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1 Descriptive Set Theory

Day 1

Definition 1.1 (The Baire space B). The Baire space is the set ωω endowed with the following topology. For
every η ∈ ωn for some n, define the following basic open set

Nη = {f ∈ ωω | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

This topology is metrizable, let d(f, g) = 1
n+1 where n is the least natural number that satisfies f(n) 6= g(n),

in case it does not exist then f = g and d(f, g) = 0.

Definition 1.2 (The Cantor space C). The cantor space is the set 2ω with the relative subspace topology.

Definition 1.3 (Borel class). Let S ∈ {B,C}. The class Borel(S) of all Borel sets in S is the least collection
of subsets of S which contains all open sets and is closed under complements, countable unions and countable
intersections.

Definition 1.4 (Borel hierarchy). Let S ∈ {B,C}. Define the classes Σα(S) and Πα(S), α < ω1, as follows.

1. Σ1(S) is the class of open sets.

2. Π1(S) is the class of closed sets.

3. For all α > 1, Σα(S) is the class of of all countable unions of sets from
⋃
β<α Πβ(S).

4. For all α > 1, Πα(S) is the class of of all countable unions of sets from
⋃
β<α Σβ(S).

Exercise 1.1. 1. For all n < ω and all η ∈ ωn the set Nη is closed.

2. For all β < α < ω1, Σβ(B) ⊆ ΣαB.

3. Borel(B) =
⋃

0<α<ω1
Σα(B).

4. | Borel(B) |= 2ω.

5. There are subsets of B that are not Borel.

Definition 1.5. Let S ∈ {B,C}. We say that A ⊆ S is co-meager, if it contains a countable intersection of
open and dense subsetes of S. A subset of S is meager, if the cmplement of it is co-meager.

Definition 1.6. Let S ∈ {B,C}. We say that X ⊆ S has the property of Baire (PB) if there is an open set
U ⊆ S such that X∆U is meager.

Lemma 1.7. Every Borel subset of B has the property of Baire.

Exercise 1.2. Prove Lemma 1.7. (Hint: prove that X has the PB if and only if B\X has the PB.)

Definition 1.8 (Borel∗-code). Let X be a non-emprty set.

1. A subset T ⊂ X<ω is a tree if for all f ∈ T with n = dom(f) > 0 and for all m < n, f � m ∈ T .
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2. A non-empty tree T ⊂ X<ω is called an ω-tree if the following holds:

(a) If f : n→ X is in T and n > 0, then for all x ∈ X, f � (n− 1) ∪ {(n− 1, x)} ∈ T .

(b) There is no f : ω → X such that for all n < ω, f � n ∈ T .

3. We order T by ⊆. The maximal elements of T are called leaves and the set of leaves is denoted by L(T ).
The least element of T is called root (∅). For every f ∈ T that is not the root, we denote by f− the
immediate predecessor of f in T . We call node every element that is not a leaf.

4. A Borel∗-code is a pair (T, π), where T ⊆ (ω × ω)<ω is an ω-tree and π is a function from L(T ) to the
basic open sets of B.

5. Given a Borel∗-code (T, π) and η ∈ B, we define the game GB∗(η, (T, π)) as follows. The game GB∗(η, (T, π))
is played by two players, I and II. In each move 0 ≤ n < ω the function fn : n + 1 → (ω × ω) from T
is chosen as follows: Suppose fn−1 ∈ T is chosen, in case n = 0, f−1 = ∅. If fn−1 is not a leaf, then I
choose some i < ω and then II choose some j < ω. This determines fn = fn−1 ∪ {(n, (i, j))}. If fn−1 is
a leaf, then the game ends and II wins if η ∈ π(fn−1).

6. A function W : ω<ω → ω is a winning strategy of II in GB∗(η, (T, π)), if II wins by choosing W (i0, . . . , in)
on the move n, where i0, . . . , in are the moves that I made on the moves 0, . . . , n.

7. A Borel∗-code (T, π) is a Borel∗-code for X ⊆ B if for all η ∈ B, η ∈ X if and only if II has a winning
strategy in GB∗(η, (T, π)). We say that X ⊆ B is a Borel∗ set if it has a Borel∗-code. We denote by
Borel∗(B) the class of Borel∗ sets.

Theorem 1.9. Borel(B) = Borel∗(B).

Proof. Let us start by showing that Borel(B) ⊆ Borel∗(B). We will prove this by showing that every open set
is a Borel∗ set and if {Xi}i<ω is a countable collection of Borel∗ sets, then

⋃
i<ωXi and

⋂
i<ωXi are Borel∗

sets.
Suppose that X is an open set. Let {ξi}i<ω be a collection of elements of ω<ω such that X =

⋃
i<ω Nξi .

Let T = (ω × ω)≤1 and π the fuction given by π((0, (i, j))) = Nξj . It is clear that for every η ∈ X, II has a
winning strategy in GB∗(η, (T, π)). Therefore (T, π) is a Borel∗-code for X.

Suppose that {Xi}i<ω is a countable collection of Borel∗ sets. Let (Ti, πi) be a Borel∗-code of Xi. Let T
be the set of all functions f : n → (ω × ω), for some n < ω, such that if f(0) = (i, j), then there is g ∈ Ti,
g : n − 1 → (ω × ω) with dom(f) = dom(g) + 1, and f(m) = g(m − 1), for all 0 < m < dom(f). For every
leaf f of T if f(0) = (i, j), then there is g ∈ L(Ti) such that f(m) = g(m− 1), for all 0 < m < dom(f); define
π(f) = πi(g).

Claim 1.10. (T, π) is a Borel∗-code of
⋂
i<ωXi, and

⋂
i<ωXi is a Borel∗ set.

