Topics in Logic: Generalized Descriptive Set Theory

Miguel Moreno University of Helsinki

EXAM DATE AND PLACE: 30.4.2025 10.00-12.00 Exactum, C220.

Spring 2025

Contents

1	Ger	deralized Baire spaces
	1.1	Topology
	1.2	Borel sets
	1.3	
2	Red	luctions
	2.1	Basic reductions
	2.2	Equivalence modulo S
	2.3	The approximation lemma
	۷.5	The approximation tennia
3		mbinatorics 13
	3.1	Filter reflection
	3.2	Diamond principle
	-	Reflection of Π^1_2 -sentences
	0.0	tenection of 112 beneated
4	$Th\epsilon$	e Isomorphism relation 20
	4.1	Coding structures
	4.2	The Ehrenfeucht-Fraïssé game
	4.3	Classifiable theories
	4.0	Classifiable theories
5	Fur	ther results 24
	5.1	Borel sets, Δ_1^1 sets, Borel* sets and Σ_1^1 sets
	5.2	Non-reducible results
	5.3	Reflections
	0.0	
	5.4	Model theory

1 Generalized Baire spaces

Generalized descriptive set theory is the generalization of descriptive set theory to uncountable cardinals. For a background on classical descriptive set theory see [11] or [12]. We will denote by κ^{κ} the set of functions $f: \kappa \to \kappa$, 2^{κ} the set of functions $f: \kappa \to 2$, and $\kappa^{<\kappa}$ the set of functions $f: \kappa \to \kappa$. During these notes, κ will be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$, unless otherwise is stated.

The aim of this first section is to introduce the notions of κ -Borel class, $\Delta_1^1(\kappa)$ class, κ -Borel* class, and show the relation between these classes.

1.1 Topology

Definition 1.1. $\mathcal{I} \subseteq \mathcal{P}(\kappa)$ is an ideal if the following holds:

- $\mathcal{I} \neq \emptyset$,
- for all $x \in \mathcal{I}$, if $y \subseteq x$, then $y \in \mathcal{I}$,
- if $x, y \in \mathcal{I}$, then $x \cup y \in \mathcal{I}$.

An ideal \mathcal{I} is $< \kappa$ -complete if it is closed under the union of size less than κ . An ideal \mathcal{I} is proper if $\mathcal{I} \neq \mathcal{P}(\kappa)$.

Example 1.1. The set of bounded subsets of κ , $\{X \subseteq \kappa \mid \exists \alpha < \kappa \forall \beta \in X (\beta < \alpha)\}$, form an ideal.

Definition 1.2 (Ideal topology). Let \mathcal{I} be $a < \kappa$ -complete proper ideal on κ that extends the ideal of bounded sets. The ideal topology associated to \mathcal{I} is the topology generated by the following basic open sets. For every $A \in \mathcal{I}$, $\xi \in \kappa^A$ we define the basic open set $N_{\mathcal{E}}$ by

$$N_{\xi} = \{ \eta \in \kappa^{\kappa} \mid \xi \subseteq \eta \}.$$

The open sets are of the form $\bigcup X$ where X is a collection of basic open sets.

Definition 1.3 (The Generalized Baire space $\mathbf{B}(\kappa)$). Let κ be an uncountable cardinal. The generalized Baire space is the set κ^{κ} endowed with the following topology. For every $\eta \in \kappa^{<\kappa}$, define the following basic open set

$$N_{\eta} = \{ f \in \kappa^{\kappa} \mid \eta \subseteq f \}$$

the open sets are of the form $\bigcup X$ where X is a collection of basic open sets.

Definition 1.4 (The Generalized Cantor space $\mathbf{C}(\kappa)$). Let κ be an uncountable cardinal. The generalized Cantor space is the set 2^{κ} endowed with the following topology. For every $\eta \in 2^{<\kappa}$, define the following basic open set

$$N_{\eta} = \{ f \in 2^{\kappa} \mid \eta \subseteq f \}$$

the open sets are of the form $\bigcup X$ where X is a collection of basic open sets.

Exercise 1.1. Show that the topology in the previous definition is the ideal topology associated to the ideal of bounded sets.

1.2 Borel sets

Definition 1.5 (κ -Borel class). Let $S \in \{\mathbf{B}(\kappa), \mathbf{C}(\kappa)\}$. The class κ -Borel(S) of all κ -Borel sets in S is the least collection of subsets of S which contains all open sets and is closed under complements, unions and intersections both of length at most κ .

Definition 1.6. Let us define the following hierarchy.

- $\Sigma_1^0 = \{X \subseteq \kappa^{\kappa} \mid X \text{ is open}\}$
- $\Pi_1^0 = \{X \subseteq \kappa^{\kappa} \mid X \text{ is closed}\}$
- $\Sigma_{\alpha}^{0} = \{\bigcup_{\gamma < \kappa} A_{\gamma} \mid A_{\gamma} \in \bigcup_{1 < \beta < \alpha} \Pi_{\beta}^{0} \}$
- $\Pi^0_\alpha = \{ \kappa^\kappa \backslash X \mid X \in \Sigma^0_\alpha \}$

Exercise 1.2. Show that κ -Borel= $\bigcup_{\alpha < \kappa^+} \Sigma_{\alpha}^0$.

Exercise 1.3. Let $S \in \{\mathbf{B}(\kappa), \mathbf{C}(\kappa)\}$ and $B \subset S$. If B be the minimal collection that contains all the open sets and is closed under unions and intersections both of length at most κ , then B is the class κ -Borel(S)

Definition 1.7. Let $S \in \{\mathbf{B}(\kappa), \mathbf{C}(\kappa)\}$.

- $X \subset S$ is a $\Sigma_1^1(\kappa)$ set if there is a set $Y \subset S \times S$ a closed set such that $pr(Y) = \{x \in S \mid \exists y \in S \ (x,y) \in Y\} = X$.
- $X \subset S$ is a $\Pi_1^1(\kappa)$ set if $S \setminus X$ is a $\Sigma_1^1(\kappa)$ set.
- $X \subset S$ is a $\Delta_1^1(\kappa)$ set if X is a $\Sigma_1^1(\kappa)$ set and a $\Pi_1^1(\kappa)$ set.

Let $\theta \in \{2, \kappa\}$. A subset $T \subset \theta^{<\kappa}$ is a tree if for all $f \in T$ with $\alpha = dom(f) > 0$ and for all $\beta < \alpha$, $f \upharpoonright \beta \in T$ and $f \upharpoonright \beta < f$. In a similar way we can define trees on $\theta^{<\kappa} \times \theta^{<\kappa}$ and $\theta^{<\kappa} \times \theta^{<\kappa} \times \theta^{<\kappa}$. We say that a tree $T \subseteq \theta^{<\kappa}$ is pruned if for all $f \in T$ and $\beta > \alpha = dom(f)$, there is $g \in T$ such that $f = g \upharpoonright \alpha$ and $\beta = dom(g)$. We define the body of a pruned tree T as the set

$$[T] = \{ \eta \in \theta^{\kappa} \mid \forall \alpha < \kappa, \ \eta \upharpoonright \alpha \in T \}.$$

Exercise 1.4. Show that $A \subseteq \kappa^{\kappa}$ is closed if and only if there is a pruned tree of $\kappa^{<\kappa}$ such that [T] = A.

A sequence $\langle \eta_i | < \gamma \rangle$ is a chain of length γ , if for all i < j, $\eta_i < \eta_j$.

Definition 1.8 (κ -Borel*-set in $\mathbf{B}(\kappa)$, $\mathbf{C}(\kappa)$). Let $S \in \{2^{\kappa}, \kappa^{\kappa}\}$.

- 1. A tree T is a κ^+ , λ -tree if does not contain chains of length λ and its cardinality is less than κ^+ . It is closed if every chain has a unique supremum in T.
- 2. A pair (T,h) is a κ -Borel*-code if T is a closed κ^+ , λ -tree, $\lambda \leq \kappa$, and h is a function with domain T such that if $x \in T$ is a leaf, then h(x) is a basic open set and otherwise $h(x) \in \{\cup, \cap\}$.
- 3. For an element $\eta \in S$ and a κ -Borel*-code (T,h), the κ -Borel*-game $B^*(T,h,\eta)$ is played as follows. There are two players, \mathbf{I} and \mathbf{II} . The game starts from the root of T. At each move, if the game is at node $x \in T$ and $h(x) = \cap$, then \mathbf{I} chooses an immediate successor y of x and the game continues from this y. If $h(x) = \cup$, then \mathbf{II} makes the choice. At limits the game continues from the (unique) supremum of the previous moves. Finally, if h(x) is a basic open set, then the game ends, and \mathbf{II} wins if and only if $\eta \in h(x)$.
- 4. A set $X \subseteq S$ is a κ -Borel*-set if there is a κ -Borel*-code (T,h) such that for all $\eta \in S$, $\eta \in X$ if and only if \mathbf{H} has a winning strategy in the game $B^*(T,h,\eta)$.

We will write $\mathbf{II} \uparrow B^*(T, h, \eta)$ when \mathbf{II} has a winning strategy in the game $B^*(T, h, \eta)$.

Exercise 1.5. Let $S \in \{2^{\kappa}, \kappa^{\kappa}\}$. We define κ -Borel**-sets in S by changing 2. in the previous definition for the following

2'. A pair (T,h) is a κ -Borel*-code if T is a closed κ^+, λ -tree, $\lambda \leq \kappa$, and h is a function with domain T such that if $x \in T$ is a leaf, then h(x) is an open set and otherwise $h(x) \in \{\cup, \cap\}$.

Show that $X \subseteq S$ is a κ -Borel**-set if and only if it is a κ -Borel*-set.

Recall that κ satisfies $\kappa^{<\kappa} = \kappa$, so it is regular. A set $X \subseteq \kappa$ is a club on κ if X is unbounded and any sequence $\langle \alpha_i \mid i < \gamma \rangle$ such that $\gamma < \kappa$ and for all $\alpha_i \in X$, satisfies $\bigcup_{i < \gamma} \alpha_i \in X$.

Exercise 1.6. Show that the following set is an ideal:

$$\{X \subseteq \kappa \mid exists \ a \ club \ C \subseteq \kappa \ (X \cap C = \emptyset)\}.$$

Example 1.2. Let $\mu < \kappa$ be a regular cardinal, we say that $X \subseteq \kappa$ is a μ -club if X is an unbounded set and it is closed under μ -limits.

Let $\mu < \kappa$ be a regular cardinal. For all $\eta, \xi \in 2^{\kappa}$ we say that η and ξ are $=^2_{\mu}$ equivalent if the set $\{\alpha < \kappa \mid \eta(\alpha) = \xi(\alpha)\}$ contains a μ -club.

The relation $=\frac{2}{\omega}$ is a κ -Borel* set. Let us define the following κ -Borel*-code (T,h):

- $T = \{ f \in \kappa^{<\omega+2} \mid f \text{ is strictly incresing} \}.$
- For f not a leave, $h(f) = \bigcup$ if dom(f) is even and $h(f) = \bigcap$ if dom(f) is odd.
- To define h(f) for a leave f, first define the set $L(g) = \{f \in \kappa^{\omega+1} \mid g \subseteq f\}$ for all $g \in T$ with domain ω , and $\gamma_g = \sup_{n < \omega} (g(n))$. Let $h \upharpoonright L(g)$ be a bijection between L(g) and the set $\{N_p \times N_q \mid p, q \in \kappa^{\gamma_g+1}, p(\gamma_g) = q(\gamma_g)\}$.

Let us show that (T,h) codes $=^2_{\omega}$. Suppose $\eta=^2_{\omega}$ ξ , so there is an ω -club C such that $\forall \alpha \in C$ $\eta(\alpha)=\xi(\alpha)$. The following is a winning strategy for \mathbf{H} in the game $B^*(T,h,(\eta,\xi))$. For every even $n<\omega$, if the game is at f with dom(f)=n, \mathbf{H} chooses an immediate successor f' of f, such that $f\subset f'$ and $f'(n)\in C$. Since C is closed under ω limits, after ω moves the game continues at $g\in\kappa^{\omega}$ strictly increasing with $\gamma=\sup_{n<\omega}(g(n))\in C$. So there is G an immediate successor of g, such that $h(G)=N_{\eta|\gamma+1}\times N_{\xi|\gamma+1}$. Finally if \mathbf{H} chooses G in the ω move, then \mathbf{H} wins.

For the other direction, suppose $\eta \neq^2_{\omega} \xi$, so there is $A \subset S^{\kappa}_{\omega}$ stationary $(S^{\kappa}_{\omega} \text{ is the set of } \omega\text{-cofinal ordinals below } \kappa)$ such that for all $\alpha \in A$, $\eta(\alpha) \neq \xi(\alpha)$.

We will show that for every σ strategy of \mathbf{II} , σ is not a winning strategy. Let σ be an strategy for \mathbf{II} , this mean that σ is a function from $\kappa^{<\omega+1} \to \kappa$. Notice that if \mathbf{II} follows σ as a strategy, then when the game is at f, dom(f) = n even, \mathbf{II} chooses f' such that $f \subset f'$ and $f'(n) = \sigma((f(0), f(1), \ldots, f(n-1)))$. Let C be the set of closed points of σ , $C = {\alpha < \kappa \mid \sigma(\alpha^{<\omega}) \subseteq \alpha}$, C is unbounded and closed under ω -limits. Therefore $C \cap A \neq \emptyset$. Let γ be the least element of $C \cap A$ that is an ω -limit of elements of C, and let ${\gamma_n}_{n<\omega}$ be a sequence of elements of C cofinal to γ . The following is a winning strategy for \mathbf{I} in the game $B^*(T, h, (\eta, \xi))$, if \mathbf{II} uses σ as an strategy.

When the game is at f with dom(f) = n, n odd, then \mathbf{I} chooses an immediate successor f' of f, such that $f \subset f'$ and f'(n) is the least element of $\{\gamma_n\}_{n<\omega}$ that is bigger than f(n-1). This element always exists because $\{\gamma_n\}_{n<\omega}$ is cofinal to γ and $\gamma \in C$, γ is a closed point of σ . Since \mathbf{I} is following σ as a strategy and γ is a closed point of σ , after ω moves the game continues at $g \in \kappa^{\omega}$ strictly increasing with $\gamma = \sup_{n<\omega}(g(n)) \in C \cap A$. Since $\eta(\gamma) \neq \xi(\gamma)$, there is no G immediate successor of g, such that $(\eta, \xi) \in h(G)$. So it does not matter what \mathbf{II} chooses in the ω move, \mathbf{I} will win.

The previous definitions are the generalization of the notions of Borel, Δ_1^1 , and Borel* from descriptive set theory, the spaces ω^{ω} and 2^{ω} . A classical result in descriptive set theory states that the Borel class, the Δ_1^1 class, and the Borel* class are the same. This doesn't hold in generalized descriptive set theory as we will see.

Definition 1.9. Let T be an tree without infinite branches. For all $t \in T$, we define rk(t) as follows:

- If t is a leaf, then rk(t) = 0.
- If t is not a leaf, then $rk(t) = \bigcup \{rk(t') + 1 \mid t'^- = t\}$, where t'^- is the immediate predecessor of t'.
- If T is not empty and has a root, r, then the rank of T is denoted by rk(T) and is equal to rk(r).

Exercise 1.7. Show that if $A \subseteq \kappa^{\kappa}$ and $T = \{f \mid \alpha : f \in A, \alpha < \kappa\}$, then [T] is the closure of A.

Exercise 1.8. Show that if A and B are κ -Borel* sets, then $A \cup B$ and $A \cap B$ are κ -Borel* sets.

Exercise 1.9. Let (T,h) be a κ -Borel*-code. Show that if T is a κ^+, ω -tree, then for all η , $B^*(T,h,\eta)$ is determined, i.e. II has a winning strategy if and only if I doesn't have a winning strategy.

Exercise 1.10. 1. Prove Claim 1.11. (Hint: Use the previous exercise.)

2. Prove Claim 1.12.

Theorem 1.10 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Thm 17). κ -Borel $\subseteq \kappa$ -Borel*

Proof. Let us prove something even stronger. X is a κ -Borel set if and only if there is a κ -Borel*-code (T,h) such that (T,h) codes X and T is a κ^+ , ω -tree.

We will show by induction over α that for every $X \in \Sigma^0_{\alpha}$, there is a κ -Borel*-code (T, h) such that (T, h) codes X and T is a κ^+ , ω -tree.

For $\alpha = 1$. If $X \in \Sigma_{\alpha}^{0}$, then there is \mathcal{B} a family of basic open sets such that $X = \bigcup \mathcal{B}$. Since $\kappa^{<\kappa} = \kappa$, $|\mathcal{B} = \kappa|$. So there is $\beta < \kappa$ such that $\mathcal{B} = \{B_i \mid i < \beta\}$. Let $T = \{\emptyset\} \cup \{(0,i) \mid i < \beta\}$, $h(\emptyset) = \cup$, and $h((0,i)) = B_i$, clearly this is a κ -Borel*-code that codes X.

