I* U{cp,...,ch_1:¢mt1s--s¢nts Tp\Len) UT* U{cp, ..., Chy_1;Cm+1,---,Cn}) is stationary,
we conclude that

tp(Crm, T UT* U{ch, 1y Cmtts -5 Cn}) = tp(chy, T UT ULl .o €y Cmtty ey Cn})
and
tp({chs -+ s Con1s Cmy Cnt1s -+« Cn s D UT) = tp({Chyy - - s Cory— 15 Comys G 1y« s Cn ), L U TY)

as we wanted.
Since
tp({chs - s 1y Cmy Cmtts ooy 1, D UL = tp({ch, -+ oy 1y Gy Gt 15 - - s G}, D UTY)
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holds for every m < n, we conclude that

tp({co, - - - ,C”},Ff ur) = tp({cf), S ,C;L},Ff ur.

To finish the proof, let {cp,c1,...,¢,} and {cf, ], ..., c,,} be subsets of I’ with n elements, such that i # j
implies ¢; # ¢; and ¢} # c;. Since I’ is infinite, then there is {cg,cf,...,c;} C I' such that {cg,cf,...,cp} N
({co, 1y -y en}U{ch, ¢y }) = 0. Therefore

tp({co, ... en}, T UTY) =tp({cq,....,h}, Ty UT") =tp({ch,...,c 1, T UTY),
we conclude that I’ is is indiscernible over I' FUI™. O

Let J C A/ be a maximal indiscernible set over I'y such that I’ C J. By Lemma 4.2 |J| + x(T) =
dim(J,T ¢, A7) + k(T). Since T is superstable, x(T) < w < |J| and we conclude that x(T) < dim(J,T'y, A") +
k(T). Therefore x(T) < dim(J,Ts, A’) and by Lemma 4.2 the dimension is true, dim(J,Ts, A') = |J|. So
dim(J, T, A’) > w a contradiction with Theorem 4.3. O

Theorem 4.33 ([9], Theorem 4.1). Assume f, g are functions from k to CardNk\\ such that f(a), g(a) > a™F
and f(a),g(a) > a*. Then Af and A9 are isomorphic if and only if f and g are =% equivalent.

This lemma has a long proof we will sketch the proof. One direction is easy, for the other direction we proceed
by contradiction, we assume that f and g are not =% equivalent and there is an isomorphism II : Af = A9,
Then we construct an a-primary model F, and find { < 7 and a € I¢, such that

I(a) dnseue,) F

By using a, we will construct a independent indiscernible sequence (b;);< f(a)+ over II(B¢ UC,) in A9. Finally,
we use IT and (b;);< f(a)+ to construct a sequence (c¢;);<f(q)+ indiscernible and independent over B U C, with
¢co € I¢y, which is a contradiction with Lemma 4.28.

Proof. Sketch. From right to left. If f and g are =5 equivalent then J; and .J,; are isomorphic. Let G : J; — J,
a colored trees isomorphism, the proof follows by showing that G defines an embedding H : I'y — I'y and this
one can be extended to an isomorphism between Af and A9.

From left to right. For every o define A = I'¢ U Ufa! | i < a}, clearly ¢ is not necessary a model.
Suppose that A/ and A9 are isomorphic but f and g are not =4 equivalent.

Denote by IT : Af — A9 an isomorphism. There are a and 7 such that f(a) > g(a), I(A$) = A7 and
cr(n) = f(a). Thereis X C I'y of size 2* such that II(C,)) C D, where D is the a-primary model over X. There
is B < a such that X NT¢ C T', and € such that B¢ € T$\I';.

Denote by E the a-primary model over XUF;“. There is a € I¢, such that I1(a) ¢ £ and (a) {ns.ue,) F,
where F is the a-primary model over EUJ{B¢,I¢o | ¢ <O ACo C X\I'9H}.

Since A, is a-atomic, there is a finite B C F'UT, such that (¢tp(Il(a), F UTy), B) € FS%. There is ) such
that B\F C Y and S={re Jy | (r € (Jg)cx AB, CY)V (r € (Jg)x ACr C Y)} is finite.

Let S be the smallest subtree of .J, that is closed under predecessors and contains S. Define X = {r €
Jg | (r€ (J)cx AB. C X))V (re (Jy)xAC. C X)} and X as the smallest subtree of .J, that is closed under
predecessors and contains X'. Let {u;};< )+ be a sequence of subtrees of J, with the following properties:

o uy=25

e Every u; is a tree isomorphic to ug.

o If i # j, then u; Nuy = up N (X U JZHT).

e Every ¢ € dom(cg) Nug satisfies ¢4(¢) = ¢4(G;(()), where G; is the isomorphism between u and u;.

With these subtrees we can find a sequence {b; };« f(a)+ of elements of A9 such that for alli < f(a)*, tp(b;, F) =
tp(Il(a), F) and b; | p Uj<i bj. Since Il(a) lrs.uc,) F, then b; lnes,uc,) Uj<i b; holds for all i < f(a)*.

We conclude that (b;);< ¢(a)+ is an indiscernible sequence over I1(B¢ UC,) and independent over I1(B: UC,).
Since II is an isomorphism, we obtain in A/ a sequence (c;);< f(a)+ indiscernible over B¢ UC, and independent
over B¢ UC,. So dim(pey, AY) > f(a)*t a contradiction with Lemma 4.28 (dim(pe,, AY) = f(a)).

O

Lemma 4.34 ([9], Corollary 5.1). If k is inaccessible, and T is a theory with S-DOP, then =5 —. =r.
Theorem 4.35 (][9], Corollary 5.2). If k is an inaccessible and Ty is a classifiable theory and Ty is a superstable
theory with S-DOP, then =r, —. =r1,.
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5

Questions

Question 5.1. Let k be an inaccessible cardinal, Ty a classifiable theory, and To a non-classifiable theory. Is
=7, —e =1, a theorem of ZFC?

Question 5.2 (J. Baldwin). Does there exists a superstable theory with DOP that does not have S-DOP?
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