Proof. Let η ∈
⋂
i<ωXi. Then for all i < ω, there is a winning strategy Wi of II in GB∗(η, (Ti, πi)). Define

W : ω<ω → ω by W (i0) = 0 and W (i0, . . . , in) = Wi0(i1, . . . , in) for all 0 < n < ω. It is easy to see that W is a
winning strategy of II in GB∗(η, (T, π)).

Let η ∈ B be such that II has a winning strategy, W , in GB∗(η, (T, π)). Define Wi : ω<ω → ω by
Wi(i0, . . . , in) = W (i, i0, . . . , in). It is easy to see that Wi is a winning strategy of II in GB∗(η, (Ti, πi)). Since
this holds for all i < ω, we conclude that η ∈ Xi, for all i < ω.

Let (Ti, πi) be a Borel∗-code of Xi. Let T be the set of all functions f : n→ (ω × ω), for some n < ω, such
that if f(0) = (i, j), then there is g ∈ Tj , g : n− 1→ (ω× ω) with dom(f) = dom(g) + 1 and f(m) = g(m− 1),
for all 0 < m < dom(f). For every leaf f of T if f(0) = (i, j), then there is g ∈ L(Tj) such that f(m) = g(m−1),
for all 0 < m < dom(f); define π(f) = πj(g).

Claim 1.11. (T, π) is a Borel∗-code of
⋃
i<ωXi, and

⋃
i<ωXi is a Borel∗ set.

Proof. Let η ∈
⋃
i<ωXi. Then there is j < ω, such that there is a winning strategy Wj of II in GB∗(η, (Tj , πj)).

Define W : ω<ω → ω by W (i0) = j and W (i0, . . . , in) = Wj(i1, . . . , in) for all 0 < n < ω. It is easy to see that
W is a winning strategy of II in GB∗(η, (T, π)).

Let η ∈ B be such that II has a winning strategy, W , in GB∗(η, (T, π)). Define W ′ : ω<ω → ω by
W ′(i1, . . . , in) = W (0, . . . , in). It is easy to see that W ′ is a winning strategy of II in GB∗(η, (TW (0), πW (0))).
Therefore η ∈ XW (0).

To show that Borel∗(B) ⊆ Borel(B) we will define the rank of an ω-tree and the rank of the elements of
an ω-tree.

Given an ω-tree T , we define the rank function, rk, as follows:
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• If η ∈ L(T ), then rk(η) = 0.

• If η /∈ L(T ), then rk(η) =
⋃
{rk(f) + 1 | f− = η}.

The rank of a tree T is defined by rk(T ) = rk(∅).

Exercise 1.3. 1. Show that the rank of an ω-tree is smaller than ω1.

2. Find an ω-tree with infinite rank.

Let X be a Borel∗ set, and (T, π) a Borel∗-code of X. We will prove by induction on rk(T ) that X is a
Borel set.

Case rk(T ) = 0. It is clear that T = {∅} and X = π(∅), therefore X is a Borel set.
Suppose rk(T ) = α and if Y is Borel∗ set with Borel∗-code (T ′, π′) with rk(T ) < α, then Y is a Borel set.
Let Tij be the set of all functions f : n → ω such that there is a function g ∈ T with g(0) = (i, j),

dom(g) = dom(f) + 1 and f(m) = g(m + 1) for all m ∈ dom(f). Define πij by πij(f) = π(g), where g ∈ T is
such that g(0) = (i, j), dom(g) = dom(f) + 1 and f(m) = g(m + 1) for all m ∈ dom(f). Notice that for all
i, j < ω, rk(Tij) < α. By the induction hypothesis, for all i, j < ω, (Tij , πij) is a Borel∗-code of a Borel set.
Denote by Bij the Borel set with Borel∗-code (Tij , πij).

Claim 1.12. X =
⋂
i<ω

⋃
j<ω Bij

Proof. Let η ∈ X, then II has a winning strategy, W , in GB∗(η, (T, π)). Define WiW (i) : ω<ω → ω by
WiW (i)(i0, . . . , in) = W (i, i0, . . . , in), it is clear thatW−iW (i) is a winning strategy of II inGB∗(η, (TiW (i), πiW (i))),
so η ∈ BiW (i). Therefore, for all i < ω there is j < ω such that η ∈ Bij , we conclude that η ∈

⋂
i<ω

⋃
j<ω Bij .

Let η ∈
⋂
i<ω

⋃
j<ω Bij . Then for all i < ω there is j < ω such that η ∈ Bij , denote by h(i) this j. So

there is Wih(i) a winning strategy of II in GB∗(η, (Tih(i), πih(i))). Define W : ω<ω → ω by W (i0) = h(i0) and
W (i0, . . . , in) = Wh(i0)(i1, . . . , in). It is clear that W is a winning strategy of II in GB∗(η, (TiW (i), πiW (i))) and
η ∈ X.

At the beginning the Borel∗-codes look very artificial and complicated, but this codes will be very helpful
in the future. In order to give a better understanding of the motivation behind the Borel∗-codes we will define
the Borel∗∗-codes. This codes use intersections and unions as part of the coding of sets, this gives a better
understanding on what is going on in the coding.

Definition 1.13. 1. A pair (T, π) is a Borel∗∗-code if T ⊆ ω<ω is an ω-tree and π is a function with
domain T such that if f ∈ T is a leaf, then π(f) is an open set, and in case f is a node, π(f) = ∩ if
| dom(f) | is an even number and π(f) = ∪ if | dom(f) | is an odd number.