Suppose α is such that for all $\beta < \alpha$ and $X \in \Sigma^0_{\beta}$, there is a κ -Borel*-code (T, h) such that (T, h) codes X and T is a κ^+ , ω -tree.

Claim 1.11. For all $\beta < \alpha$ and $X \in \Pi^0_\beta$, X is a κ -Borel* set.

Suppose $X \in \Sigma^0_{\alpha}$, so $X = \bigcup_{\gamma < \kappa} A_{\gamma}$, where $A_{\gamma} \in \bigcup_{1 \leq \beta < \alpha} \Pi^0_{\beta}$. By the previous claim we know that there are κ -Borel*-codes $\{(T_{\gamma}, h_{\gamma})\}_{\gamma < \kappa}$ such that (T_{γ}, h_{γ}) codes A_{γ} and T_{γ} is a κ^+, ω -tree, for all γ . Let $\mathcal{T} = \{r\} \cup \bigcup_{\gamma < \kappa} T_{\gamma} \times \{\gamma\}$ be the tree ordered by r < (x, j) for all $(x, j) \in \bigcup_{\gamma < \kappa} T_{\gamma} \times \{\gamma\}$, and $(x, \gamma) < (y, j)$ if and only if $\gamma = j$ and x < y in T_{γ} . Let $T \subseteq \kappa^{<\omega}$ be a tree isomorphic to \mathcal{T} and let $\mathcal{G}: T \to \mathcal{T}$ be a tree isomorphism. If $\mathcal{G}(x) \neq r$, then denote $\mathcal{G}(x)$ by $(\mathcal{G}_1(x), \mathcal{G}_2(x))$. Define h by $h(x) = \cup$ if G(x) = r, and $h(x) = h_{\mathcal{G}_2(x)}(\mathcal{G}_1(x))$.

Let us show that (T, h) codes X. Let $\eta \in X$, so there is $\gamma < \kappa$, such that $\eta \in X_{\gamma}$. II starts by choosing $\mathcal{G}^{-1}(x, \gamma)$, where x is the root of T_{γ} . II continues playing with the winning strategy from the game $B^*(T_{\gamma}, h_{\gamma}, \eta)$, choosing the element given by \mathcal{G}^{-1} . We conclude that II $\uparrow B^*(T, h, \eta)$.

Let $\eta \notin X$, so for all $\gamma < \kappa$, $\eta \notin X_{\gamma}$, so **II** has no winning strategy for the game $B^*(T_{\gamma}, h_{\gamma}, \eta)$. Thus **II** cannot have a winning strategy for the game $B^*(T, h, \eta)$.

Let (T, h) be a κ -Borel*-code that codes X and T is a κ^+ , ω -tree. We will use induction over the rank of T, to show that X is κ -Borel.

If rk(T) = 0, then T has only one node r, thus X = h(r) and X is a basic open set. Let $\alpha < \kappa^+$ be such that for all κ -Borel*-code (T', h') with $T' \kappa^+$, ω -tree and $rk(T') < \alpha$, (T', h') codes a κ -Borel set. If $rk(T) = \alpha$, then let $B = \{t \in T \mid t^- = r\}$, where r is the root of T. For all $t \in B$, define the code (T_t, h_t) as follows:

- $T_t = \{x \in T \mid t \leq x\},$
- $h_t = h \upharpoonright T_t$.

Since $rk(T) = \alpha$, for all $t \in B$, $rk(T_t) < \alpha$. By the induction hypothesis, (T_t, h_t) codes a κ -Borel set X_t .

Claim 1.12. • If $h(r) = \cup$, then $X = \cup_{t \in B} X_t$.

• If $h(r) = \cap$, then $X = \cap_{t \in B} X_t$.

Since the class of κ -Borel sets is closed under unions and intersections of length κ , the proof follows from the previous claim.

Theorem 1.13 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Thm 17). 1. κ -Borel* $\subseteq \Sigma_1^1(\kappa)$.

- 2. κ -Borel $\subseteq \Sigma_1^1(\kappa)$.
- 3. κ -Borel $\subseteq \Delta_1^1(\kappa)$.

Proof. 1. Let X be a κ -Borel* set, there is a κ -Borel* code (T,h) such that X is coded by (T,h).

Since $\kappa^{<\kappa} = \kappa$, we can code the strategies $\sigma: T \to T$ by elements of κ^{κ} .

Claim 1.14. The set $Y = \{(\eta, \xi) \mid \xi \text{ is a code of a winning strategy for II in } B^*(T, h, \eta)\}$ is closed.

Proof. Let (η, ξ) be an element not in Y. So ξ is not a winning strategy for \mathbf{II} in $B^*(T, h, \eta)$, there is $\alpha < \kappa$ such that for every $\zeta \in N_{\xi \upharpoonright \alpha}$, ζ is not a winning strategy for \mathbf{II} in $B^*(T, h, \eta)$. Otherwise T would have a branch of length κ . Because of the same reason, there is $\beta < \kappa$ such that for every $f \in N_{\eta \upharpoonright \beta}$, $\zeta \in N_{\xi \upharpoonright \alpha}$, ζ is not a winning strategy for \mathbf{II} in $B^*(T, h, f)$. So $N_{\eta \upharpoonright \beta} \times N_{\xi \upharpoonright \alpha}$ is a subset of the complement of Y.

Since pr(Y) = X, we are done.

- 2. It follows from Theorem 1.10 and (1).
- 3. It follows from (2) and the fact that κ -Borel sets are closed under complement.

1.3 Separation theorem

Definition 1.15. A dual of a κ -Borel* set B is the set $B^d = \{ \eta \mid \mathbf{I} \uparrow B^*(T, h, \eta) \}$ where (T, h) satisfy $B = \{ \eta \mid \mathbf{II} \uparrow B^*(T, h, \eta) \}$.

Notice that the dual of a κ -Borel* set is not unique.

Definition 1.16. If T is a tree on $\kappa^{<\kappa} \times \kappa^{<\kappa}$ and $f \in \kappa^{\kappa}$, let

$$T(f) = \{g \upharpoonright \alpha \mid (f \upharpoonright \alpha, g \upharpoonright \alpha) \in T\}.$$

Exercise 1.11. Show that if $A \subseteq \kappa^{\kappa}$ is $\Pi_1^1(\kappa)$, then there is a tree T such that for all $f \in \kappa^{\kappa}$,

 $f \in A \Leftrightarrow T(f)$ has no branch of length κ .

Let us denote by TO the set of trees that don't have branches of length κ .

Definition 1.17. • Let T and S be trees. Then T is order preservingly embeddable into S, $T \leq S$, if there is a function $f: T \to S$ such that for all $t <_T t'$ implies $f(t) <_S f(t')$.

• If T is a tree, then σT is the tree of all initial segments of branches of T ordered by end-extension. We say that $T \ll T'$ if and only if $\sigma T \leq T'$.

Definition 1.18. • If A is a $\Pi_1^1(\kappa)$ set and T is a tree such that

$$f \in A \Leftrightarrow T(f)$$
 has no branch of length κ ,

and $J \in TO$ we define $A^{T,J}$ as the set $\{f \in \kappa^{\kappa} \mid T(f) \leq J\}$.

• If A is a $\Sigma_1^1(\kappa)$ set and T is a tree such that

$$f \in A \Leftrightarrow T(f)$$
 has a branch of length κ ,

and $J \in TO$ we define $A_{T,J}$ as the set $\{f \in \kappa^{\kappa} \mid J \ll T(f)\}$.

Exercise 1.12. 1. Let A is a $\Pi_1^1(\kappa)$ set and T is a tree such that

$$f \in A \Leftrightarrow T(f)$$
 has no branch of length κ ,

and $J \in TO$. Show that $A^{T,J} \subseteq A$.

2. Let A is a $\Sigma_1^1(\kappa)$ set and T is a tree such that

$$f \in A \Leftrightarrow T(f)$$
 has a branch of length κ ,

and $J \in TO$. Show that $A \subseteq A_{T,J}$.

Lemma 1.19 (Covering property, Mekler-Väänänen, [14], Proposition 11). Suppose A is a $\Pi_1^1(\kappa)$ set and T is a tree such that

$$f \in A \Leftrightarrow T(f)$$
 has no branch of length κ ,

and $B \subseteq A$ is a $\Sigma_1^1(\kappa)$ set. The there is an element $J \in TO$ such that $B \subseteq A^{T,J}$.

Proof. Let S be a tree such that

$$f \in B \Leftrightarrow S(f)$$
 has a branch of length κ .

Let T' be the set of triples $(f \upharpoonright \alpha, g \upharpoonright \alpha, h \upharpoonright \alpha)$ such that $g \upharpoonright \alpha \in T(f)$ and $h \upharpoonright \alpha \in S(f)$. Notice that T' has no branch of length κ , otherwise $B \setminus A \neq \emptyset$.

Let $f \in B$ and let $\langle h \upharpoonright \alpha \mid \alpha < \kappa \rangle$ be a branch in S(f) of length κ . For $g \upharpoonright \alpha \in T(f)$, let $\varrho : T(f) \to T'$ be defined as $\varrho(g \upharpoonright \alpha) = (f \upharpoonright \alpha, g \upharpoonright \alpha, h \upharpoonright \alpha)$. It is clear that ϱ is an order preserving embedding. Thus $f \in A^{T,T'}$.

Lemma 1.20 (Mekler-Väänänen, [14], Proposition 32). Let T be a tree on $\kappa^{<\kappa} \times \kappa^{<\kappa}$ and J a tree with no branches of length κ . The sets

$$B_0 = \{ f \in \kappa^{\kappa} \mid T(f) \le J \},\$$

$$B_1 = \{ f \in \kappa^{\kappa} \mid J \ll T(f) \}$$

are κ -Borel* set and duals.

Proof. Let H be the set of sequences $(\eta_0, (d_0, t_0), \eta_1, (d_1, t_1), \dots, \eta_{\delta}, (d_{\delta}, t_{\delta}))$ satisfying the following:

- for all $\alpha \leq \delta$, $d_{\alpha} \in \{0, 1\}$.
- $d_{\alpha} = 1$ if and only if $\alpha = \delta$, $t_{\delta} = \emptyset$..
- $\langle t_{\alpha} \mid \alpha < \delta \rangle$ is a chain in J.
- For all $\alpha \leq \delta$, $\eta_{\alpha} \in \kappa^{\alpha}$, and $\langle \eta_{\alpha} \mid \alpha \leq \delta \rangle$ is a chain in $\kappa^{<\kappa}$.

Let K be the set of initial segments of the elements of H, ordered by end-extension (i.e. $x,y \in K$ are such that x < y if and only if there is $\bar{a} \in H$ such that x,y are initial segments of \bar{a} and x is an initial segment of y). notice that K is isomorphic to a κ^+ , κ -tree. Thus we can construct a Borel*-code with K. Let us define $h: K \to \{\cup, \cap\} \cup \Sigma_1^0$, let $\bar{a} \in K$ be such that $\langle \eta \in \kappa^{<\kappa} \mid \eta \in \bar{a} \rangle$ has length δ

$$h(\bar{a}) = \begin{cases} \cup & \text{if } \bar{a} \text{ ends with } \eta_{\alpha} \in \kappa^{<\kappa}, \\ \cap & \text{if } \bar{a} \text{ ends with } (d_{\alpha}, t_{\alpha}) \text{ and } d_{\alpha} = 0 \text{ or } \bar{a} = \langle \rangle, \\ \{ f \in \kappa^{\kappa} \mid (f \upharpoonright \delta, \eta_{\delta}) \notin T \} & \text{otherwise.} \end{cases}$$

Claim 1.21. 1.

$$T(f) \leq J \Leftrightarrow \mathbf{II} \text{ has a winning strategy for } B^*(K, h, f).$$

2.

$$J \ll T(f) \Leftrightarrow \mathbf{I}$$
 has a winning strategy for $B^*(K, h, f)$.

- Proof. 1. Let us suppose that $T(f) \leq J$ and $G: T(f) \to J$ witnesses it. Let us define the following strategy for \mathbf{II} , if $(f \upharpoonright \delta, \eta_{\delta}) \notin T$, \mathbf{II} chooses $(1, \emptyset)$. Otherwise, $\eta_{\delta} \in T(f)$, and \mathbf{II} chooses $(0, G(\eta_{\delta}))$. It is clear that this is a winning strategy for \mathbf{II} . For the other direction, let ρ be a winning strategy for \mathbf{II} . When the game is at \bar{a} ending in η_{α} and the strategy ρ says that \mathbf{II} has choose $(0, t_{\alpha})$, then $\eta_{\alpha} \in T(F)$, so $G(\eta_{\alpha}) = t_{\alpha}$ is an embedding.
 - 2. Let us suppose $J \ll T(f)$ and $G: \sigma J \to T(f)$ witnesses it. Let us define the following strategy for \mathbf{I} , suppose the game is at \bar{a} ending with $(0, t_{\alpha})$, so $\langle t_{\beta} \mid \beta < \alpha \rangle$ is a chain in J. Thus \mathbf{I} should choose $G(\langle t_{\beta} \mid \beta \leq \alpha \rangle)$. It clear that this is a winning strategy for \mathbf{I} . The other direction is similar as in the previous item.

Theorem 1.22 (Separation property, Mekler-Väänänen, [14], Corollary 34). Suppose A and B are disjoint $\Sigma_1^1(\kappa)$ sets. There are κ -Borel* sets C_0 and C_1 such that $A \subseteq C_0$, $B \subseteq C_1$, and C_0 and C_1 are duals.

Proof. Since B is $\Sigma_1^1(\kappa)$, $\kappa^{\kappa} \setminus B$ is $\Pi_1^1(\kappa)$ and there is T a tree such that

$$f \in \kappa^{\kappa} \backslash B \Leftrightarrow T(f)$$
 has no branch of length κ ,

and $A \subseteq \kappa^{\kappa} \backslash B$. Thus by the covering property, there is $J \in TO$ such that $A \subseteq (\kappa^{\kappa} \backslash B)^{T,J}$. By the previous exercise, $B \subseteq B_{T,J}$. From Definition 1.18

$$(\kappa^{\kappa} \backslash B)^{T,J} = \{ f \in \kappa^{\kappa} \mid T(f) \le J \},$$
$$B_{T,J} = \{ f \in \kappa^{\kappa} \mid J \ll T(f) \}.$$

The proof follows from Lemma 1.20.

Theorem 1.23 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 17). $\Delta_1^1(\kappa) \subseteq \kappa$ -Borel*

Proof. Let A be a $\Delta_1^1(\kappa)$ set. Let $B = \mathbf{B}(\kappa) \setminus A$, by Theorem 1.22, there are κ -Borel* sets C_0 and C_1 such that $A \subseteq C_0$, $B \subseteq C_1$, and C_0 and C_1 are duals. Since C_0 and C_1 are duals, C_0 and C_1 are disjoint. So $C_0 \cap B = \emptyset$, then $A = C_0$, $B = C_1$.

Corollary 1.24 (Mekler-Väänänen, [14], Corollary 35). X is $\Delta_1^1(\kappa)$ if there is a κ -Borel*-code (T,h) that codes X and

$$\mathbf{II} \uparrow B^*(T, h, \eta) \Leftrightarrow \mathbf{I} \uparrow B^*(T, h, \eta)$$

for all $\eta \in \kappa^{\kappa}$ the game is determined.

Exercise 1.13. Prove the claims of the following proof.

Theorem 1.25 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 18). 1. κ -Borel $\subseteq \Delta_1^1(\kappa)$

2.
$$\Delta_1^1(\kappa) \subsetneq \Sigma_1^1(\kappa)$$

Proof. 1. Let $\xi \mapsto (T_{\xi}, h_{\xi})$ be a continuous coding of the κ -Borel*-codes with T a $\kappa^+\omega$ -tree, such that for all $\kappa^+\omega$ -tree, T, and h, there is ξ such that $(T_{\xi}, h_{\xi}) = (T, h)$.

Claim 1.26. The set $B = \{(\eta, \xi) \mid \eta \text{ is in the set coded by } (T_{\xi}, h_{\xi})\}$ is $\Delta_1^1(\kappa)$ and is not κ -Borel, otherwise $D = \{\eta \mid (\eta, \eta) \notin B\}$ would be Borel.

(Hint: use the set $C = \{(\eta, \xi, \sigma) \mid \sigma \text{ is a winning strategy for } \mathbf{II} \text{ in } B^*(T_{\xi}, h_{\xi}, \eta)\}$).

2.

Claim 1.27. There is $A \subseteq 2^{\kappa} \times 2^{\kappa}$ such that if $B \subseteq 2^{\kappa}$ is a $\Sigma_1^1(\kappa)$ set, then there is $\eta \in 2^{\kappa}$ such that $B = \{\xi \mid (\xi, \eta) \in A\}.$

(Hint: the construction used in the classical case works too).

The set $D = \{ \eta \mid (\eta, \eta) \in A \}$ is $\Sigma_1^1(\kappa)$ but not $\Pi_1^1(\kappa)$.

From the previous results, we can see that

$$\kappa$$
-Borel $\subseteq \Delta_1^1(\kappa) \subseteq \Sigma_1^1(\kappa)$

and

$$\Delta_1^1(\kappa) \subseteq \kappa\text{-Borel}^* \subseteq \Sigma_1^1(\kappa)$$
.

Therefore we are missing to determine whether one of the following holds:

- $\Delta_1^1(\kappa) \subsetneq \kappa$ -Borel* $\subsetneq \Sigma_1^1(\kappa)$;
- $\Delta_1^1(\kappa) \subseteq \kappa\text{-Borel}^* = \Sigma_1^1(\kappa);$
- $\Delta_1^1(\kappa) = \kappa$ -Borel* $\subseteq \Sigma_1^1(\kappa)$.

As we will see, only case has not been answered.

Question 1.28. Is the following consistent $\Delta_1^1(\kappa) = \kappa$ -Borel* $\subsetneq \Sigma_1^1(\kappa)$?

2 Reductions

Let $\beta, \theta \in \{2, \kappa\}$, and E_1 and E_2 be equivalence relations on β^{κ} and θ^{κ} , respectively. We say that E_1 is reducible to E_2 if there is a function $f: \beta^{\kappa} \to \theta^{\kappa}$ that satisfies

$$(\eta, \xi) \in E_1 \iff (f(\eta), f(\xi)) \in E_2.$$

We call f a reduction of E_1 to E_2 and we denote by $E_1 \hookrightarrow_r E_2$ the existence of a reduction of E_1 to E_2 . It is clear that $E_1 \hookrightarrow_r E_2$ holds if and only if E_1 doesn't have more equivalence classes than E_2 .

Definition 2.1 (Reductions). Apart from a "cardinality" reduction, \hookrightarrow_r , we define the following notions which allow us to have a better spectrum of complexities.

- Borel reduction. A function $f: \beta^{\kappa} \to \theta^{\kappa}$ is said to be κ -Borel if for any open set $A \subseteq \theta^{\kappa}$, $f^{-1}[A]$ is a κ -Borel set. The existence of a κ -Borel reduction of E_0 to E_1 is denoted by $E_0 \hookrightarrow_B E_1$.
- Continuous reduction. The existence of a continuous reduction of E_0 to E_1 is denoted by $E_0 \hookrightarrow_c E_1$.
- Lipschitz reduction. For all $\eta, \xi \in \beta^{\kappa}$, denote

$$\Delta(\eta, \xi) := \min(\{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cup \{\kappa\}).$$

A function $f: \beta^{\kappa} \to \theta^{\kappa}$ is said to be Lipschitz if for all $\eta, \xi \in \beta^{\kappa}$,

$$\Delta(\eta, \xi) \le \Delta(f(\eta), f(\xi)).$$

The existence of a Lipschitz reduction of E_0 to E_1 is denoted by $E_0 \hookrightarrow_L E_1$.

2.1 Basic reductions

Fact 2.2 (Folklore). If $f: \kappa^{\kappa} \to \kappa^{\kappa} \times \kappa^{\kappa}$ is a continuous functions, then for all κ -Borel $X \subseteq \kappa^{\kappa} \times \kappa^{\kappa}$, $f^{-1}[X]$ is κ -Borel.

Proof. Let us proceed by induction over Σ^0_{α} . Since f is continuous, if $X \in \Sigma^0_1$, then $f^{-1}[X]$ is open. Thus X is κ -Borel. Let us suppose that $\alpha < \kappa^+$ is such that for all $\beta < \alpha$, if $X \in \Sigma^0_{\beta}$, then $f^{-1}[X]$ is κ -Borel. Let $X \in \Pi^0_{\beta}$, for some $\beta < \alpha$. Then, $X = \kappa^{\kappa} \setminus A$, for some $A \in \Sigma^0_{\beta}$. It is clear that $f^{-1}[X] = \kappa^{\kappa} \setminus f^{-1}[A]$. By the induction hypothesis $f^{-1}[A]$ is κ -Borel, so $f^{-1}[X]$ is κ -Borel.

Let $X \in \Sigma^0_{\alpha}$. So, $X = \bigcup_{\gamma < \kappa} A_{\gamma}$, where $A_{\gamma} \in \bigcup_{\beta < \alpha} \Pi^0_{\beta}$. It is easy to see that $f^{-1}[X] = \bigcup_{\gamma < \kappa} f^{-1}[A_{\gamma}]$. As it was proved above, A_{γ} is κ -Borel, therefore X is κ -Borel.

Exercise 2.1. Show that if $f: \kappa^{\kappa} \to \kappa^{\kappa}$ is a κ -Borel function, then for all κ -Borel* set $B \subseteq \kappa^{\kappa}$, $f^{-1}[B]$ is a κ -Borel* set.

Fact 2.3 (Folklore). Suppose $E_0 \hookrightarrow_r E_1$. Then the following hold:

- If E_1 is κ -Borel and $E_0 \hookrightarrow_B E_1$, then E_0 is κ -Borel.
- If E_1 is $\Delta_1^1(\kappa)$ and $E_0 \hookrightarrow_B E_1$, then E_0 is $\Delta_1^1(\kappa)$.

• If E_1 is open and $E_0 \hookrightarrow_c E_1$, then E_0 is open.

Proof. It follows from the previous exercise and the following claim.

Claim 2.4. $\kappa^{\kappa} \times \kappa^{\kappa}$ and κ^{κ} are homeomorphic.

Proof. Let $g: \kappa \to \{0,1\} \times \kappa$ be a bijection, we denote $g(\alpha)$ by $(g_1(\alpha), g_2(\alpha))$. Let us define $F: \kappa^{\kappa} \times \kappa^{\kappa} \to \kappa^{\kappa}$ by $F((\eta_0, \eta_1))(\alpha) = h(\alpha) = \eta_{g_1(\alpha)}(g_2(\alpha))$. Let us show that F is a homeomorphism.

Injective. Let us assume, towars contradiction, that there are (η_0, η_1) and (ξ_0, ξ_1) such that $F((\eta_0, \eta_1)) = F((\xi_0, \xi_1))$. Thus, for all $\alpha < \kappa$, $\eta_{g_1(\alpha)}(g_2(\alpha)) = \xi_{g_1(\alpha)}(g_2(\alpha))$. Let $A_0 = \{\alpha < \kappa \mid g_1(\alpha) = 0\}$ and $A_1 = \{\alpha < \kappa \mid g_1(\alpha) = 1\}$. Therefore, for all $\alpha \in A_0$, $\eta_0(g_2(\alpha)) = \xi_0(g_2(\alpha))$ and for all $\alpha \in A_1$, $\eta_1(g_2(\alpha)) = \xi_1(g_2(\alpha))$. Finally, since g is a bijection, $g_2[A_0] = g_2[A_1] = \kappa$, for all $\beta < \kappa$, $\eta_0(\beta) = \xi_0(\beta)$ and $\eta_1(\beta) = \xi_1(\beta)$. a contradiction.

Surjective. Let A_0 and A_1 as before. Let $\eta \in \kappa^{\kappa}$. Let us define ξ_0 by $\xi_0(g_2(\alpha)) = \eta(\alpha)$ for all $\alpha \in A_0$. Let us define ξ_1 by $\xi_1(g_2(\alpha)) = \eta(\alpha)$ for all $\alpha \in A_1$. Clearly $F((\xi_1, \xi_0)) = \eta$.

Continuty. Let $\alpha < \kappa$, and η , ξ_0 and ξ_1 be such that $(\xi_0, \xi_1) \in F^{-1}[N_{\eta \upharpoonright \alpha}]$. So, for all $\beta < \alpha$, $\eta(\beta) = F(\xi_0, \xi_1)(\beta) = \xi_{g_1(\beta)}(g_2(\beta))$. Let $\gamma = \sup\{g_2(\beta) \mid \beta < \alpha\}$ and $(\zeta_0, \zeta_1) \in N_{\xi_0 \upharpoonright \gamma} \times N_{\xi_1 \upharpoonright \gamma}$. Clearly for all $\beta < \alpha$, $F((\zeta_0, \zeta_1))(\beta) = \zeta_{g_1(\beta)}(g_2(\beta)) = \xi_{g_1(\beta)}(g_2(\beta)) = F((\xi_0, \xi_1))(\beta) = \eta(\beta)$. Thus $N_{\xi_0 \upharpoonright \gamma} \times N_{\xi_1 \upharpoonright \gamma} \subseteq F^{-1}[N_{\eta \upharpoonright \alpha}]$.

Open sets. Let $\alpha_0, \alpha_1 < \kappa$, and η, ξ_0 and ξ_1 be such that $\eta \in F[N_{\xi_0 \upharpoonright \alpha_0} \times N_{\xi_1 \upharpoonright \alpha_1}]$. Let $\gamma = \sup\{g_2^{-1}(x,\beta) \mid x \in \{0,1\} \& \beta < \max(\alpha_1,\alpha_2)\}, \ \zeta \in N_{\eta \upharpoonright \gamma}$, and ϑ_0 and ϑ_1 be such that $F((\vartheta_0,\vartheta_1)) = \zeta$, thus for all $\beta < \gamma$, $F((\vartheta_0,\vartheta_1))(\beta) = \nu_{g_1(\beta)}(g_2(\beta)) = \zeta(\beta) = \eta(\beta)$. We conclude that $N_{\eta \upharpoonright \gamma} \in F[N_{\xi_0 \upharpoonright \alpha_0} \times N_{\xi_1 \upharpoonright \alpha_1}]$.

If $E_0 \hookrightarrow_B E_1$, then we would have $[f \times f]^{-1}[E_1] = E_0$ and since E_1 is Borel*, this yield E_0 to be Borel*. \square

Fact 2.5 (Folklore). Let E be a κ -Borel equivalence relation. Then the equivalence classes of E are κ -Borel.

Proof. Let $x \in \kappa^{\kappa}$, and let us define $f : \kappa^{\kappa} \to \kappa^{\kappa} \times \kappa^{\kappa}$ as $f(\eta) = (\eta, x)$. It is clear that f is continuous. On the other hand $[x]_E$ (the E-equivalence class of x) is equal to $f^{-1}[(\kappa^{\kappa} \times \{x\}) \cap E]$. Clearly $\kappa^{\kappa} \times \{x\}$ is κ -Borel and since E is κ -Borel, by Fact 2.2 $f^{-1}[(\kappa^{\kappa} \times \{x\}) \cap E]$ is κ -Borel.

Lemma 2.6 (Mangraviti-Motto Ros, [13]). Let E_1 be a κ -Borel equivalence relation with $\gamma \leq \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma \leq \theta$, then $E_1 \hookrightarrow_B E_2$.

Proof. Let us choose $\langle y_i \mid i < \gamma \rangle$ representatives of each E_1 -equivalence class and $\langle x_i \mid i < \theta \rangle$ representatives of each E_2 -equivalence class. Let us define $F : \kappa^{\kappa} \to \kappa^{\kappa}$ as $F(\eta) = x_i$, where $i < \gamma$ is such that η E_1 y_i . Since $\gamma \leq \theta$, F is well defined.

Claim 2.7. $\eta E_1 \xi$ if and only if $F(\eta) E_2 F(\xi)$.

Proof. By the way F was defined, it is enough to prove that $\eta E_1 \xi$ if and only if $x_i E_2 x_j$, where i and j are such that $\eta E_1 y_i$ and $\xi E_1 y_j$. Since E_1 is an equivalence relation, $\eta E_1 \xi$ if and only if $y_i E_1 y_j$.

If $\eta E_1 \xi$, then $y_i E_1 y_j$ and i = j. We conclude that $x_i = x_j$ and $x_i E_2 x_j$. The other direction is similar. \square

Let us show that F is κ -Borel. Let $X \subseteq \kappa^{\kappa}$ be an open set. Then,

$$F^{-1}[X] = \bigcup_{x_i \in X} [y_i]_{E_1}.$$

By the previous fact, $[y_i]_{E_1}$ is κ -Borel for all $i < \gamma$. Since $\gamma \le \kappa$, $\bigcup_{x_i \in X} [y_i]_{E_1}$ is κ -Borel.

Definition 2.8 (Counting classes). Let $0 < \varrho \le \kappa$ be a cardinal. Let us define the equivalence relation $0_{\varrho} \in \kappa^{\kappa} \times \kappa^{\kappa}$ as follows: $\eta \ 0_{\varrho} \ \xi$ if and only if one of the following holds:

- ϱ is finite:
 - $-\eta(0) = \xi(0) < \varrho 1;$
 - $-\eta(0), \xi(0) \ge \varrho 1.$
- ϱ is infinite:

$$-\eta(0) = \xi(0) < \varrho;$$

$$- \eta(0), \xi(0) \ge \varrho.$$

Lemma 2.9 (Moreno, [16]). Let E be a Borel equivalence relation with $\varrho \leq \kappa$ equivalence classes. Then

$$E \hookrightarrow_B 0_{\varrho} \ and \ 0_{\varrho} \hookrightarrow_L E.$$

If E is not open, then $E \not\hookrightarrow_c 0_o$.

Proof. It is clear that for all 0_{ρ} is open, then by Lemma 2.6, $E \hookrightarrow_B 0_{\rho}$.

Let show the case $\varrho \geq \omega$, let $\langle x_i \mid i \leq \varrho \rangle$ representatives of each E-equivalence class. Clearly the function

$$F(\eta) = \begin{cases} x_{\eta(0)+1} & \text{if } \eta(0) < \varrho, \\ x_0 & \eta(0) \ge \varrho. \end{cases}$$

is Lipschitz and a reduction from 0_{ϱ} to E, i.e. $0_{\varrho} \hookrightarrow_{L} E$.

Finally, suppose $E \hookrightarrow_c 0_{\varrho}$. Since 0_{ϱ} is open, by Fact 2.3, E is open.

Let us define $E_0^{<\kappa}$, the equivalence modulo bounded, as:

$$E_0^{<\kappa} := \{ (\eta, \xi) \in 2^{\kappa} \times 2^{\kappa} \mid \exists \alpha < \kappa \ [\forall \beta > \alpha \ (\eta(\beta) = \xi(\beta)]) \}.$$

Let id_2 be the identity relation of 2^{κ} .

Exercise 2.2. Show that $E_0^{<\kappa}$ is an equivalence relation.

Theorem 2.10 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 34). 1. $E_0^{<\kappa}$ is κ -Borel.

2. $id_2 \hookrightarrow_c E_0^{<\kappa}$.

Proof. 1. Let us denote by $[\kappa]^{<\kappa}$ the set of subsets of κ of size smaller than κ . Clearly

$$E_0^{<\kappa} = \bigcup_{A \in [\kappa]^{<\kappa}} \bigcap_{\alpha \notin A} \{ (\eta, \xi) \mid \eta(\alpha) = \xi(\alpha) \}$$

and $\{(\eta, \xi) \mid \eta(\alpha) = \xi(\alpha)\}\$ is open.

2. Let $(A_i)_{i<\kappa}$ be a partition of κ such that for all $i<\kappa$, $|A_i|=\kappa$. Let us define $F:2^\kappa\to\kappa^\kappa$ by $F(\eta)(\alpha)=\eta(i)$ if and only if $\alpha\in A_i$. Clearly, if $\eta=\xi$, then $F(\eta)=F(\xi)$ and $F(\eta)$ $E_0^{<\kappa}$ $F(\xi)$. If $\eta\neq\xi$, then there is $i<\kappa$ such that $\eta(i)\neq\xi(i)$. So

$$A_i \subseteq \{\alpha < \kappa \mid F(\eta)(\alpha) \neq F(\xi)(\alpha)\}.$$

Since $|A_i| = \kappa$, we conclude that $F(\eta)$ and $F(\xi)$ are not $E_0^{<\kappa}$ equivalent.

Definition 2.11. Let $S \subseteq \kappa$ be an unbounded set. We say that a function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ is S-recursive if there is a function $H : \kappa^{<\kappa} \to \kappa^{<\kappa}$ such that for all $\alpha \in S$ and $\eta \in \kappa^{\kappa}$, $f(\eta)(\theta) = H(\eta \upharpoonright \alpha)(\theta)$ for all $\theta < \min(S \setminus (\alpha + 1))$.

Exercise 2.3 (Moreno, [16]). Let $S \subseteq \kappa$ be unbounded and $f : \kappa^{\kappa} \to \kappa^{\kappa}$ an S-recursive function.

- 1. f is continuous.
- 2. If S is a club that satisfies the following:
 - (†) $\alpha_m = min(S)$ is such that for all $\eta, \xi \in \kappa^{\kappa}$ and $\beta < \alpha_m$, $\eta \upharpoonright \beta = \xi \upharpoonright \beta$ implies $f(\eta) \upharpoonright \beta = f(\xi) \upharpoonright \beta$. Then f is Lipschitz.

Exercise 2.4 (Moreno, [16]). 1. Find $S \subseteq \kappa$ and a function f, such that f is S-recursive but not κ -recursive.