2. For an element η ∈ B and a Borel∗∗-code (T, π), the game B∗(η, (T, π)) is played as follows. There are
two players, I and II. The game starts from the root of T . At each move, if the game is at node f ∈ T and
π(f) = ∩, then I chooses an immediate successor g of f and the game continues from this g. If π(f) = ∪,
then II makes the choice. Finally, if π(f) is an open set, then the game ends, and II wins if and only if
η ∈ π(x).

3. A set X ⊆ ωω is a Borel∗∗-set if there is a Borel∗∗-code (T, π) such that for all η ∈ ωω, η ∈ X if and
only if II has a winning strategy in the game B∗(η, (T, π)). We denote by Borel∗∗(B) the set of Borel∗∗

sets.

Exercise 1.4. Borel∗(B) = Borel∗∗(B).

Notice that the rank was defined for ω-trees in general. For every Borel∗∗ set, X, as the least ordinal α
such that there is a Borel∗∗-code of X.

Exercise 1.5. What is the relation between the rank of a Borel∗∗ set and the Borel hierarchy?

Day 2

Definition 1.14. • X ⊆ B is Σ1
1(B) if there is Y ⊆ B×B a Borel set such that pr(Y ) = X.

• X ⊆ B is Π1
1(B) if B\X is Σ1

1(B).

• X ⊆ B is ∆1
1(B) if it is Σ1

1(B) and Π1
1(B).

Lemma 1.15. The following are equivalent:
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• X is Σ1
1(B).

• X = pr(Y ) for some closed y ⊆ B×B.

Lemma 1.16. If X ⊆ B is Borel, then X is ∆1
1(B).

Proof. Let X ⊆ B be a Borel set and (T, π) a Borel∗-code for X. Let h : ω<ω → ω be one-to-on and onto.
For all f ∈ ωω define Wf : ω<ω → ω by Wf (i0, . . . , in) = f(h(i0, . . . , in)). Let P be the set of all the tuples
(η, f) ∈ ωω×ωω such that Wf is a winning strategy for II in the game GB∗(η, (T, π)). It is clear that pr(P ) = X.

Claim 1.17. P is closed

Proof. Let (η, f) /∈ P then there are n < ω and {j0, . . . , jn} such that if I choose jm in the m-move and II
choose Wf (j0 . . . , jm) in the m-move, then after n moves the game stops in a leaf g and η /∈ π(g). Therefore,
there is r < ω, such that Nη�r ∩ π(g) = ∅, so (Nη�r ×Nf�m) ∩ P = ∅.

We conclude that X is Σ1
1(B) and since Borel(B) is closed under complements, we conclude that B\X is

Borel, therefore it is Σ1
1(B). We conclude that X is ∆1

1(B).

Exercise 1.6. Prove the claims of the following proof.

Theorem 1.18 (Separation). If X,Y ⊆ B are Σ1
1(B) disjoint sets, then there is a Borel set Z ⊆ B that satisfies

X ⊆ Z ⊆ B\Y .

Proof. Choose X∗, Y ∗ ⊆ B×B such that pr(X∗) = X and pr(Y ∗) = Y . For all η ∈ B, let Xη be the set of all
ξ ∈ ωω that satisfy the following: If dom(ξ) = n, then there are η′ξ′ ∈ B, (η′, ξ′) ∈ X∗, and η′ � n = η � n and
ξ ⊆ ξ′. Define Yη in the same way. We denote by Xη�n the set of functions ξ ∈ ωn such that there is η′ ∈ B,
and ξ ∈ Xξ′ and η � n ⊆ η′. It is clear that Xη =

⋃
n<ωXη�n.

Given two trees T, T ′ ⊆ ω<ω, we say that T ≤ T ′ if there is a function f : T → T ′ that satisfies the following:
for all η, ξ ∈ T , if η ( ξ, then f(η) ( f(ξ). Let Z be the set of η ∈ B that satisfy Yη ≤ Xη.

Claim 1.19. • If η ∈ X, then Yη ≤ Xη.

• If Yη ≤ Xη, then η /∈ Y .

• X ⊆ Z ⊆ B\Y .

for all T, T ′ ⊆ ω<ω we define the game GC(T, T ′) as follows: in the n-th movement, I chooses tn ∈ T such
that tm ⊆ tn holds for all m < n, and II chooses t′n ∈ T ′ such that t′m ⊆ t′n holds for all m < n. The game ends
when a player cannot make a choice, the player that cannot make a choice looses.

Claim 1.20. T ≤ T ′ si y solo si II has a winning strategy for the game GC(T, T ′).

Let T be the set of all functions with finite domain, f : n→
⋃
m<ω(ωm)3 such that for all i < n the following

holds:

• f(i) ∈ (ωi)3.

• If j + 1 < n and f(j) = (ξk)k<3, then ξ1 ∈ Xξ0 and ξ2 ∈ Xξ0 .

• If j < l < n, f(j) = (ξk)k<3, and f(l) = (ξ′k)k<3, then for all k < 3, ξk ⊆ ξ′k.

Define π with domain L(T ) as π(f) = Nξ0 if dom(f) = n + 1, f(n) = (ξk)k<3, and ξ2 /∈ Yξ0 . And π(f) = ∅ in
other case.

Claim 1.21. There is a Borel∗-code (T ′, π′) such that there is a tree isomorphism h : T ′ → T that satisfies
π′(f) = π(h(f)).

Claim 1.22. II has a winning strategy in GB∗(η, (T ′, π′)) if and only if GC(Yη, Xη).

The following is a standard way to code structures with domain ω with elements of 2ω. Fix a countable
relational vocabulary L = {Pn | n < ω}.