2. Find $S \subseteq \kappa$ and a function f, such that f is κ -recursive but not S-recursive.

2.2 Equivalence modulo S

Definition 2.12. We say that a set $S \subseteq \kappa$ is stationary if for all club $C \subseteq \kappa$, $S \cap C \neq \emptyset$.

Notice that if $S \subseteq \kappa$ is stationary and $C \subseteq \kappa$ is a club, then $S \cap C$ is stationary.

Definition 2.13. Given $S \subseteq \kappa$ and $\theta \in \{2, \kappa\}$, we define the equivalence relation $=_S^{\theta} \subseteq \theta^{\kappa} \times \theta^{\kappa}$, as follows

$$\eta = S \xi \iff \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S \text{ is non-stationary.}$$

It is clear that $=_S^{\theta} \neq \theta^{\kappa} \times \theta^{\kappa}$ if and only if S is stationary.

Exercise 2.5. Show that $\eta = {}^{\theta}_{S} \xi$ if and only if there is a club $C \subseteq \kappa$, such that $C \cap S \subseteq \{\alpha < \kappa \mid \eta(\alpha) = \xi(\alpha)\}$.

Exercise 2.6. Show that if C is a club, then the set of limits of C is also a club.

Exercise 2.7. Prove Lemma 2.14

Lemma 2.14 (Monotonicity, Fernandes-Moreno-Rinot, [3] Lemma 2.7). Suppose $\theta, \theta', \lambda, \lambda' \in \{2, \kappa\}$ are such that $\theta \leq \theta', \lambda \leq \lambda'$, and, $X \subseteq X'$ and $S \subseteq S'$ are stationary sets such that $= \frac{\theta'}{X'} \hookrightarrow_c = \frac{\lambda}{S}$, then $= \frac{\lambda'}{X} \hookrightarrow_c = \frac{\lambda'}{S'}$.

Definition 2.15. Let (T,h) be a κ -Borel*-code and $\alpha < \kappa$. Let $(T_{\alpha},h_{\alpha}) = (T,h) \upharpoonright \alpha$ be the α -approximation of (T,h) defined by $T_{\alpha} = T \cap \alpha^{<\omega}$ and $h_{\alpha} = h \upharpoonright T_{\alpha}$.

We say that a κ -Borel equivalence relation $E \subseteq 2^{\kappa} \times 2^{\kappa}$ has an approximation if there is a κ -Borel*-code, (T, h), such that the following hold

- T doesn't have infinite branches,
- (T,h) codes E,
- there is a club C such that for all $\alpha \in C$, $(T,h) \upharpoonright \alpha$ codes an equivalence relation E_{α} ,
- for all $\alpha \in C$ and leaf $l \in T \cap \alpha^{<\omega}$, there are $\eta, \xi \in 2^{<\alpha}$ such that $h_{\alpha}(l) = N_{\eta} \times N_{\xi}$.

Lemma 2.16 (Friedman-Hyttinen-Weisnstein(Kulikov), [4] Theorem 11). Let E be a κ -Borel equivalence relation with an approximation (T,h) and $C \subseteq \kappa$. For all stationary set $S \subseteq \kappa$, $E \hookrightarrow_c =_S^{\kappa}$.

Proof. Since E is approximated by (T,h) and $C \subseteq \kappa$, $(T,h) \upharpoonright \alpha$ is an equivalence relation for all $\alpha \in C$. Let us denote these equivalence relations by E_{α} . For all $\alpha \in C$, let $\langle x_i^{\alpha} \mid 0 < i < \kappa \rangle$ be an enumeration of the E_{α} -equivalence classes. Let us define the function $F : \kappa^{\kappa} \to \kappa^{\kappa}$ by

$$F(\eta)(\alpha) = \begin{cases} i & \text{if } \alpha \in C \text{ and } \eta \in x_i^{\alpha}, \\ 0 & \text{otherwise.} \end{cases}$$

Let us show that $\eta \ E \ \xi$ if and only if $F(\eta) =_S^{\kappa} F(\xi)$.

If $\eta \ E \ \xi$, then **II** has a winning strategy σ for the game $B^*(T,h,(\eta,\xi))$. Notice that the set $D = \{\alpha < \kappa \mid \sigma(\alpha^{<\omega}) \subseteq \alpha\}$ is a club, thus for all $\alpha \in C \cap D$, σ is a winning strategy of **II** for the game $B^*(T_\alpha,h_\alpha,(\eta,\xi))$. We conclude that $\eta \ E_\alpha \xi$ and $F(\eta)(\alpha) = F(\xi)(\alpha)$. We conclude that $C \cap D \subseteq \{\alpha < \kappa \mid F(\eta)(\alpha) = F(\xi)(\alpha)\}$ and $\{\alpha < \kappa \mid F(\eta)(\alpha) \neq F(\xi)(\alpha)\} \cap S$ is non-stationary. So $F(\eta) = S \cap F(\xi)$.

From Exercise 1.9 and a similar argument, it is possible to show that there is a club $D \subseteq \kappa$ such that $C \cap D \subseteq \{\alpha < \kappa \mid F(\eta)(\alpha) \neq F(\xi)(\alpha)\}$. Thus $\{\alpha < \kappa \mid F(\eta)(\alpha) \neq F(\xi)(\alpha)\} \cap S$ is stationary. So $F(\eta) \neq_S^{\kappa} F(\xi)$.

Exercise 2.8. Show that F is C-recursive and continuous.

Exercise 2.9. Prove Lemma 2.17.

Lemma 2.17 (Fernandes-Moreno-Rinot, [3] Lemma 2.10). Suppose κ is such that $|\kappa| = |2^{\lambda}|$ for some $\lambda < \kappa$, and $X, S \subseteq \kappa$ be stationary sets. Show that if $=_X^2 \hookrightarrow_c =_S^2$, then $=_X^{\kappa} \hookrightarrow_c =_S^{\kappa}$. (Hint: Similar to Fact 2.10 (2).) Use the following two facts:

- If $\langle D_i \mid i < \gamma < \kappa \rangle$ is a sequence of clubs of κ , then $\bigcap_{i < \gamma} D_i$ is a club of κ .
- If $S \subseteq \kappa$ is stationary and $\langle S_i \mid i < \gamma < \kappa \rangle$ is a sequence of disjoint subsets of S such that $\bigcup_{i < \gamma} S_i = S$, then there is $j < \gamma$, such that S_j is a stationary set of κ .

Show that the following function F is a reduction:

- Let $h: \kappa \to 2^{\lambda}$ is a bijection.
- Define $\pi: \kappa^{\kappa} \to (2^{\kappa})^{\lambda}$ by $\pi(\eta) = \langle \eta_i \mid i < \lambda \rangle$ where

$$\eta_i(\alpha) = h(\eta(\alpha))(i).$$

- Let $f: 2^{\kappa} \to 2^{\kappa}$ a continuous reduction from $=_X^2$ to $=_S^2$.
- Define $F: \kappa^{\kappa} \to \kappa^{\kappa}$ by $F(\eta) = \zeta$, where $\pi(\eta) = \langle \eta_i \mid i < \lambda \rangle$ and $\pi(\zeta) = \langle f(\eta_i) \mid i < \lambda \rangle$.

2.3 The approximation lemma

Definition 2.18 (S-approximation). Let $\theta \in \{2, \kappa\}$ and let $S \subseteq \kappa$ be a stationary set, we say that an equivalence relation $E \subseteq \theta^{\kappa} \times \theta^{\kappa}$ has an S-approximation if there is $\langle E_{\alpha} \mid \alpha < \kappa \rangle$ a sequence of relations, $E_{\alpha} \subseteq \theta^{\alpha} \times \theta^{\alpha}$, such that the following hold:

- 1. There is $C \subseteq \kappa$ a club such that for all $\alpha \in C$, E_{α} is an equivalence relation.
- 2. For all $\eta, \xi \in \theta^{\kappa}$, if $\eta \to \xi$, then there is $D \subseteq C$ a club, such that for all $\alpha \in D$,

$$\eta \upharpoonright \alpha \ E_{\alpha} \ \xi \upharpoonright \alpha.$$

3. For all $\eta, \xi \in \theta^{\kappa}$, if $\neg (\eta E \xi)$, then there is $S' \subseteq S$ a stationary set, such that for all $\alpha \in S'$,

$$\neg(\eta \upharpoonright \alpha \ E_{\alpha} \ \xi \upharpoonright \alpha).$$

Lemma 2.19 (Approximation lemma in κ^{κ}). Suppose $\theta \in \{2, \kappa\}$, $S \subseteq \kappa$ is a stationary set, and $E \subseteq \theta^{\kappa} \times \theta^{\kappa}$ is an equivalence relation with an S-approximation, $\langle E_{\alpha} \mid \alpha < \kappa \rangle$. Then

$$E \hookrightarrow_L =_S^{\kappa}$$
.

Proof. Let $C \subseteq \kappa$ be the club that witnesses that $\langle E_{\alpha} \mid \alpha < \kappa \rangle$ is an S-approximation. For all $\alpha \in C$, let $\langle x_i^{\alpha} \mid 0 < i < \kappa \rangle$ be an enumeration of the E_{α} -equivalence classes (this can be done since $\kappa^{<\kappa} = \kappa$). Let us define $F: \theta^{\kappa} \to \kappa^{\kappa}$ as follows:

$$F(\eta)(\alpha) = \begin{cases} i & \text{if } \alpha \in C \text{ and } \eta \upharpoonright \alpha \in x_i^{\alpha}, \\ 0 & \text{otherwise.} \end{cases}$$

Let us show that $\eta E \xi$ if and only if $F(\eta) =_S^{\kappa} F(\xi)$.

Claim 2.20. $\eta E \xi \text{ implies } F(\eta) =_{S}^{\kappa} F(\xi).$

Proof. Suppose $\eta, \xi \in \theta^{\kappa}$ are such that $\eta \ E \ \xi$. Since $\langle E_{\alpha} \mid \alpha < \kappa \rangle$ is an S-approximation, by Definition 2.18 item 2, there is a club $D \subseteq C$ such that for all $\alpha \in D$,

$$\eta \upharpoonright \alpha E_{\alpha} \xi \upharpoonright \alpha$$
.

So, for all $\alpha \in D \cap S$, $F(\eta)(\alpha) = F(\xi)(\alpha)$. Thus $\{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S$ is non-stationary and we conclude that $F(\eta) = \frac{\kappa}{S} F(\xi)$.

Claim 2.21. $\neg(\eta \ E \ \xi) \ implies \ \neg(F(\eta) = \xi F(\xi))$.

Proof. Suppose $\eta, \xi \in \theta^{\kappa}$ are such that $\neg(\eta \ E \ \xi)$. Since $\langle E_{\alpha} \mid \alpha < \kappa \rangle$ is an S-approximation, by Definition 2.18 item 3, there is a stationary subset $S' \subseteq S$ such that for all $\alpha \in S'$,

$$\neg(\eta \upharpoonright \alpha \ E_{\alpha} \ \xi \upharpoonright \alpha).$$

So, for all $\alpha \in C \cap S'$, $F(\eta)(\alpha) \neq F(\xi)(\alpha)$. Thus $C \cap S' \subseteq \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S$ is stationary and we conclude that $\neg (F(\eta) = {}^{\kappa}_{S} F(\xi))$.

Claim 2.22. F is C-recursive

Proof. Let us define $H: \theta^{<\kappa} \to \kappa^{<\kappa}$ as follows:

$$H(\eta \upharpoonright \alpha) = \begin{cases} F(\eta) \upharpoonright \alpha' & \text{if } \alpha \in C \text{ and } \alpha' = min(C \backslash (\alpha + 1)), \\ \bar{0}_{\alpha} & \text{otherwise.} \end{cases}$$

Where $\bar{0}_{\alpha}$ is the function constant to 0 with domain α . Clearly, if $\alpha, \beta \in C$ are such that $\beta < \alpha$, then $H(\eta \upharpoonright \beta) \subseteq H(\eta \upharpoonright \alpha)$.

Let us show that H is well define. Let $\eta, \xi \in \theta^{\kappa}$ and $\alpha \in C$ are such that $\eta \upharpoonright \alpha = \xi \upharpoonright \alpha$. Let $\alpha' = \min(C \setminus (\alpha + 1))$. Clearly for all $\beta < \alpha'$ such that $\beta \notin C$, $F(\eta)(\beta) = 0 = F(\xi)(\beta)$. So $F(\eta) \upharpoonright \alpha'$ $(\beta) = 0 = F(\xi) \upharpoonright \alpha'$ (β) for all $\beta \in \alpha' \setminus C$. On the other hand, by the definition of F, for all $\beta < \alpha'$ such that $\beta \in C$, $F(\eta)(\beta) = i$ and $F(\xi)(\beta) = j$, where $\eta \upharpoonright \beta \in x_i^{\beta}$ and $\xi \upharpoonright \beta \in x_j^{\beta}$. Since $\eta \upharpoonright \beta = \xi \upharpoonright \beta$ and E_{β} is an equivalence relation (since $\beta \in C$), $x_i^{\beta} = x_i^{\beta}$, and i = j. Thus $F(\eta) \upharpoonright \alpha'$ $(\beta) = F(\xi) \upharpoonright \alpha'$ (β) for all $\beta \in \alpha' \cap C$. We conclude that $F(\eta) \upharpoonright \alpha' = F(\xi) \upharpoonright \alpha'$, $H(\eta \upharpoonright \alpha) = H(\xi \upharpoonright \alpha)$ and H is well defined.

Finally, from the way H was defined, for all $\alpha \in C$ and $\eta \in \theta^{\kappa}$, $F(\eta)(\beta) = H(\eta \upharpoonright \alpha)(\beta)$ for all $\beta < min(S \setminus (\alpha + 1))$.

Notice that for all $\beta < min(C)$ and $\eta \in \theta^{\kappa}$, $F(\eta)(\beta) = 0$. By Exercise 2.3, F is Lipschitz.

3 Combinatorics

3.1 Filter reflection

Definition 3.1. We say that a stationary set $S \subseteq \kappa$ reflects at α if $S \cap \alpha$ is stationary at α , where $cf(\alpha) > \omega$.

We say that a stationary set $S \subseteq \kappa$ reflects to X if for all $\alpha \in X$, S reflects at α . We say that S strongly reflects to X if for all stationary $Z \subseteq S$ there is $Y \subseteq X$, such that Z reflects to Y.

Recall that the cofinality of an ordinal α , $cf(\alpha)$, is the smallest cardinal γ such that there is a function $G: \gamma \to \alpha$, such that for all $\beta < \alpha$, there is $\theta < \gamma$, such that $\beta < G(\theta)$. For all regular cardinal $\gamma < \kappa$, define S_{γ}^{κ} as the set of ordinals below κ with cofinality γ .

Lemma 3.2 (Aspero-Hyttinen-Weisnstein(Kulikov)-Moreno, [1] Proposition 2.8). Suppose $\gamma < \lambda < \kappa$ are regular cardinals If S_{γ}^{κ} strongly reflects to S_{λ}^{κ} , then $=_{\gamma}^{\kappa} \hookrightarrow_{c} =_{\lambda}^{\kappa}$.

Proof. For all $\alpha \in S^{\kappa}_{\lambda}$, let E_{α} be the equivalence relation defined by

$$\eta E_{\alpha} \xi \iff \{\beta < \alpha \mid \eta(\beta) \neq \xi(\beta)\} \cap S_{\gamma}^{\kappa} \text{ is non-stationary in } \alpha.$$

Let $\langle x_i^{\alpha} \mid 0 < i < \kappa \rangle$ be an enumeration of the E_{α} -equivalence classes. Let us define the function $F : \kappa^{\kappa} \to \kappa^{\kappa}$ by

$$F(\eta)(\alpha) = \begin{cases} i & \text{if } \alpha \in S_{\lambda}^{\kappa} \text{ and } \eta \in x_i^{\alpha}, \\ 0 & \text{otherwise.} \end{cases}$$

Let us show that $\eta = {\kappa \atop \gamma} \xi$ if and only if $F(\eta) = {\kappa \atop \lambda} F(\xi)$.

Suppose $\eta = -\frac{\kappa}{\gamma} \xi$. There is a club $C \subseteq \kappa$, such that $C \cap S_{\gamma}^{\kappa} \subseteq \{\alpha < \kappa \mid \eta(\alpha) = \xi(\alpha)\}$. Thus for all $\alpha \in C \cap S_{\lambda}^{\kappa}$ limit in C, $C \cap S_{\gamma}^{\kappa} \cap \alpha \subseteq \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\}$ and $\eta E_{\alpha} \xi$. Therefore there is a club $D \subseteq \kappa$ (the limits of C) such that $D \cap S_{\lambda}^{\kappa} \subseteq \{\alpha < \kappa \mid F(\eta)(\alpha) = F(\xi)(\alpha)\}$. we conclude that $F(\eta) = -\frac{\kappa}{\lambda} F(\xi)$.

Suppose $\eta \neq -\frac{\kappa}{\gamma} \xi$. Then $Z = \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S_{\gamma}^{\kappa}$ is stationary. By strong reflection, there is a stationary $Y \subseteq X$ such that Z reflects to Y. Thus, for all $\alpha \in Y$, $Z \cap \alpha$ is stationary in α . Since

Suppose $\eta \neq_{\gamma}^{\kappa} \xi$. Then $Z = \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S_{\gamma}^{\kappa}$ is stationary. By strong reflection, there is a stationary $Y \subseteq X$ such that Z reflects to Y. Thus, for all $\alpha \in Y$, $Z \cap \alpha$ is stationary in α . Since $Z \cap \alpha \subseteq \{\beta < \alpha \mid \eta(\beta) \neq \xi(\beta)\} \cap S_{\gamma}^{\kappa}$, for all $\alpha \in Y$, $\{\beta < \alpha \mid \eta(\beta) \neq \xi(\beta)\} \cap S_{\gamma}^{\kappa}$ is stationary in α . Therefore for all $\alpha \in Y$, η and ξ have different equivalence classes in E_{α} and $F(\eta)(\alpha) \neq F(\xi)(\alpha)$. We conclude that $F(\eta) \neq_{\lambda}^{\kappa} F(\xi)$.

Same as in Exercise 2.8, F is S^{κ}_{λ} -recursive and continuous.

Definition 3.3. $\mathcal{F} \subseteq \mathcal{P}(\delta)$ is a filter over δ if the following holds:

- $\delta \in \mathcal{F}$,
- for all $x \in \mathcal{F}$, if $x \subseteq y$, then $y \in \mathcal{F}$,
- if $x, y \in \mathcal{F}$, then $x \cap y \in \mathcal{F}$.

Given a filter \mathcal{F} over δ , we denote by \mathcal{F}^+ the set $\{A \subseteq \delta \mid \forall B \in \mathcal{F}(A \cap B \neq \emptyset)\}$.

Definition 3.4. Let $\mathcal{F} \subseteq \mathcal{P}(\kappa)$ be a filter over κ . For any set \mathbf{R} , \mathcal{F} induces an equivalence relation over the space \mathbf{R}^{κ} . Let $\sim_{\mathcal{F}}^{\mathbf{R}}$ be the following relation:

$$\eta \sim_{\mathcal{F}}^{\mathbf{R}} \xi \Leftrightarrow \exists W \in \mathcal{F} \ (W \subseteq \{\alpha < \kappa \mid \eta(\alpha) = \xi(\alpha)\})$$

Exercise 3.1. Show that for any filter \mathcal{F} , $\sim_{\mathcal{F}}^{\mathbf{R}}$ is an equivalence relation.

We say that an equivalence relation E is filtered if and only if there is a filter \mathcal{F} such that $\eta E \xi \Leftrightarrow \eta \sim_{\mathcal{F}}^{\mathbf{R}} \xi$.

Exercise 3.2. Show that the following are filtered equivalence relations:

- 1. id_2 .
- $2. 0_{\kappa}$.
- 3. $E_0^{<\kappa}$.
- 4. $=_S^2$ where $S \subseteq \kappa$ is stationary.

Exercise 3.3. Show that 0_{ϱ} is not a filtered relation when $\varrho < \kappa$.

Let us define $E_0^{\langle \kappa, \kappa}$, the equivalence modulo bounded over κ^{κ} , as:

$$E_0^{<\kappa,\kappa} := \{ (\eta, \xi) \in \kappa^{\kappa} \times \kappa^{\kappa} \mid \exists \alpha < \kappa \ [\forall \beta > \alpha \ (\eta(\beta) = \xi(\beta)]) \}.$$

Exercise 3.4. 1. Show that $E_0^{<\kappa,\kappa}$ is a filtered equivalence relation.

2. Prove that for any stationary set $S \subseteq \kappa$, $E_0^{<\kappa,\kappa} \hookrightarrow_L =_S^{\kappa}$.

Definition 3.5. Suppose $S \subseteq \kappa$ is a stationary set and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence of filters, i.e. for all $\alpha \in S$, \mathcal{F}_{α} is a filter over α . We say that $\vec{\mathcal{F}}$ captures clubs if and only if for every club $C \subseteq \kappa$, the set $\{\alpha \in S \mid C \cap \alpha \notin \mathcal{F}_{\alpha}\}$ is non-stationary.

Example 3.1. Let $\omega < \lambda < \kappa$ be a regular cardinal. For all $\alpha \in S_{\lambda}^{\kappa}$, let \mathcal{F}_{α} be the club filter of α . Clearly $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S_{\lambda}^{\kappa} \rangle$ captures clubs.

Definition 3.6. Suppose $X, S \subseteq \kappa$ are stationary sets, and $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S \rangle$ is a sequence of filters. We say that $X \not\in \mathcal{F}$ -reflects to S if and only if $\vec{\mathcal{F}}$ captures clubs, and for every stationary set $Y \subseteq X$, the set $\{\alpha \in S \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary.

We say that X \mathfrak{f} -reflects to S if and only if there exists a sequence $\vec{\mathcal{F}}$ over a stationary subset $S' \subseteq S$ such that X $\vec{\mathcal{F}}$ -reflects to S'.

Exercise 3.5. Prove Lemma 3.7.

Lemma 3.7 (Monotonicity, Fernandes-Moreno-Rinot, [3] Lemma 2.4). Suppose $Y \subseteq X \subseteq \kappa$ and $S \subseteq T \subseteq \kappa$ are stationary sets. If X \mathfrak{f} -reflects to S, then Y \mathfrak{f} -reflects to T.

Lemma 3.8 (Fernandes-Moreno-Rinot, [3] Lemma 2.8). If X \mathfrak{f} -reflects to S, then $=_X^{\kappa} \hookrightarrow_L =_S^{\kappa}$.

Proof. Suppose that $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S' \rangle$ witnesses that X f-reflects to S. For every $\alpha \in S'$, define an equivalence relation \sim_{α} over κ^{α} by letting $\eta \sim_{\alpha} \xi$ iff there is $W \in \mathcal{F}_{\alpha}$ such that $W \cap X \subseteq \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\}$. As there are at most $|\kappa^{\alpha}|$ many equivalence classes and as $\kappa^{<\kappa} = \kappa$, we can enumerate the equivalence classes $[\eta]_{\sim_{\alpha}}$, $\langle x_i^{\alpha} \mid 0 < i < \kappa \rangle$. Next, define a map $f : \kappa^{\kappa} \to \kappa^{\kappa}$ by letting for all $\eta \in \kappa^{\kappa}$ and $\alpha < \kappa$:

$$f(\eta)(\alpha) := \begin{cases} i & \text{if } \alpha \in S' \text{ and } [\eta \upharpoonright \alpha]_{\sim_{\alpha}} = x_i^{\alpha}; \\ 0, & \text{otherwise.} \end{cases}$$

Clearly f is Lipschitz and S'-recursive. To show that it is a reduction from $=_X^{\kappa}$ to $=_S^{\kappa}$, let η, ξ be arbitrary elements of κ^{κ} .

• $\eta =_X^{\kappa} \xi$: There is a club C such that $C \cap X \subseteq \{\beta < \kappa \mid \eta(\beta) = \xi(\beta)\}$. Since $\vec{\mathcal{F}}$ captures clubs, there is a club $D \subseteq \kappa$ such that, for all $\alpha \in D \cap S'$, $C \cap \alpha \in \mathcal{F}_{\alpha}$.

Claim 3.9. $D \cap \{\alpha \in S \mid f(\eta)(\alpha) \neq f(\xi)(\alpha)\} = \emptyset$, so $f(\eta) =_S^{\kappa} f(\xi)$.

Proof. Let $\alpha \in D$ be arbitrary. If $\alpha \notin S'$, then $f(\eta)(\alpha) = 0 = f(\xi)(\alpha)$.

If $\alpha \in S'$, then for $W := C \cap \alpha$, we have that $W \in \mathcal{F}_{\alpha}$ and $W \cap X \subseteq \{\beta < \alpha \mid \eta(\beta) = \xi(\beta)\}$, so that $[\eta \upharpoonright \alpha]_{\sim_{\alpha}} = [\xi \upharpoonright \alpha]_{\sim_{\alpha}}$ and $f(\eta)(\alpha) = f(\xi)(\alpha)$.

• $\eta \neq_X^{\kappa} \xi$: So $Y := \{ \beta \in X \mid \eta(\beta) \neq \xi(\beta) \}$ is stationary. Since $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S' \rangle$ witnesses that X f-reflects to S, $T := \{ \alpha \in S' \mid Y \cap \alpha \in \mathcal{F}_{\alpha}^+ \}$ is stationary. Now, for every $\alpha \in T$ and any $W \in \mathcal{F}_{\alpha}$, $W \cap Y \cap \alpha \neq \emptyset$. So that $W \cap Y \cap \alpha \subseteq W \cap X$, $W \cap X \nsubseteq \{ \beta < \alpha \mid \eta(\beta) = \xi(\beta) \}$, and $[\eta \upharpoonright \alpha]_{\sim_{\alpha}} \neq [\xi \upharpoonright \alpha]_{\sim_{\alpha}}$. It follows that $T \subseteq \{ \alpha \in S' \mid f(\eta)(\alpha) \neq f(\xi)(\alpha) \}$, so that $f(\eta) \neq_S f(\xi)$.

Exercise 3.6. Prove Lemma 3.10.

Lemma 3.10 (Fernandes-Moreno-Rinot, [3] Lemma 2.17). Suppose X, Y, Z are stationary subsets of κ , with $X \cap Y = \emptyset$. Prove the following:

1. If X f-reflects to Y and Y f-reflects to X, then there is a function simultaneously witnessing

$$=_X \hookrightarrow_L =_Y \& =_Y \hookrightarrow_L =_X.$$

2. If Z \mathfrak{f} -reflects to Y and Z \mathfrak{f} -reflects to X, then there is a function simultaneously witnessing

$$=_Z \hookrightarrow_L =_Y \& =_Z \hookrightarrow_L =_X.$$

3.2 Diamond principle

Definition 3.11. For a given cardinal λ and a stationary set $S \subseteq \lambda$, $\diamondsuit_{\lambda}(S)$ is the statement that there is a sequence $\langle D_{\alpha} \mid \alpha \in S \rangle$ such that

- For all $\alpha \in S$, $D_{\alpha} \subseteq \alpha$.
- For all $A \subseteq \lambda$, the set $\{\alpha \in S \mid D_{\alpha} = A \cap \alpha\}$ is stationary.

Exercise 3.7. Show that if λ is an infinite cardinal and $S \subseteq \lambda^+$ is a stationary set. Then $\diamondsuit_{\lambda^+}(S)$ implies $\lambda^+ = |\mathcal{P}(\lambda)| = 2^{\lambda}$.

Lemma 3.12 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 60). Let $S \subseteq \kappa$ be stationary and suppose that $\Diamond_{\kappa}(S)$. Then

$$E_0^{<\kappa} \hookrightarrow_L =_S^2$$

Proof. Let $\langle D_{\alpha} \mid \alpha \in S \rangle$ be a sequence that witnesses $\Diamond_{\kappa}(S)$. For all $\alpha \in S$, let $\eta_{\alpha} : \alpha \to 2$ be the function

$$\eta_{\alpha}(\beta) := \begin{cases} 1 & \text{if } \beta \in D_{\alpha}; \\ 0, & \text{otherwise.} \end{cases}$$

For all $\alpha \in S$ let \mathcal{F}_{α} be the filter $\{Z \subseteq \alpha \mid \exists \beta < \alpha \ (Z \cup \beta = \alpha)\}$, and \sim_{α} the equivalent relation induced by \mathcal{F}_{α} . Define $f: 2^{\kappa} \to 2^{\kappa}$ by:

$$f(\eta)(\alpha) := \begin{cases} 1 & \text{if } \eta_{\alpha} \in [\eta \upharpoonright \alpha]_{\sim_{\alpha}}; \\ 0, & \text{otherwise.} \end{cases}$$

It is clear that f is Lipschitz.

- Suppose $\eta \ E_0^{<\kappa} \ \xi$. Thus there is $\beta < \kappa$ such that for all $\alpha > \beta$, $\eta \upharpoonright \alpha \sim_{\alpha} \xi \upharpoonright \alpha$. Then, for all $\alpha > \beta$, $f(\eta)(\alpha) = f(\xi)(\alpha)$. In particular, for all $\alpha \in S \cap \beta$, so $f(\eta) =_S^2 f(\xi)$.
- Suppose $\neg(\eta \ E_0^{<\kappa} \ \xi)$. There is an unbounded set $S \subseteq \kappa$, such that $\forall \alpha \in A, \ \eta(\alpha) \neq \xi(\alpha)$. So there is a club $C \subseteq \kappa$, such that $A \subseteq C$ and for all $\alpha \in C$, α a limit of C, $\neg(\eta \upharpoonright \alpha \sim_{\alpha} \xi \upharpoonright \alpha)$. Thus $[\eta \upharpoonright \alpha]_{\sim_{\alpha}} \neq [\xi \upharpoonright \alpha]_{\sim_{\alpha}}$. On the other hand, by $\Diamond_{\kappa}(S)$, the set

$$R = \{ \alpha < \kappa \mid \eta \upharpoonright \alpha = \eta_{\alpha} \}$$
$$= \{ \alpha < \kappa \mid (\eta \upharpoonright \alpha)^{-1}[1] = \eta_{\alpha}^{-1}[1] \}$$
$$= \{ \alpha < \kappa \mid \eta^{-1}[1] \cap \alpha = D_{\alpha} \}$$

is stationary. So, for all $\alpha \in C \cap R$, $\eta_{\alpha} \in [\eta \upharpoonright \alpha]_{\sim_{\alpha}}$ and $\eta_{\alpha} \notin [\xi \upharpoonright \alpha]_{\sim_{\alpha}}$. We conclude that for all $\alpha \in C \cap R$, $f(\eta)(\alpha) = 1$ and $f(\eta)(\alpha) = 0$. Since R is stationary, $C \cap R$ is stationary and $f(\eta) \neq_S^2 f(\xi)$.

Definition 3.13. We say that $X \not F$ -reflects with \diamondsuit to S iff $\vec{\mathcal{F}}$ captures clubs and there exists a sequence $\langle Y_{\alpha} \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$, the set $\{\alpha \in S \mid Y_{\alpha} = Y \cap \alpha \& Y \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is stationary. We say that X \mathfrak{f} -reflects with \diamondsuit to S if and only if there exists a sequence $\vec{\mathcal{F}}$ over a stationary subset $S' \subseteq S$ such that $X \not F$ -reflects with \diamondsuit to S'.

Lemma 3.14 (Fernandes-Moreno-Rinot, [3] Claim 2.14.1). Let $X, S \subseteq \kappa$ be stationary sets such that X freflects with \diamondsuit to S. There is $S' \subseteq S$ stationary, a sequence $\langle \eta_{\alpha} \mid \alpha \in S' \rangle$, and $\langle \bar{\mathcal{F}}_{\alpha} \mid \alpha \in S \rangle$ such that, for every stationary $Y \subseteq X$ and every $\eta \in \kappa^{\kappa}$, the set $\{\alpha \in S' \mid \eta_{\alpha} = \eta \mid \alpha \& Y \cap \alpha \in \bar{\mathcal{F}}_{\alpha}\}$ is stationary.

Proof. Let $S'' \subseteq \kappa$, $\vec{\mathcal{F}} = \langle \mathcal{F}_{\alpha} \mid \alpha \in S'' \rangle$ and $\langle Y_{\alpha} \mid \alpha \in S'' \rangle$ witness together that X f-reflects with \diamondsuit to S. Let $S' := \{\alpha \in S'' \mid Y_{\alpha} \in \mathcal{F}_{\alpha}^+\}$. For each $\alpha \in S'$, let $\overline{\mathcal{F}}_{\alpha}$ be the filter over α generated by $\mathcal{F}_{\alpha} \cup \{Y_{\alpha}\}$.

Let C be the set of limit points of X and $B := X \setminus C$, so, C is a club and B is not stationary and has cardinality κ . Let $\{a_{\beta} \mid \beta \in B\}$ be an enumeration of $\kappa^{<\kappa}$. Then, for each $\alpha \in S'$, let $\eta_{\alpha} := (\bigcup \{a_{\beta} \mid \beta \in Y_{\alpha} \cap B\}) \cap (\alpha \times \alpha)$.

Claim 3.15. $\langle \eta_{\alpha} \mid \alpha \in S' \rangle$ is as wanted.

Proof. Let $\eta \in \kappa^{\kappa}$ and $Y \subseteq X$ stationary. Let $f : \kappa \to B$ be the unique function to satisfy that, for all $\epsilon < \kappa$, $a_{f(\epsilon)} = \eta \upharpoonright \epsilon$. Notice that $Y \cap C$ is a stationary subset of X disjoint from $\operatorname{Im}(f)$. In particular, $Y' = (Y \cap C) \cup \operatorname{Im}(f)$ is a stationary subset of X, and hence $G := \{\alpha \in S' \mid Y_{\alpha} = Y' \cap \alpha \& Y' \cap \alpha \in \mathcal{F}_{\alpha}^+\}$ is a stationary subset of S'.