Definition 1.23. Fix a bijection π : ω<ω → ω. For every η ∈ 2ω define the L-structure Aη with domain ω as
follows: For every relation Pm with arity n, every tuple (a1, a2, . . . , an) in ωn satisfies

(a1, a2, . . . , an) ∈ PAηm ⇐⇒ η(π(m, a1, a2, . . . , an)) = 1.

4



Definition 1.24 (The isomorphism relation). Assume T is a complete first order theory in a countable vocab-
ulary. We define ∼=ω

T as the relation

{(η, ξ) ∈ 2ω × 2ω | (Aη |= T,Aξ |= T,Aη ∼= Aξ) or (Aη 6|= T,Aξ 6|= T )}.

A function f : 2ω → 2ω is Borel, if for every open set A ⊆ 2ω the inverse image f−1[A] is a Borel subset of
2ω. Let E1 and E2 be equivalence relations on 2ω. We say that E1 is Borel reducible to E2, if there is a Borel
function f : 2ω → 2ω that satisfies (x, y) ∈ E1 ⇔ (f(x), f(y)) ∈ E2, we denote it by E1 ≤B E2.

Exercise 1.7. A function f is Borel if and only if for all Borel set X, f−1[X] is Borel.

Example 1.1. Let T1 be the theory of the order of the rational numbers, ∼=ω
T1

has only two equivalent classes.
Let T2 be the theory of a vector space over the field of rational numbers. ∼=ω

T1
≤B∼=ω

T2
.

This can be use to compare the complexity of two theories, from Example 1.1 we conclude that T1 is less
complex than T2, in the Borel reducibility sense.

Question 1.25. Is there an equivalence relation E on 2ω such that for every complete first order theory in a
countable vocabulary T , either E 6≤B∼=ω

T1
or ∼=ω

T1
6≤B E.

Let T be a complete countable theory, we will denote by I(λ, T ) the amount of non-isomorphic models of T
of size λ. The following is the main theorem of [12].

Theorem 1.26 (The Main Gap Theorem, [12]). Let T be a complete countable theory.

• If T is not superstable, or deep, or with DOP or OTOP then for every uncountable cardinal λ, I(λ, T ) = 2λ.

• If T is shallow superstable without DOP and without OTOP, then for every α > 0, I(ℵα, T ) ≤ iω1
(|α|).

Let T be a complete countable theory, we say that T is a classifiable theory if T is superstable without DOP
and without OTOP. T1 in Example 1.1 is not classifiable and T2 is classifiable. The Main Gap Theorem tells
us that classifiable theories are less complex than non-classifiable ones, in the stability sense.

2 Generalized Descriptive Set Theory

Day 3

Definition 2.1 (The Generalized Baire space B(κ)). Let κ be an uncountable cardinal. The generalized Baire
space is the set κκ endowed with the following topology. For every η ∈ κ<κ, define the following basic open set

Nη = {f ∈ κκ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Definition 2.2 (The Generalized Cantor space C(κ)). Let κ be an uncountable cardinal. The generalized
Cantor space is the set 2κ with the relative subspace topology.

From now on κ is an uncountable cardinal that satisfies κκ.

Definition 2.3 (κ-Borel class). Let S ∈ {B(κ),C(κ)}. The class κ-Borel(S) of all κ-Borel sets in S is the least
collection of subsets of S which contains all open sets and is closed under complements, unions and intersections
both of length at most κ.

Definition 2.4 (κ-Borel∗-set in C(κ)). 1. A tree T is a κ+, κ-tree if does not contain chains of length κ and
its cardinality is less than κ+. It is closed if every chain has a unique supremum.

2. A pair (T, h) is a κ-Borel∗-code if T is a closed κ+, κ-tree and h is a function with domain T such that if
x ∈ T is a leaf, then h(x) is a basic open set and otherwise h(x) ∈ {∪,∩}.

3. For an element η ∈ 2κ and a κ-Borel∗-code (T, h), the κ-Borel∗-game B∗(T, h, η) is played as follows.
There are two players, I and II. The game starts from the root of T . At each move, if the game is at
node x ∈ T and h(x) = ∩, then I chooses an immediate successor y of x and the game continues from
this y. If h(x) = ∪, then II makes the choice. At limits the game continues from the (unique) supremum
of the previous moves by Player I. Finally, if h(x) is a basic open set, then the game ends, and II wins if
and only if η ∈ h(x).

4. A set X ⊆ 2κ is a κ-Borel∗-set if there is a κ-Borel∗-code (T, h) such that for all η ∈ 2κ, η ∈ X if and
only if II has a winning strategy in the game B∗(T, h, η).
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We can define the κ-Borel∗-set in the generalized Baire space too, by using the same coding but with basic
open sets of the generalized Baire space. Given two sets X,Y ⊂ κκ we say that X and Y are duals if there
is a κ-Borel∗-code (T, h) such that for all η ∈ κκ, η ∈ X if and only if II has a winning strategy in the
game B∗(T, h, η), and η ∈ Y if and only if I has a winning strategy in the game B∗(T, h, η). We will write
II ↑ B∗(T, h, η) when II has a winning strategy in the game B∗(T, h, η), and I ↑ B∗(T, h, η) when I has a
winning strategy in the game B∗(T, h, η).

Exercise 2.1. X is a κ-Borel set if and only if there is a κ-Borel∗-code (T, h) such that (T, h) codes X and T
is a κ+, ω-tree.

Definition 2.5. • X ⊆ B(κ) is Σ1
1(κ) if there is Y ⊆ B(κ)×B(κ) a closed set such that pr(Y ) = X.

• X ⊆ B(κ) is Π1
1(κ) if B(κ)\X is Σ1

1(κ).

• X ⊆ B(κ) is ∆1
1(κ) if it is Σ1

1(κ) and Π1
1(κ).