Now, as $\vec{\mathcal{F}}$ captures clubs, let us fix a club $D \subseteq \kappa$ such that, for all $\alpha \in D \cap S'$, $C \cap \alpha \in \mathcal{F}_{\alpha}$. Therefore $T = \{\alpha \in G \cap D \mid f[\alpha] \subseteq \alpha \& \eta[\alpha] \subseteq \alpha\}$ is a stationary subset of S'. Let us show that for all $\alpha \in T$, $\eta_{\alpha} = \eta \upharpoonright \alpha$ and $Y \cap \alpha \in \bar{\mathcal{F}}_{\alpha}$. Let $\alpha \in T$.

- Since $\alpha \in D$, $C \cap \alpha \in \mathcal{F}_{\alpha} \subseteq \bar{\mathcal{F}}_{\alpha}$. Since $\alpha \in G$, $Y' \cap \alpha = Y_{\alpha} \in \bar{\mathcal{F}}_{\alpha}$. Therefore, the intersection $Y' \cap C \cap \alpha$ is in $\bar{\mathcal{F}}_{\alpha}$. But $Y' \cap C \cap \alpha = Y \cap C \cap \alpha$, and hence the superset $Y \cap \alpha$ is in $\bar{\mathcal{F}}_{\alpha}$, as well.
- Since $\alpha \in G$, $Y_{\alpha} = Y' \cap \alpha$ and $Y_{\alpha} \cap B = \text{Im}(f) \cap \alpha$. Since $f[\alpha] \subseteq \alpha$, $f[\alpha] \subseteq Y_{\alpha} \cap B \subseteq \text{Im}(f)$. As $\eta[\alpha] \subseteq \alpha$, we get that $\eta \upharpoonright \alpha = \eta \cap (\alpha \times \alpha)$. Recalling the definition of f and the definition of η_{α} , it follows that $\eta \upharpoonright \alpha \subseteq \eta_{\alpha} \subseteq \eta$, so that $\eta_{\alpha} = \eta \upharpoonright \alpha$.

Exercise 3.8. Prove Lemma 3.16.

Theorem 3.16 (Fernandes-Moreno-Rinot, [3] Theorem 2.14). If X f-reflects with \diamondsuit to S, then $=_X^{\kappa} \hookrightarrow_L =_S^2$. Hint: Similar to Lemma 3.12). Use the previous lemma to guess the equivalence classes.

Exercise 3.9. Suppose $\Diamond_{\kappa}(S)$ holds. Show that the following holds: there is a sequence $\langle f_{\alpha} \mid \alpha \in S \rangle$ such that

- for all $\alpha \in S$, $f_{\alpha} : \alpha \to \alpha$,
- for all $f \in \kappa^{\kappa}$, the set $\{\alpha \in S \mid f_{\alpha} = f \upharpoonright \alpha\}$ is stationary.

Exercise 3.10. Let id_{κ} be the identity relation in the space κ^{κ} . Show that $id_{\kappa} \hookrightarrow_{L} id_{2}$.

3.3 Reflection of Π_2^1 -sentences

In this session we will focus on proving the consistency of κ -Borel* = $\Sigma_1^1(\kappa)$. This was initially proved by Friedman-Hyttinen-Weisnstein in [5].

Theorem 3.17 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 18). If V = L, then κ -Borel* = $\Sigma_1^1(\kappa)$.

We will show another proof which shows that κ -Borel* = $\Sigma_1^1(\kappa)$ holds under certain reflection principle.

A Π_2^1 -sentence ϕ is a formula of the form $\forall X \exists Y \varphi$ where φ is a first-order sentence over a relational language \mathcal{L} as follows:

- \mathcal{L} has a predicate symbol ϵ of arity 2;
- \mathcal{L} has a predicate symbol \mathbb{X} of arity $m(\mathbb{X})$;
- \mathcal{L} has a predicate symbol \mathbb{Y} of arity $m(\mathbb{Y})$;
- \mathcal{L} has infinitely many predicate symbols $(\mathbb{A}_n)_{n\in\omega}$, each \mathbb{A}_n is of arity $m(\mathbb{A}_n)$.

Definition 3.18. A cardinal λ is Π_2^1 -indescribable if for every Π_2^1 -sentence ϕ and a set $A \subseteq V_\lambda$ with $(V_\kappa, \in A) \models \phi$, there is $\alpha < \kappa$ such that $(V_\alpha, \in A \cap \alpha) \models \phi$.

Exercise 3.11. Show that if κ is Π_2^1 -indescernible cardinal, then $Reg(\kappa) = {\alpha < \kappa \mid cf(\alpha) = \alpha}$, the set of regular cardinals below κ , is stationary.

We say that an equivalence relation E is Σ_1^1 -complete if it is a Σ_1^1 equivalence relation and for all Σ_1^1 equivalence relation, R, $R \hookrightarrow_B E$.

Let us show that if κ is Π_2^1 -indescernible cardinal, then $=_{Reg}^{\kappa}$ is a Σ_1^1 -complete equivalence relation.

Theorem 3.19 (Aspero-Hyttinen-Weisnstein(Kulikov)-Moreno, [1] Thm 3.7). If κ is a Π_2^1 -indescribable cardinal, then $=_{Reg}^{\kappa}$ is $\Sigma_1^1(\kappa)$ -complete.

Proof. Let E be a $\Sigma_1^1(\kappa)$ equivalence relation on κ^{κ} . Then there is a closed set C on $\kappa^{\kappa} \times \kappa^{\kappa} \times \kappa^{\kappa}$ such that $\eta \in \xi$ if and only if there exists $\zeta \in \kappa^{\kappa}$ such that $(\eta, \xi, \zeta) \in C$. Let us define $U = \{(\eta \upharpoonright \alpha, \xi \upharpoonright \alpha, \zeta \upharpoonright \alpha) \mid (\eta, \xi, \zeta) \in C \& \alpha < \kappa\}$, and for every $\gamma < \kappa$ define $C_{\gamma} = \{(\eta, \xi, \zeta) \in \gamma^{\gamma} \times \gamma^{\gamma} \times \gamma^{\gamma} \mid \forall \alpha < \gamma \ (\eta \upharpoonright \alpha, \xi \upharpoonright \alpha, \zeta \upharpoonright \alpha) \in U\}$. Let $E_{\gamma} \subset \gamma^{\gamma} \times \gamma^{\gamma}$ be the relation defined by $(\eta, \xi) \in E_{\gamma}$ if and only if there exists $\zeta \in \gamma^{\gamma}$ such that $(\eta, \xi, \zeta) \in C_{\gamma}$. Since E is an equivalence relation, it follows that E_{γ} is reflexive and symmetric, but not necessary transitive. Let $\langle x_i^{\alpha} \mid 0 < i < \kappa \rangle$ be an enumeration fo the equivalence classes of E_{α} , when E_{α} is an equivalence relation. Let us define the reduction by

$$F(\eta)(\alpha) = \begin{cases} i \text{ if } E_{\alpha} \text{ is an equivalence relation}, \eta \upharpoonright \alpha \in \alpha^{\alpha} \text{ and } \eta \in x_{i}^{\alpha} \\ 0 \text{ otherwise.} \end{cases}$$

Let us prove that if $(\eta, \xi) \in E$, then $F(\eta) =_{reg}^{\kappa} F(\xi)$. Suppose $(\eta, \xi) \in E$. Then there is $\zeta \in \kappa^{\kappa}$ such that $(\eta, \xi, \zeta) \in C$ and for all $\alpha < \kappa$ we have that $(\eta \upharpoonright \alpha, \xi \upharpoonright \alpha, \zeta \upharpoonright \alpha) \in U$. On the other hand, we know that there is

a club D such that for all $\alpha \in D \cap Reg(\kappa)$, $\eta \upharpoonright \alpha$, $\xi \upharpoonright \alpha$, $\zeta \upharpoonright \alpha \in \alpha^{\alpha}$. We conclude that for all $\alpha \in D \cap Reg(\kappa)$, if E_{α} is an equivalence relation, then $(\eta, \xi) \in E_{\alpha}$. Therefore, for all $\alpha \in D \cap Reg(\kappa)$, $F(\eta)(\alpha) = F(\xi)(\alpha)$, so $F(\eta) = {\kappa \choose Reg} F(\xi)$. Let us prove that if $(\eta, \xi) \notin E$, then $F(\eta) \neq {\kappa \choose Reg} F(\xi)$. Suppose η , $\xi \in \kappa^{\kappa}$ are such that $(\eta, \xi) \notin E$. We know that there is a club D such that for all $\alpha \in D \cap Reg(\kappa)$, $\eta \upharpoonright \alpha$, $\xi \upharpoonright \alpha \in \alpha^{\alpha}$.

Notice that because C is closed $(\eta, \xi) \notin E$ is equivalent to

$$\forall \zeta \in \kappa^{\kappa} \ (\exists \alpha < \kappa \ (\eta \upharpoonright \alpha, \xi \upharpoonright \alpha, \zeta \upharpoonright \alpha) \notin U),$$

so the sentence $(\eta, \xi) \notin E$ is a Π_1^1 property of the structure $(V_{\kappa}, \in, U, \eta, \xi)$. On the other hand, the sentence $\forall \zeta_1, \zeta_2, \zeta_3 \in \kappa^{\kappa}[((\zeta_1, \zeta_2) \in E \land (\zeta_2, \zeta_3) \in E) \rightarrow (\zeta_1, \zeta_3) \in E]$ is equivalent to the sentence $\forall \zeta_1, \zeta_2, \zeta_3, \theta_1, \theta_2 \in \kappa^{\kappa}[\exists \theta_3 \in \kappa^{\kappa}(\psi_1 \lor \psi_2 \lor \psi_3)]$, where ψ_1, ψ_2 and ψ_3 are, respectively, the formulas $\exists \alpha_1 < \kappa \ (\zeta_1 \upharpoonright \alpha_1, \zeta_2 \upharpoonright \alpha_1, \theta_1 \upharpoonright \alpha_1) \notin U$, $\exists \alpha_2 < \kappa \ (\zeta_2 \upharpoonright \alpha_2, \zeta_3 \upharpoonright \alpha_2, \theta_2 \upharpoonright \alpha_2) \notin U$, and $\forall \alpha_3 < \kappa \ (\zeta_1 \upharpoonright \alpha_3, \zeta_3 \upharpoonright \alpha_3, \theta_3 \upharpoonright \alpha_3) \in U$. Therefore, the sentence $\forall \zeta_1, \zeta_2, \zeta_3 \in \kappa^{\kappa}[((\zeta_1, \zeta_2) \in E \land (\zeta_2, \zeta_3) \in E) \rightarrow (\zeta_1, \zeta_3) \in E]$ is a Π_2^1 property of the structure (V_{κ}, \in, U) . It follows that the sentence

(D is unbounded in
$$\kappa$$
) \wedge ($(\eta, \xi) \notin E$) \wedge (E is an equivalence relation) \wedge (κ is regular)

is a Π_2^1 property of the structure $(V_{\kappa}, \in, U, \eta, \xi)$. By Π_2^1 reflection, we know that there are stationary many $\gamma \in Reg(\kappa)$ such that γ is a limit point of D, E_{γ} is an equivalence relation, and $(\eta \upharpoonright \gamma, \xi \upharpoonright \gamma) \notin E_{\gamma}$. We conclude that there are stationary many $\gamma \in Reg(\kappa)$ such that $f_{\gamma}(\eta) \neq f_{\gamma}(\xi)$, and hence $F(\eta) \neq_{reg}^{\kappa} F(\eta)$

As we can see from the previous theorem, Π_2^1 reflection implies that $=_{Reg}^{\kappa}$ is $\Sigma_1^1(\kappa)$ -complete. Unfortunately $=_{Reg}^{\kappa}$ is not necessarily κ -Borel*. As we saw, $=_{\omega}^{\kappa}$ is a κ -Borel* equivalence relation. Therefore, if there is a Π_2^1 reflection notion on the set $\{\alpha < \kappa \mid cf(\alpha) = \omega\}$, then we conclude that κ -Borel* $= \Sigma_1^1(\kappa)$. Let us define a notion of reflection on ordinals of cofinality ω .

Definition 3.20. For sets N and x, we say that N sees x iff N is transitive, p.r.-closed, and $x \cup \{x\} \subseteq N$.

Suppose that a set N sees an ordinal α , and that $\phi = \forall X \exists Y \varphi$ is a Π_2^1 -sentence, where φ is a first-order sentence in the above-mentioned language \mathcal{L} . For every sequence $(A_n)_{n \in \omega}$ such that, for all $n \in \omega$, $A_n \subseteq \alpha^{m(\mathbb{A}_n)}$, we write

$$\langle \alpha, \in, (A_n)_{n \in \omega} \rangle \models_N \phi$$

to express that the two hold:

- 1. $(A_n)_{n\in\omega}\in N$;
- 2. $\langle N, \in \rangle \models (\forall X \subseteq \alpha^{m(\mathbb{X})})(\exists Y \subseteq \alpha^{m(\mathbb{Y})})[\langle \alpha, \in, X, Y, (A_n)_{n \in \omega} \rangle \models \varphi]$, where:
 - \in is the interpretation of ϵ ;
 - X is the interpretation of X;
 - Y is the interpretation of \mathbb{Y} , and
 - for all $n \in \omega$, A_n is the interpretation of \mathbb{A}_n .

We write α^+ for $|\alpha|^+$, and write $\langle \alpha, \in, (A_n)_{n \in \omega} \rangle \models \phi$ for

$$\langle \alpha, \in, (A_n)_{n \in \omega} \rangle \models_{H_{\alpha^+}} \phi.$$

Definition 3.21. Let κ be a regular and uncountable cardinal, and $S \subseteq \kappa$ stationary. $\mathrm{Dl}_S^*(\Pi_2^1)$ asserts the existence of a sequence $\vec{N} = \langle N_\alpha \mid \alpha \in S \rangle$ satisfying the following:

- 1. for every $\alpha \in S$, N_{α} is a set of cardinality $< \kappa$ that sees α ;
- 2. for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $X \cap \alpha \in N_{\alpha}$;
- 3. whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models \phi$, with ϕ a Π_2^1 -sentence, there are stationarily many $\alpha \in S$ such that $|N_{\alpha}| = |\alpha|$ and $\langle \alpha, \in, (A_n \cap (\alpha^{m(\mathbb{A}_n)}))_{n \in \omega} \rangle \models_{N_{\alpha}} \phi$.

The principle $\mathrm{Dl}_S^*(\Pi_2^1)$ provide us the reflection principle that we need, let us show that there is a Σ_1^1 -complete quasi-order of 2^κ . If Q_1 and Q_2 are quasi-orders on $\mathbb{B}_1, \mathbb{B}_2 \in \{2^\kappa, \kappa^\kappa\}$, respectively, then we say that Q_1 is Borel-reducible to Q_2 if there exists a κ -Borel map $f: \mathbb{B}_1 \to \mathbb{B}_1$ such that for all $\eta, \xi \in 2^\kappa$ we have $\eta Q_1 \xi \iff f(\eta) Q_2 f(\xi)$ and this is also denoted by $Q_1 \hookrightarrow_B Q_2$.

Definition 3.22. Given a stationary subset $S \subseteq \kappa$, we define a quasi-order \subseteq^S over 2^{κ} by letting, for any two elements $\eta : \kappa \to 2$ and $\xi : \kappa \to 2$,

$$\eta \subseteq^S \xi \text{ iff } \{\alpha \in S \mid \eta(\alpha) > \xi(\alpha)\} \text{ is nonstationary.}$$

Lemma 3.23 (Transversal lemma, Fernandes-Moreno-Rinot, [2], Prop 3.1). Suppose that $\langle N_{\alpha} \mid \alpha \in S \rangle$ is a $\mathrm{Dl}_{S}^{*}(\Pi_{2}^{1})$ -sequence, for a given stationary $S \subseteq \kappa$. For every Π_{2}^{1} -sentence ϕ , there exists a transversal $\langle \eta_{\alpha} \mid \alpha \in S \rangle \in \prod_{\alpha \in S} N_{\alpha}$ satisfying the following.

For every $\eta \in \kappa^{\kappa}$, whenever $\langle \kappa, \in, (A_n)_{n \in \omega} \rangle \models \phi$, there are stationarily many $\alpha \in S$ such that

- 1. $\eta_{\alpha} = \eta \upharpoonright \alpha$, and
- 2. $\langle \alpha, \in, (A_n \cap (\alpha^{m(\mathbb{A}_n)}))_{n \in \omega} \rangle \models_{N_\alpha} \phi$.