Theorem 2.6 ([2], Theorem 17). 1. κ-Borel⊆ κ-Borel∗.

2. κ-Borel⊆ ∆1
1(κ).

3. κ-Borel⊆ Σ1
1(κ).

4. κ-Borel∗ ⊆ Σ1
1(κ).

Proof. (Sketch). From Exercise 2.1 we conclude that (1) holds. (2) follows from (3) and tha fact that κ-Borel is
closed under complement. (3) follows from (1) and (4). To prove (4), code the winning strategies σ : T → T by
elements of κκ, notice that the assumption κ<κ is needed. Then, if X is κ-Borel∗, then there is a κ-Borel∗-code
(T, h) that codes X. The set Y = {(η, ξ) | ξ is a code of a winning strategy for II in B∗(T, h, η)} is closed and
pr(Y ) = X.

Exercise 2.2. Complete the details in the proof of Theorem 2.6.

The following theorem is the separation theorem and the proof can be found in [10].

Theorem 2.7 ([10], Corollary 34). Suppose A and B are disjoint Σ1
1(κ) sets. There are κ-Borel∗ sets C0 and

C1 such that A ⊆ C0, B ⊆ C1, and C0 and C1 are duals.

Theorem 2.8 ([2], Theorem 17). ∆1
1(κ) ⊆ κ-Borel∗

Proof. Let A be a ∆1
1(κ) set. Let B = B(κ)\A, by 2.7, there are κ-Borel∗ sets C0 and C1 such that A ⊆ C0,

B ⊆ C1, and C0 and C1 are duals. Since C0 and C1 are duals, C0 and C1 are disjoint. So A = C0, B = C1.

Corollary 2.9 ([10], Corollary 35). X is ∆1
1(κ) if there is a κ-Borel∗-code (T, h) that codes X and

II ↑ B∗(T, h, η)⇔ I 6↑ B∗(T, h, η)

for all η ∈ κκ the game is determined.

Exercise 2.3. Prove the claims of the following proof.

Theorem 2.10 ([2], Theorem 18). 1. κ-Borel( ∆1
1(κ)

2. ∆1
1(κ) ( Σ1

1(κ)

Proof. 1. Let ξ 7→ (Tξ, hξ) be a continuous coding of the κ-Borel∗-codes with T a κ+ω-tree, such that for all
κ+ω-tree, T , and h, there is ξ such that Tξ, hξ = (T, h).

Claim 2.11. The set B = {(η, ξ) | η is in the set coded by (Tξ, hξ)} is Σ1
1(κ) and is not κ-Borel, otherwise

D = {η | (η, η) /∈ B} would be Borel (Hint: use the set C = {(η, ξ, σ) | σ is a winning strategy for II in B∗(Tξ, hξ, η)}).

2.

Claim 2.12. There is A ⊆ 2κ × 2κ such that if B ⊆ 2κ is a Σ1
1(κ) set, then there is η ∈ 2κ such that

B = {ξ | (ξ, η) ∈ A} (Hint: the construction used in the classical case works too).

The set D = {η | (η, η) ∈ A} is Σ1
1(κ) but not Π1

1(κ).

Exercise 2.4. Prove the claims of the following proof.
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Lemma 2.13 ([5], Lemma 5). Assume V = L. Suppose ψ(x, ξ) is a Σ1-formula in set theory with parameter
ξ ∈ 2κ and that r(α) is a formula of set theory that says that “α is a regular cardinal”. Then for x ∈ 2κ we
have ψ(x, ξ) if and only if the set

A = {α < κ | ∃β > α(Lβ |= ZF− ∧ ψ(x � α, ξ � α) ∧ r(α))}

contains a club.

Proof. Suppose that x ∈ 2κ is such that ψ(x, ξ) holds. Let θ be a large enough cardinal such that

Lθ |= ZF− ∧ ψ(x, ξ) ∧ r(α).

For each α < κ, let
H(α) = Sk(α ∪ {κ, ξ, x})Lθ

and H̄(α) the Mostowski collapse of H(α). Let

D = {α < κ | H(α) ∩ κ = α}.

Claim 2.14. D is a club set and D ⊆ A.

Suppose x ∈ 2κ is such that ψ(x, ξ) does not hold. Let µ < κ be a regular cardinal. Take θ as above and
let C be an unbounded set, closed under µ-limits (i.e. if (γi)i < µ is an increasing succession of elements of C,
then

⋃
{γi | i < µ} ∈ C). Let

K(α) = Sk(α ∪ {κ,C, ξ, x})Lθ

and
D = {α ∈ Sκµ | K(α) ∩ κ = α}.

Claim 2.15. D is an unbounded set, closed under µ-limits.

Let α0 ∈ D be the least ordinal that is a µ-cofinal limit of elements of D.

Claim 2.16. α0 ∈ C and α0 > µ (Hint: Use the elementarity of K(α) and the fact that D ⊆ Sκµ).

Let β̄ be such that Lβ̄ is equal to the Mostowski collapse of K(α0). We will show that α0 /∈ A. Suppose,
towards a contradiction, that α0 ∈ A. There exists β > α such that

Lβ |= ZF− ∧ ψ(x � α, ξ � α) ∧ r(α).

Claim 2.17. β is a limit ordinal greater than β̄ and Lβ satisfies “there exists a γ ≤ α0 and an order-preserving
bijection from γ to D∩α0” (Hint: Show that K(α0) is a definable subset of Lθ and D∩α0 is a definable subset
of K(α0), to conclude that D ∩ α0 is a definable subset of Lβ̄ and D ∩ α0 ∈ Lβ).

By the way α0 was chosen, D ∩ α0 has order type µ. Hence, by Claim 2.16 α0 is singular in Lβ but this
contradicts that Lβ |= r(α).