Exercise 3.12. There is a first-order sentence ψ_{fnc} in the language with binary predicate symbols ϵ and \mathbb{X} such that, for every ordinal α and every $X \subseteq \alpha \times \alpha$,

$$(X \text{ is a function from } \alpha \text{ to } \alpha) \text{ iff } (\langle \alpha, \in, X \rangle \models \psi_{\text{fnc}}).$$

Exercise 3.13. Let α be an ordinal. Suppose that ϕ is a Σ_1^1 -sentence involving a predicate symbol \mathbb{A} and two binary predicate symbols $\mathbb{X}_0, \mathbb{X}_1$. Denote $R_{\phi} := \{(X_0, X_1) \mid \langle \alpha, \in, A, X_0, X_1 \rangle \models \phi \}$. Then there are Π_2^1 -sentences $\psi_{\text{Reflexive}}$ and $\psi_{\text{Transitive}}$ such that:

- 1. $(R_{\phi} \supseteq \{(\eta, \eta) \mid \eta \in \alpha^{\alpha}\})$ iff $(\langle \alpha, \in, A \rangle \models \psi_{\text{Reflexive}})$;
- 2. $(R_{\phi} \text{ is transitive}) \text{ iff } (\langle \alpha, \in, A \rangle \models \psi_{\text{Transitive}}).$

Definition 3.24. Denote by Lev₃(κ) the set of level sequences in $\kappa^{<\kappa}$ of length 3:

$$Lev_3(\kappa) := \bigcup_{\tau < \kappa} \kappa^{\tau} \times \kappa^{\tau} \times \kappa^{\tau}.$$

Fix an injective enumeration $\{\ell_{\delta} \mid \delta < \kappa\}$ of Lev₃(κ). For each $\delta < \kappa$, we denote $\ell_{\delta} = (\ell_{\delta}^{0}, \ell_{\delta}^{1}, \ell_{\delta}^{2})$. We then encode each $T \subseteq \text{Lev}_{3}(\kappa)$ as a subset of κ^{5} via:

$$T_{\ell} := \{ (\delta, \beta, \ell_{\delta}^{0}(\beta), \ell_{\delta}^{1}(\beta), \ell_{\delta}^{2}(\beta)) \mid \delta < \kappa, \ell_{\delta} \in T, \beta \in \text{dom}(\ell_{\delta}^{0}) \}.$$

Theorem 3.25 (Fernandes-Moreno-Rinot, [2], Thm 3.5). Suppose $\mathrm{Dl}_S^*(\Pi_2^1)$ holds for a given stationary $S \subseteq \kappa$. For every analytic quasi-order Q over κ^{κ} , $Q \hookrightarrow_B \subseteq^S$.

Proof. Let Q be an analytic quasi-order over κ^{κ} . Fix a tree T on $\kappa^{<\kappa} \times \kappa^{<\kappa} \times \kappa^{<\kappa}$ such that $Q = \operatorname{pr}([T])$, that is,

$$(\eta, \xi) \in Q \iff \exists \zeta \in \kappa^{\kappa} \ \forall \tau < \kappa \ (\eta \upharpoonright \tau, \xi \upharpoonright \tau, \zeta \upharpoonright \tau) \in T.$$

We shall be working with a first-order language having a 5-ary predicate symbol \mathbb{A} and binary predicate symbols $\mathbb{X}_0, \mathbb{X}_1, \mathbb{X}_2$ and ϵ . By Exercise 3.12, for each i < 3, let us fix a sentence ψ_{fnc}^i concerning the binary predicate symbol \mathbb{X}_i instead of \mathbb{X} , so that

$$(X_i \in \kappa^{\kappa})$$
 iff $(\langle \kappa, \in, A, X_0, X_1, X_2 \rangle \models \psi_{\text{fnc}}^i)$.

Define a sentence φ_Q to be the conjunction of four sentences: $\psi_{\rm fnc}^0$, $\psi_{\rm fnc}^1$, $\psi_{\rm fnc}^2$, and

$$\forall \tau \exists \delta \forall \beta [\epsilon(\beta,\tau) \to \exists \gamma_0 \exists \gamma_1 \exists \gamma_2 (\mathbb{X}_0(\beta,\gamma_0) \land \mathbb{X}_1(\beta,\gamma_1) \land \mathbb{X}_2(\beta,\gamma_2) \land \mathbb{A}(\delta,\beta,\gamma_0,\gamma_1,\gamma_2))].$$

Set $A := T_{\ell}$ as in Definition 3.24. Evidently, for all $\eta, \xi, \zeta \in \mathcal{P}(\kappa \times \kappa)$, we get that

$$\langle \kappa, \in, A, \eta, \xi, \zeta \rangle \models \varphi_O$$

iff the two hold:

- 1. $\eta, \xi, \zeta \in \kappa^{\kappa}$, and
- 2. for every $\tau < \kappa$, there exists $\delta < \kappa$, such that $\ell_{\delta} = (\eta \upharpoonright \tau, \xi \upharpoonright \tau, \zeta \upharpoonright \tau)$ is in T.

Let $\phi_Q := \exists X_2(\varphi_Q)$. Then ϕ_Q is a Σ_1^1 -sentence involving predicate symbols $\mathbb{A}, \mathbb{X}_0, \mathbb{X}_1$ and ϵ for which the induced binary relation

$$R_{\phi_Q} := \{ (\eta, \xi) \in (\mathcal{P}(\kappa \times \kappa))^2 \mid \langle \kappa, \in, A, \eta, \xi \rangle \models \phi_Q \}$$

coincides with the quasi-order Q. Now, appeal to Exercise 3.13 with ϕ_Q to receive the corresponding Π_2^1 -sentences $\psi_{\text{Reflexive}}$ and $\psi_{\text{Transitive}}$. Then, consider the following two Π_2^1 -sentences:

- $\psi_Q^0 := \psi_{\text{Reflexive}} \wedge \psi_{\text{Transitive}} \wedge \phi_Q$, and
- $\psi_Q^1 := \psi_{\text{Reflexive}} \wedge \psi_{\text{Transitive}} \wedge \neg (\phi_Q).$

Let $\vec{N} = \langle N_{\alpha} \mid \alpha \in S \rangle$ be a $\mathrm{Dl}_{S}^{*}(\Pi_{2}^{1})$ -sequence. Appeal to Lemma 3.23 with the Π_{2}^{1} -sentence ψ_{Q}^{1} to obtain a corresponding transversal $\langle \eta_{\alpha} \mid \alpha \in S \rangle \in \prod_{\alpha \in S} N_{\alpha}$. Note that we may assume that, for all $\alpha \in S$, $\eta_{\alpha} \in {}^{\alpha}\alpha$, as this does not harm the key feature of the chosen transversal.

For each $\eta \in \kappa^{\kappa}$, let

$$Z_{\eta} := \{ \alpha \in S \mid A \cap \alpha^5 \text{ and } \eta \upharpoonright \alpha \text{ are in } N_{\alpha} \}.$$

Claim 3.26. Suppose $\eta \in \kappa^{\kappa}$. Then $S \setminus Z_{\eta}$ is nonstationary.

Proof. Fix primitive-recursive bijections $c: \kappa^2 \leftrightarrow \kappa$ and $d: \kappa^5 \leftrightarrow \kappa$. Given $\eta \in \kappa^{\kappa}$, consider the club D_0 of all $\alpha < \kappa$ such that:

- $\eta[\alpha] \subseteq \alpha$;
- $c[\alpha \times \alpha] = \alpha;$
- $d[\alpha \times \alpha \times \alpha \times \alpha \times \alpha] = \alpha$.

Now, as $c[\eta]$ is a subset of κ , by the choice \vec{N} , we may find a club $D_1 \subseteq \kappa$ such that, for all $\alpha \in D_1 \cap S$, $c[\eta] \cap \alpha \in N_\alpha$. Likewise, we may find a club $D_2 \subseteq \kappa$ such that, for all $\alpha \in D_2 \cap S$, $d[A] \cap \alpha \in N_\alpha$.

For all $\alpha \in S \cap D_0 \cap D_1 \cap D_2$, we have

- $c[\eta \upharpoonright \alpha] = c[\eta \cap (\alpha \times \alpha)] = c[\eta] \cap c[\alpha \times \alpha] = c[\eta] \cap \alpha \in N_{\alpha}$, and
- $d[A \cap \alpha^5] = d[A] \cap d[\alpha^5] = d[A] \cap \alpha \in N_\alpha$.

As N_{α} is p.r.-closed, it then follows that $\eta \upharpoonright \alpha$ and $A \cap \alpha^5$ are in N_{α} . Thus, we have shown that $S \setminus Z_{\eta}$ is disjoint from the club $D_0 \cap D_1 \cap D_2$.

For all $\eta \in \kappa^{\kappa}$ and $\alpha \in Z_{\eta}$, let:

$$\mathcal{P}_{\eta,\alpha} := \{ p \in \alpha^{\alpha} \cap N_{\alpha} \mid \langle \alpha, \in, A \cap \alpha^{5}, p, \eta \upharpoonright \alpha \rangle \models_{N_{\alpha}} \psi_{Q}^{0} \}.$$

Finally, define a function $f: \kappa^{\kappa} \to 2^{\kappa}$ by letting, for all $\eta \in \kappa^{\kappa}$ and $\alpha < \kappa$,

$$f(\eta)(\alpha) := \begin{cases} 1, & \text{if } \alpha \in Z_{\eta} \text{ and } \eta_{\alpha} \in \mathcal{P}_{\eta,\alpha}; \\ 0, & \text{otherwise.} \end{cases}$$

Exercise 3.14. f is Borel.

Claim 3.27. Suppose $(\eta, \xi) \in Q$. Then $f(\eta) \subseteq^S f(\xi)$.

Proof. As $(\eta, \xi) \in Q$, let us fix $\zeta \in \kappa^{\kappa}$ such that, for all $\tau < \kappa$, $(\eta \upharpoonright \tau, \xi \upharpoonright \tau, \zeta \upharpoonright \tau) \in T$. Define a function $g : \kappa \to \kappa$ by letting, for all $\tau < \kappa$,

$$g(\tau) := \min\{\delta < \kappa \mid \ell_{\delta} = (\eta \upharpoonright \tau, \xi \upharpoonright \tau, \zeta \upharpoonright \tau)\}.$$

As $(S \setminus Z_{\eta})$, $(S \setminus Z_{\xi})$ and $(S \setminus Z_{\zeta})$ are nonstationary, let us fix a club $C \subseteq \kappa$ such that $C \cap S \subseteq Z_{\eta} \cap Z_{\xi} \cap Z_{\zeta}$. Consider the club $D := \{\alpha \in C \mid g[\alpha] \subseteq \alpha\}$. We shall show that, for every $\alpha \in D \cap S$, if $f(\eta)(\alpha) = 1$ then $f(\xi)(\alpha) = 1$.

Fix an arbitrary $\alpha \in D \cap S$ satisfying $f(\eta)(\alpha) = 1$. In effect, the following three conditions are satisfied:

- 1. $\langle \alpha, \in, A \cap \alpha^5 \rangle \models_{N_\alpha} \psi_{\text{Reflexive}},$
- 2. $\langle \alpha, \in, A \cap \alpha^5 \rangle \models_{N_{\alpha}} \psi_{\text{Transitive}}$, and
- 3. $\langle \alpha, \in, A \cap \alpha^5, \eta_\alpha, \eta \upharpoonright \alpha \rangle \models_{N_\alpha} \phi_Q$.

In addition, since α is a closure point of g, by definition of φ_Q , we have

$$\langle \alpha, \in, A \cap \alpha^5, \eta \upharpoonright \alpha, \xi \upharpoonright \alpha, \zeta \upharpoonright \alpha \rangle \models \varphi_Q.$$

As $\alpha \in S$ and φ_Q is first-order,

$$\langle \alpha, \in, A \cap \alpha^5, \eta \upharpoonright \alpha, \xi \upharpoonright \alpha, \zeta \upharpoonright \alpha \rangle \models_{N_{\pi}} \varphi_{O},$$

so that, by definition of ϕ_Q ,

$$\langle \alpha, \in, A \cap \alpha^5, \eta \upharpoonright \alpha, \xi \upharpoonright \alpha \rangle \models_{N_{\alpha}} \phi_{Q}.$$

By combining the preceding with clauses (2) and (3) above, we infer that the following holds, as well:

(4)
$$\langle \alpha, \in, A \cap \alpha^5, \eta_\alpha, \xi \upharpoonright \alpha \rangle \models_{N_\alpha} \phi_Q$$
.

Altogether, $f(\xi)(\alpha) = 1$, as sought.

Claim 3.28. Suppose $(\eta, \xi) \in \kappa^{\kappa} \times \kappa^{\kappa} \setminus Q$. Then $f(\eta) \not\subseteq^S f(\xi)$.

Proof. As $(S \setminus Z_{\eta})$ and $(S \setminus Z_{\xi})$ are nonstationary, let us fix a club $C \subseteq \kappa$ such that $C \cap S \subseteq Z_{\eta} \cap Z_{\xi}$. As Q is a quasi-order and $(\eta, \xi) \notin Q$, we have:

- 1. $\langle \kappa, \in, A \rangle \models \psi_{\text{Reflexive}},$
- 2. $\langle \kappa, \in, A \rangle \models \psi_{\text{Transitive}}$, and
- 3. $\langle \kappa, \in, A, \eta, \xi \rangle \models \neg(\phi_O)$.

so that, altogether,

$$\langle \kappa, \in, A, \eta, \xi \rangle \models \psi_Q^1$$
.

Then, by the choice of the transversal $\langle \eta_{\alpha} \mid \alpha \in S \rangle$, there is a stationary subset $S' \subseteq S \cap C$ such that, for all $\alpha \in S'$:

- 1. $\langle \alpha, \in, A \cap \alpha^5 \rangle \models_{N_\alpha} \psi_{\text{Reflexive}}$
- 2. $\langle \alpha, \in, A \cap \alpha^5 \rangle \models_{N_\alpha} \psi_{\text{Transitive}}$
- 3. $\langle \alpha, \in, A \cap \alpha^5, \eta \upharpoonright \alpha, \xi \upharpoonright \alpha \rangle \models_{N_{\alpha}} \neg (\phi_Q)$, and
- 4. $\eta_{\alpha} = \eta \upharpoonright \alpha$.

By Clauses (3') and (4'), we have that $\eta_{\alpha} \notin \mathcal{P}_{\xi,\alpha}$, so that $f(\xi)(\alpha) = 0$.

By Clauses (1'), (2') and (4'), we have that $\eta_{\alpha} \in \mathcal{P}_{\eta,\alpha}$, so that $f(\eta)(\alpha) = 1$.

Altogether, $\{\alpha \in S \mid f(\eta)(\alpha) > f(\xi)(\alpha)\}\$ covers the stationary set S', so that $f(\eta) \not\subseteq^S f(\xi)$.

This completes the proof of Theorem 3.25

Corollary 3.29. Suppose $\mathrm{Dl}_S^*(\Pi_2^1)$ holds for a given stationary $S\subseteq\kappa$.

For every analytic equivalence relation E over κ^{κ} , $E \hookrightarrow_B = \frac{2}{S}$.

As we have seen, the equivalence relations $=_{\mu}^{\kappa}$ and $=_{\mu}^{2}$ play a crucial role. It is clear that $\mathrm{Dl}_{\mu}^{*}(\Pi_{2}^{1})$ implies $=_{\mu}^{\kappa} \hookrightarrow_{B} =_{\mu}^{2}$.

Question 3.30. Is $=_{\mu}^{\kappa} \hookrightarrow_B =_{\mu}^2$ a theorem of ZFC?

4 The Isomorphism relation

Denote by $S^m(A)$ the set of all consistent types over A in m variables (modulo change of variables), and $S(A) = \bigcup_{m < \omega} S^m(A)$.

- We say that T is ξ -stable if for any set A, $|A| \leq \xi$, $|S(A)| \leq \xi$.
- We say that T is stable if there is an infinite ξ , such that T is ξ -stable.
- We say that T is unstable if there is no infinite ξ , such that T is ξ -stable.
- We say that T is superstable is there is an infinite ξ such that for all $\xi' > \xi$, T is ξ' -stable.

Definition 4.1 (OTOP). A theory T has the omitting type order property (OTOP) if there is a sequence $(\varphi_m)_{m<\omega}$ of first order formulas such that for every linear order l there is a model \mathcal{M} and n-tuples a_t $(t \in l)$ of members of \mathcal{M} , $n < \omega$, such that s < t if and only if there is a k-tuple c of members of \mathcal{M} , $k < \omega$, such that for every $m < \omega$,

$$\mathcal{M} \models \varphi_m(c, a_s, a_t).$$

The non-forking notion \downarrow and the isolation notion F^a_ω (Chapter 4 [19]) are needed to define the DOP.

Definition 4.2 (DOP). A theory T has the dimensional order property (DOP) if there are F_{ω}^a -saturated models $(M_i)_{i<3}$, $M_0 \subseteq M_1 \cap M_2$, $M_1 \downarrow_{M_0} M_2$, and the F_{ω}^a -prime model over $M_1 \cup M_2$ is not F_{ω}^a -minimal over $M_1 \cup M_2$.