Day 4

Let µ be a regular cardinal, we say that X ⊆ κ is a µ-club if X is unbounded set and closed under µ-limits.

Definition 2.18 (Eκµ-club). Let µ < κ be a regular cardinal. For all η, ξ ∈ κκ we say that η and ξ are Eκµ-club
equivalent (η Eκµ-club ξ) if the set {α < κ | η(α) = ξ(α)} contains a µ-club.

Definition 2.19 (E2
µ-club). Let µ < κ be a regular cardinal. For all η, ξ ∈ 2κ we say that η and ξ are E2

µ-club

equivalent (η E2
µ-club ξ) if the set {α < κ | η(α) = ξ(α)} contains a µ-club.

An equivalence relation E on X ∈ {κκ, 2κ} is Σ1
1(κ)-complete if every Σ1

1(κ) equivalence relation is κ-Borel
reducible to it.

Exercise 2.5. Prove the claims of the following proof.

Theorem 2.20 ([5], Theorem 7). Suppose that V = L. Then Eκµ-club is Σ1
1(κ)-complete, for every regular µ.

Proof. Suppose E is a Σ1
1(κ) equivalence relation on κκ. Let a : κκ → 2κ×κ the map defined by

a(η)(α, β) = 1⇔ η(α) = β.

Let b be a continuous bijection from 2κ×κ to 2κ, and c = b ◦ a. Define E′ by

(η, ξ) ∈ E′ ⇔ (η = ξ) ∨ (η, ξ ∈ ran(c) ∧ (c−1(η), c−1(ξ)) ∈ E)
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Claim 2.21. c is a continuous reduction of E to E′ and E′ is a Σ1
1(κ) equivalence relation.

We can assume without loss of generality, that E is an equivalence relation on 2κ. It is enough to define
f : 2κ → (2<κ)κ such that for all η, ξ ∈ 2κ, (η, ξ) ∈ E if and only if the set {α < κ | f(η)(α) = f(ξ)(α)} contains
a µ-club and f is continuous in the topology generated by the sets

{η | η � α = p}, p ∈ (2<κ)α, α < κ.

Claim 2.22. f can be coded by a κ-Borel function F : 2κ → κκ.

Claim 2.23. There is a Σ1-formula of set theory ψ(η, ξ) = ψ(η, ξ, x) = ∃kϕ(k, η, ξ, x) with x ∈ 2κ, such that
for all η, ξ ∈ 2κ,

(η, ξ) ∈ E ⇔ ψ(η, ξ).

Let r(α) be the formula “α is a regular cardinal” and ψE = ψE(κ) be the sentence with parameter κ that
asserts that ψ(η, ξ) defines an equivalence relation on 2κ. For all η ∈ 2κ and α < κ, let

Tη,α = {p ∈ 2α | ∃β > α(Lβ |= ZF− ∧ ψ(p, η � α, x) ∧ r(α) ∧ ψE)}

and let

f(η)(α) =

{
minL Tη,α if Tη,ξ 6= ∅
0 otherwise

We will show that (η, ξ) ∈ E if and only if the set {α < κ | f(η)(α) = f(ξ)(α)} contains a µ-club.
Suppose ψ(η, ξ, x) = ∃kϕ(k, η, ξ, x) holds and let k witnesses that. Let θ be a cardinal large enough such

that Lθ |= ZF− ∧ ϕ(k, η, ξ, x) ∧ r(α). For all α < κ let H(α) = Sk(α ∪ {κ, k, η, ξ, x})Lθ . The set D = {α < κ |
H(α) ∩ κ = α ∧H(α) |= ψE} is a club. Using the Mostowski collapse we have that

D′ = {α < κ | ∃β > α(Lβ |= ZF− ∧ ϕ(k � α, η � α, ξ � α, x � α) ∧ r(α) ∧ ψE)}

contains a club. For all α ∈ D′ and p ∈ Tη,α we have that

∃β1 > α(Lβ1
|= ZF− ∧ ψ(p, η � α) ∧ r(α) ∧ ψE)

and
∃β2 > α(Lβ2

|= ZF− ∧ ψ(η � α, ξ � α) ∧ r(α) ∧ ψE).

Therefore, for β = max{β1, β2} we have that

Lβ |= ZF− ∧ ψ(p, η � α) ∧ ψ(η � α, ξ � α) ∧ r(α) ∧ ψE .

Since ψE holds and so transitivity holds for ψ(η, ξ), we conclude that

Lβ |= ZF− ∧ ψ(p, ξ � α) ∧ r(α) ∧ ψE

so p ∈ Tξ,α and Tη,α ⊆ Tξ,α. Using the same argument we can show that Tξ,α ⊆ Tη,α holds for all α ∈ D′.
We conclude that for all α ∈ D′ it holds that Tξ,α = Tη,α, and the set {α < κ | f(η)(α) = f(ξ)(α)} contains a
µ-club.

Suppose that ¬ψ(η, ξ, x) holds. Then by Lemma 2.13 there is no µ-club inside

{α < κ | ∃β > α(Lβ |= ZF− ∧ ψ(η � α, ξ � α) ∧ r(α))}.

Notice that {α < κ | f(η)(α) = f(ξ)(α)} = {α | minLTη,α = minLTξ,α}, so {α < κ | f(η)(α) = f(ξ)(α)} ⊆ {α |
Tη,α ∩ Tξ,α 6= ∅}, therefore

{α < κ | f(η)(α) = f(ξ)(α)} ⊆ {α | ∃p∃β > α(Lβ |= ZF− ∧ ψ(p, ξ � α) ∧ ψ(p, η � α) ∧ r(α) ∧ ψE)}.

We conclude that {α < κ | f(η)(α) = f(ξ)(α)} ⊆ {α < κ | ∃β > α(Lβ |= ZF− ∧ ψ(η � α, ξ � α) ∧ r(α))}, so
{α < κ | f(η)(α) = f(ξ)(α)} does not contain a µ-club.

Exercise 2.6. Eκω-club is a κ-Borel∗ set.

A function f : 2κ → 2κ is κ-Borel, if for every open set A ⊆ 2κ the inverse image f−1[A] is a κ-Borel subset
of 2κ. Let E1 and E2 be equivalence relations on 2κ. We say that E1 is κ-Borel reducible to E2, if there is a
κ-Borel function f : 2κ → 2κ that satisfies (x, y) ∈ E1 ⇔ (f(x), f(y)) ∈ E2, we denote it by E1 ≤B E2. In the
same way it can be define κ-Borel function and κ-Borel reducibility in B(κ).
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Exercise 2.7. Assume f : 2κ → 2κ is κ-Borel function and B is a κ-Borel∗ set. Prove that f−1[B] is a κ-Borel∗

set.

Corollary 2.24 ([2], Theorem 18). Suppose that V = L. Then κ-Borel∗ = Σ1
1(κ).

Proof. It follows from Exercise 2.7, Exercise 2.6, and Theorem 2.20.

Corollary 2.25 ([2], Theorem 18). Suppose that V = L. Then ∆1
1(κ) 6= κ-Borel∗.

Proof. It follows from Theorem 2.10 and Corollary 2.24.

Question 2.26. Is it consistent that ∆1
1(κ) = κ-Borel∗?

Question 2.27. An equivalence relation E on X ∈ {κκ, 2κ} is κ-Borel∗-complete if every κ-Borel∗ equivalence
relation is κ-Borel reducible to it. Does there exists a κ-Borel∗-complete relation that is not a Σ1

1–complete
relation?

The following lemma shows that there is a model of set theory in which ∆1
1(κ), κ-Borel∗, and Σ1

1(κ) are
different. The proof can be found in [4].

Lemma 2.28 ([4], Corollary 3.2). It is consistently that ∆1
1(κ) ( κ-Borel∗ ( Σ1

1(κ).

3 The Main Gap in B(κ)

Session in the logic seminar

Definition 3.1. For every η ∈ κκ define the structure Aη with domain κ as follows.
For every tuple (a1, a2, . . . , an) in κn

(a1, a2, . . . , an) ∈ PAηm ⇔ the arity of Pm is n and η(π(m, a1, a2, . . . , an)) > 0.

Definition 3.2. For every η ∈ 2κ define the structure Aη with domain κ as follows.
For every tuple (a1, a2, . . . , an) in κn

(a1, a2, . . . , an) ∈ PAηm ⇔ the arity of Pm is n and η(π(m, a1, a2, . . . , an)) = 1.

Notice that the structure Aη � α is not necessary coded by the function η � α.

Exercise 3.1. There is a club Cπ such that for all α ∈ Cπ, Aη � α = Aη�α

With the structures coded by the elements of 2κ and κκ, it is easy to define the isomorphism relation of
structures of size κ in both spaces.

Definition 3.3 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary.
We define ∼=κ

T as the relation

{(η, ξ) ∈ κκ × κκ | (Aη |= T,Aξ |= T,Aη ∼= Aξ) or (Aη 6|= T,Aξ 6|= T )}.

Definition 3.4. Assume T is a complete first order theory in a countable vocabulary. We define ∼=2
T as the

relation
{(η, ξ) ∈ 2κ × 2κ | (Aη |= T,Aξ |= T,Aη ∼= Aξ) or (Aη 6|= T,Aξ 6|= T )}.

Notice that ∼=κ
T ≤c ∼=2

T holds for every theory T .

Definition 3.5. (Ehrenfeucht-Fräıssé game) Fix {Xγ}γ<κ an enumeration of the elements of Pκ(κ) and
{fγ}γ<κ an enumeration of all the functions with domain in Pκ(κ) and range in Pκ(κ). For every α < κ
we define the game EFκω(A �α,B �α) for structures A and B with domain κ, as follows. The game is played
by two players, I and II. In the n-th move, I choose an ordinal βn < α such that Xβn ⊂ α, Xβn−1 ⊆ Xβn ,
and then II chooses an ordinal θn < α such that dom(fθn), rang(fθn) ⊂ α, Xβn ⊆ dom(fθn) ∩ rang(fθn) and
fθn−1

⊆ fθn (if n = 0 then Xβn−1
= ∅ and fθn−1

= ∅). The game finishes after ω moves. The player II wins if
∪i<ωfθi : A �α→ B �α is a partial isomorphism, otherwise the player I wins.

We will write I ↑ EFκω(A �α,B �α) when I has a winning strategy in the game EFκω(A �α,B �α), similarly we
write II ↑ EFκω(A �α,B �α) when II has a winning strategy.

Theorem 3.6. [12] If T is a classifiable theory, then for every two models of T with domain κ, A,B, it holds
that II ↑ EFκω(A,B)⇐⇒ A ∼= B.
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Corollary 3.7 ([2], Theorem 70). If T is a classifiable theory, then ∼=κ
T is ∆1

1.

Lemma 3.8 ([7], Lemma 2.4). If A and B are structures with domain κ, then the following hold:

• II ↑ EFκω(A,B)⇐⇒ II ↑ EFκω(A �α,B �α) for club-many α.

• I ↑ EFκω(A,B)⇐⇒ I ↑ EFκω(A �α,B �α) for club-many α.

Exercise 3.2. Prove Lemma 3.8 (Hint: look at the closed points of a winning strategy).

Definition 3.9. Assume T is a complete first order theory in a countable vocabulary. For every α < κ and
η, ξ ∈ κκ, we write η RαEF ξ if one of the following holds, Aη �α 6|= T and Aξ �α 6|= T , or Aη �α|= T , Aξ �α|= T
and II ↑ EFκω(Aη �α,Aξ �α).

Exercise 3.3. Let T be a complete first order theory in a countable vocabulary. There are club many α such
that RαEF is an equivalence relation.

Theorem 3.10 ([7], Theorem 2.8). If T is a classifiable theory and µ < κ a regular cardinal, then ∼=T is
continuously reducible to Eκµ-club (∼=κ

T ≤c Eκµ-club).

Proof. Define the reduction F : κκ → κκ by,

F(η)(α) =

{
fη(α) if cf(α) = µ,Aη �α|= T and RαEF is an equivalence relation

0 in other case

where fη(α) is a code in κ\{0} for the RαEF equivalence class of Aη �α. The proof follows from Lemma 3.8 and
Exercise 3.3.

Question 3.11. Is it provable in ZFC that Eκµ-club ≤B ∼=κ
T holds for every non-classifiable theory T and regular

cardinal µ?

Model theory session

Exercise 3.4. Prove the claim below (Hint: Use the proof of Theorem 3.10).

Lemma 3.12 ([6], Lemma 2). Assume T is a classifiable theory and µ < κ is a regular cardinal. If 3κ(Sκµ)
holds then ∼=κ

T is continuously reducible to E2
µ-club.

Proof. Let {Sα | α ∈ X} be a sequence testifying 3κ(Sκµ) and define the function F : 2κ → 2κ by

F(η)(α) =

{
1 if α ∈ Sκµ ∩ Cπ ∩ CEF , II ↑ EFκω(Aη �α,ASα) and Aη �α|= T

0 otherwise.

Claim 3.13. η ξ if and only F(η) E2
µ-club F(ξ).

The proof of the following theorems can be found in [2].

Theorem 3.14 ([2], Theorem 79). Suppose that κ = λ+ = 2λ and λ<λ = λ.

1. If T is unstable or superstable with OTOP, then E2
λ-club ≤c ∼=κ

T .

2. If λ ≥ 2ω and T is superstable with DOP, then E2
λ-club ≤c ∼=κ

T .

Theorem 3.15 ([2], Theorem 86). Suppose that for all γ < κ, γω < κ and T is a stable unsuperstable theory.
Then E2

ω-club ≤c ∼=κ
T .

Theorem 3.16 ([6], Theorem 4). Suppose that κ = λ+ = 2λ, λ<λ = λ and 3κ(Sκλ) holds.

1. If T1 is classifiable and T2 is unstable or superstable with OTOP, then ∼=κ
T1
≤c ∼=κ

T2
and ∼=κ

T2
6≤B ∼=κ

T1
.

2. If λ ≥ 2ω, T1 is classifiable and T2 is superstable with DOP, then ∼=κ
T1
≤c ∼=κ

T2
and ∼=κ

T2
6≤B ∼=κ

T1
.

Notice that if V = L, then 3κ(Sκλ) holds for all λ < κ. Therefore in L it holds that If T is classifiable and
T ′ not, then ∼=κ

T ≤c ∼=κ
T ′ .

The last session was used to study Question 3.11. The following results answer Question 3.11 for two kind
of non-classifiable theories, the proofs are omitted in this notes, due to the length of them. The proofs can be
found in [7] and [11]. The main ideas of these proofs is the use of coloured trees, as it was discussed during the
lecture. Coloured trees has been used to obtain Borel-reducibility results of isomorphism relations (see [2], [5],
[7], and [11]).
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Definition 3.17. Let T be a stable theory. T has the orthogonal chain property (OCP), if there exist λr(T )-
saturated models of T of power λr(T ), {Ai}i<ω, a /∈ ∪i<ωAi, such that t(a,∪i<ωAi) is not algebraic for every
j < ω, t(a,∪i<ωAi) ⊥ Aj, and for every i ≤ j, Ai ⊆ Aj.

Exercise 3.5. If T has the OCP, then T is unsuperstable.

Lemma 3.18 ([7], Corollary 5.10). Assume T is stable and has the OCP, then Eκω-club ≤c∼=T .

Corollary 3.19 ([7], Corollary 5.11). Assume T1 is a classifiable theory and T2 is a stable theory with the OCP,
then ∼=T1

≤c∼=T2
.

Question 3.20. Does there exists a stable unsuperstable theory that doesn’t have OCP?

Definition 3.21. We say that a superstable theory T has the strong dimensional order property (S-DOP) if the
following holds:
There are F aω -saturated models (Mi)i<3, M0 ⊂ M1 ∩M2, such that M1 ↓M0

M2, and for every M3 F
a
ω -prime

model over M1 ∪M2, there is a non-algebraic type p ∈ S(M3) orthogonal to M1 and to M2, such that it does
not fork over M1 ∪M2.

Lemma 3.22 ([11], Corollary 4.15). Assume T is a theory with S-DOP and let λ be (2ω)+, then Eκλ-club ≤c∼=T .

Corollary 3.23 ([11], Corollary 4.16). Assume T1 is a classifiable theory and T2 is a superstable theory with
S-DOP, then ∼=T1

≤c∼=T2
.

Question 3.24. Does there exists a superstable theory with DOP that doesn’t have S-DOP?

Remark 3.25. By Theorem 2.20 we conclude from Lemma 3.18 and Lemma 3.22 that, if V = L, then ∼=T is
Σ1

1-complete for every T stable with the OCP or superstable theory with S-DOP.
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