Definition 4.3.

- We say that T is classifiable if T is superstable without DOP and without OTOP. These theories are diveded into:
 - shallow;
 - non-shallow (deep).
- We say that T is non-classifiable if it satisfies one of the following:
 - 1. T is stable unsuperstable;
 - 2. T is superstable and has DOP:
 - 3. T is superstable and has OTOP;
 - 4. T is unstable.

Theorem 4.4 (Main Gap, Shelah [19, XII, Theorem 6.1]). Let T be a first order countable complete theory and denote by $I(\lambda, T)$ the number of non-isomorphic models of T of size λ .

- 1. If T is not superstable or (is superstable) deep or has the DOP or has the OTOP, then for every uncountable λ , $I(\lambda,T)=2^{\lambda}$.
- 2. If T is shallow superstable without the DOP and without the OTOP (i.e. classifiable and shallow), then for every $\alpha > 0$, $I(\aleph_{\alpha}, T) < \beth_{\omega_1}(|\alpha|)$.

Theorem 4.5 (Morley's Conjecture, Shelah [19, XIII, Theorem 3.7]). Let T be a countable complete first-order theory. Then for $\lambda > \mu \geq \aleph_0$, $I(\lambda, T) \geq I(\mu, T)$ except when $\lambda > \mu = \aleph_0$, T is complete, \aleph_1 -categorical not \aleph_0 -categorical.

4.1 Coding structures

We can code structures of any size (not bigger than κ) with elements of κ^{κ} .

Definition 4.6. Let $\omega \leq \mu \leq \kappa$ be a cardinal and $\mathbb{L} = \{Q_m \mid m \in \omega\}$ be a countable relational language. Fix a bijection π_{μ} between $\mu^{<\omega}$ and μ . For every $\eta \in \kappa^{\kappa}$ define the structure $\mathcal{A}_{\eta \mid \mu}$ with domain μ as follows: For every tuple (a_1, a_2, \ldots, a_n) in μ^n

$$(a_1, a_2, \ldots, a_n) \in Q_m^{\mathcal{A}_{\eta \upharpoonright \mu}} \Leftrightarrow Q_m \text{ has arity } n \text{ and } \eta(\pi_{\mu}(m, a_1, a_2, \ldots, a_n)) > 0.$$

Notice that the structure $\mathcal{A}_{\eta} \upharpoonright \alpha$ is not necessary coded by the function $\eta \upharpoonright \alpha$.

Exercise 4.1. There is a club C_{π} such that for all $\alpha \in C_{\pi}$, $A_{\eta} \upharpoonright \alpha = A_{\eta \upharpoonright \alpha}$

For every first-order theory in a relational countable language (not necessarily complete), we have coded the models of T of size $\mu \leq \kappa$ in the GBS, κ^{κ} . In the same way we can define these structures in the GCS, 2^{κ} .

Definition 4.7. Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language. We define the isomorphism relation of models of size μ , $\cong_T^{\mu} \subseteq \kappa^{\kappa} \times \kappa^{\kappa}$, as the relation

$$\{(\eta, \xi) | (\mathcal{A}_{\eta \upharpoonright \mu} \models T, \mathcal{A}_{\xi \upharpoonright \mu} \models T, \mathcal{A}_{\eta \upharpoonright \mu} \cong \mathcal{A}_{\xi \upharpoonright \mu}) \text{ or } (\mathcal{A}_{\eta \upharpoonright \mu} \not\models T, \mathcal{A}_{\xi \upharpoonright \mu} \not\models T) \}$$

Let us denote by \cong_T the isomorphism relation of models of size κ of T (i.e. \cong_T^{κ}). To simplify notation we will refer to \cong_T as the isomorphism relation of T. We will also denote by \mathcal{A}_{η} the structure $\mathcal{A}_{\eta \mid \kappa}$, for obvious reasons.

Exercise 4.2. Let T be a first-order theory in a relational countable language. Show that the isomorphism relation of T, \cong_T , in the space κ^{κ} is continuous reducible to the isomorphism relation of T in 2^{κ} .

Exercise 4.3. Prove Proposition 4.8.

Proposition 4.8 (Moreno, [16] Proposition 5.28). Let $\omega < \mu < \delta \le \kappa$ be cardinals. For all first-order countably theory in a relational countable language T, not necessarily complete,

$$\cong^{\mu}_{T} \hookrightarrow_{c} \cong^{\delta}_{T}$$
.

(Hint: Use Theorem 4.5 and $\kappa^{<\kappa} = \kappa$.

Exercise 4.4. Prove 4.9.

Proposition 4.9 (Moreno, [16] Proposition 5.30). Let $\kappa = \aleph_{\gamma}$ be such that $\beth_{\omega_1}(|\gamma|) \le \kappa$ and $\kappa = \lambda^+ = 2^{\lambda}$. Suppose T_1 is classifiable shallow, T_2 classifiable non-shallow, and T_3 non-classifiable. Then

$$\cong_{T_1} \hookrightarrow_B 0_{\kappa} \hookrightarrow_L \cong_{T_3}^{\lambda} \hookrightarrow_c \cong_{T_2}.$$

(Hint: Use Theorem 4.4).

4.2 The Ehrenfeucht-Fraïssé game

Let su denote by $\mathcal{P}_{\kappa}(\kappa)$ the set of subsets of κ of size less than κ .

Definition 4.10 (The Ehrenfeucht-Fraissé game). Fix an enumeration $\{X_{\gamma}\}_{{\gamma}<\kappa}$ of the elements of $\mathcal{P}_{\kappa}(\kappa)$ and an enumeration $\{f_{\gamma}\}_{{\gamma}<\kappa}$ of all the functions with both the domain and range in $\mathcal{P}_{\kappa}(\kappa)$. For every pair of structures \mathcal{A} and \mathcal{B} with domain κ , the $\mathrm{EF}^{\alpha}_{\omega}(\mathcal{A},\mathcal{B})$ is a game played by players \mathbf{I} and \mathbf{II} as follows.

In the n-th move, first \mathbf{I} chooses an ordinal $\beta_n < \kappa$ such that $X_{\beta_{n-1}} \subseteq X_{\beta_n}$. Then \mathbf{II} chooses an ordinal $\theta_n < \kappa$ such that $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap ran(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$ (if n = 0 then $X_{\beta_{n-1}} = \emptyset$ and $f_{\theta_{n-1}} = \emptyset$). The game finishes after ω moves. The player \mathbf{II} wins if $\bigcup_{i < \omega} f_{\theta_i} : A \to B$ is a partial isomorphism. Otherwise the player \mathbf{I} wins.

Definition 4.11 (Restricted game). For every $\alpha \leq \kappa$ the game $\mathrm{EF}^{\alpha}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ on the restrictions $\mathcal{A} \upharpoonright \alpha$ and $\mathcal{B} \upharpoonright \alpha$ of the structures \mathcal{A} and \mathcal{B} with domain κ is defined as follows:

In the n-th move, first \mathbf{I} chooses an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha$ and $X_{\beta_{n-1}} \subseteq X_{\beta_n}$. Then \mathbf{II} chooses an ordinal $\theta_n < \alpha$ such that $dom(f_{\theta_n}), ran(f_{\theta_n}) \subset \alpha$, $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap ran(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$ (if n = 0 then $X_{\beta_{n-1}} = \emptyset$ and $f_{\theta_{n-1}} = \emptyset$). The game ends after ω moves. Player \mathbf{II} wins if $\bigcup_{i < \omega} f_{\theta_i} : A \upharpoonright_{\alpha} \to B \upharpoonright_{\alpha}$ is a partial isomorphism. Otherwise player \mathbf{I} wins. If $\alpha = \kappa$ then this is the same as the standard EF-game which is usually denoted by $\mathrm{EF}_{\omega}^{\kappa}$.

We will write $\mathbf{I} \uparrow \mathrm{EF}^{\alpha}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ when \mathbf{I} has a winning strategy in the game $\mathrm{EF}^{\alpha}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$. Similarly for \mathbf{II} .

Lemma 4.12 (Hyttinen-Moreno, [9] Lemma 2.4). If \mathcal{A} and \mathcal{B} are structures with domain κ , then the following hold:

- II $\uparrow \text{EF}^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \exists C \subseteq \kappa \text{ a club, such that } \text{II} \uparrow \text{EF}^{\alpha}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}) \text{ for all } \alpha \in C.$
- $\mathbf{I} \uparrow \mathrm{EF}^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \exists C \subseteq \kappa \ a \ club, \ such \ that \ \mathbf{I} \uparrow \mathrm{EF}^{\alpha}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha}) \ for \ all \ \alpha \in C.$

Proof. It is easy to see that if $\sigma : \kappa^{<\omega} \to \kappa$ is a winning strategy for **II** in the game $\mathrm{EF}^{\kappa}_{\omega}(\mathcal{A} \upharpoonright \kappa, \mathcal{B} \upharpoonright \kappa)$, then $\sigma \upharpoonright \alpha^{<\alpha}$ is a winning strategy for **II** in the game $\mathrm{EF}^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ if $\sigma[\alpha^{<\alpha}] \subseteq \alpha$. So **II** $\uparrow \mathrm{EF}^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for α a closed point of σ .

We conclude that if $\mathbf{II} \uparrow \mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright \kappa, \mathcal{B} \upharpoonright \kappa)$, then $\mathbf{II} \uparrow \mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α . The same holds for \mathbf{I} . To show the other direction, notice that $\mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright \kappa, \mathcal{B} \upharpoonright \kappa)$ is a determined game, so if \mathbf{II} doesn't have a winning strategy, then \mathbf{I} has a winning strategy. Therefore, if \mathbf{II} doesn't have a winning strategy in the game $\mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright \kappa, \mathcal{B} \upharpoonright \kappa)$, then $\mathbf{I} \uparrow \mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α , and \mathbf{II} cannot have a winning strategy in $\mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Definition 4.13. Assume T is a complete first order theory in a countable vocabulary. For every $\alpha < \kappa$ and $\eta, \xi \in \kappa^{\kappa}$, we write η $R_{EF}^{\alpha} \xi$ if one of the following holds, $A_{\eta} \upharpoonright_{\alpha} \not\models T$ and $A_{\xi} \upharpoonright_{\alpha} \not\models T$, or $A_{\eta} \upharpoonright_{\alpha} \models T$, $A_{\xi} \upharpoonright_{\alpha} \models T$ and $\mathbf{II} \uparrow EF_{\omega}^{\kappa}(A_{\eta} \upharpoonright_{\alpha}, A_{\xi} \upharpoonright_{\alpha})$.

Lemma 4.14 (Hyttinen-Moreno, [9] Lemma 2.7). For every complete first order theory T in a countable vocabulary, there are club many α such that R_{EF}^{α} is an equivalence relation.

Proof. Define the following functions:

- $h_1: \kappa \to \kappa$, $h_1(\alpha) = \gamma$ where f_{γ} is the identity function of X_{α} .
- $h_2: \kappa \to \kappa$, $h_2(\alpha) = \gamma$ where $f_{\alpha}^{-1} = f_{\gamma}$.
- $h_3: \kappa^2 \to \kappa$, $h_3(\alpha, \beta) = X_\alpha \cup X_\beta = X_\gamma$.
- $h_4: \kappa \to \kappa, h_4(\alpha) = rang(f_\alpha) = X_\gamma.$
- $h_5: \kappa \to \kappa, h_5(\alpha) = dom(f_\alpha) = X_\gamma.$
- $h_6: \kappa^2 \to \kappa$, $h_6(\alpha, \beta) = \gamma$ where $f_\alpha \circ f_\beta = f_\gamma$, $f_\alpha \circ f_\beta$ is defined on the set $f_\beta^{-1}[rang(f_\beta) \cap dom(f_\alpha)]$.

Each of these functions defines a club,

- $C_i = \{ \gamma < \kappa | \forall \alpha < \gamma (h_i(\alpha) < \gamma) \}$ for $i \in \{1, 2, 4, 5\}$.
- $C_i = \{ \gamma < \kappa | \forall \beta, \alpha < \gamma (h_i(\alpha, \beta) < \gamma) \} \text{ for } i \in \{3, 6\}.$

Denote by C the club $\bigcap_{i=1}^{6} C_i$. We will show that for every $\alpha \in C$, R_{EF}^{α} is an equivalence relation.

By definition η $R_{EF}^{\alpha} \xi$ implies that either both \mathcal{A}_{η} and \mathcal{A}_{ξ} are models of T or non of them is a model of T. Thus $R_{EF}^{\alpha} = R^{-} \cup R^{+}$, where R^{-} is the restriction of R_{EF}^{α} to the set $A = \{ \eta \in \kappa | \mathcal{A}_{\eta} \not\models T \}$ and R^{+} is the restriction of R_{EF}^{α} to the complement of A. Since $R^{-} \cap R^{+} = \emptyset$, it is enough to prove that R^{-} and R^{+} are equivalence relations.

By definition it is easy to see that $R^- = A \times A$, therefore R^- is an equivalence relation. Now we will prove that R^+ is an equivalence relation.

Reflexivity

By the way C_1 was defined, for every $\beta < \alpha$, $h_1(\beta) < \alpha$ and $f_{h_1(\beta)}$ is the identity function of X_{β} . Therefore, the function $\sigma((\beta_0, \beta_1, \dots, \beta_n)) = h_1(\beta_n)$ is a winning strategy for **II** in the game $\mathrm{EF}_{\omega}^{\kappa}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\eta} \upharpoonright_{\alpha})$.

Symmetry

Let σ be a winning strategy for \mathbf{II} in the game $\mathrm{EF}_{\omega}^{\kappa}(\mathcal{A}_{\eta}\upharpoonright_{\alpha},\mathcal{A}_{\xi}\upharpoonright_{\alpha})$. Since $\alpha\in C_2$ and $\sigma((\beta_0,\beta_1,\ldots,\beta_n))<\alpha$, we know that $h_2(\sigma((\beta_0,\beta_1,\ldots,\beta_n)))<\alpha$. Notice that if $\cup_{i<\omega}f_{\theta_i}:\alpha\to\alpha$ is a partial isomorphism from $\mathcal{A}_{\eta}\upharpoonright_{\alpha}$ to $\mathcal{A}_{\xi}\upharpoonright_{\alpha}$, then $\cup_{i<\omega}f_{h_2(\theta_i)}=\cup_{i<\omega}f_{\theta_i}^{-1}$ is a partial isomorphism from $\mathcal{A}_{\xi}\upharpoonright_{\alpha}$ to $\mathcal{A}_{\eta}\upharpoonright_{\alpha}$. Therefore, the function $\sigma'((\beta_0,\beta_1,\ldots,\beta_n))=h_2(\sigma((\beta_0,\beta_1,\ldots,\beta_n)))$ is a winning strategy for \mathbf{II} in the game $\mathrm{EF}_{\omega}^{\kappa}(\mathcal{A}_{\xi}\upharpoonright_{\alpha},\mathcal{A}_{\eta}\upharpoonright_{\alpha})$.

Transitivity

Let σ_1 and σ_2 be two winning strategies for **II** on the games $\mathrm{EF}^{\kappa}_{\omega}(\mathcal{A}_{\eta}\upharpoonright_{\alpha},\mathcal{A}_{\xi}\upharpoonright_{\alpha})$ and $\mathrm{EF}^{\kappa}_{\omega}(\mathcal{A}_{\xi}\upharpoonright_{\alpha},\mathcal{A}_{\zeta}\upharpoonright_{\alpha})$, respectively.

For a given tuple $(\beta_0, \beta_1, \dots, \beta_n)$ let us construct by induction the tuples $(\gamma_0, \gamma_1, \dots, \gamma_n), (\beta'_0, \beta'_1, \dots, \beta'_{2n}, \beta'_{2n+1}),$ and the functions $f_{(1,n)}$, g_n and $f_{(2,n)}$:

- 1. Let $\beta'_0 = \beta_0$ and for i > 0, let β'_{2i} be the least ordinal such that $X_{\beta'_{2i-1}} \cup X_{\beta_i} = X_{\beta'_{2i}}$.
- 2. $f_{(1,i)} := f_{\sigma_1((\beta'_0, \beta'_1, \dots, \beta'_{2i-1}, \beta'_{2i}))}$
- 3. γ_i is the ordinal such that $X_{\gamma_i} = rang(f_{(1,i)})$.
- 4. $g_i := f_{\sigma_2((\gamma_0, \gamma_1, ..., \gamma_i))}$.
- 5. β'_{2i+1} is the ordinal such that $X_{\beta'_{2i+1}} = dom(g_i)$.
- 6. $f_{(2,i)} := f_{\sigma_1((\beta'_0, \beta'_1, \dots, \beta'_{2i}, \beta'_{2i+1}))}$.

Define the function $\sigma: \alpha^{<\omega} \to \alpha$ by $\sigma((\beta_0, \beta_1, \dots, \beta_n)) = \theta_n$, where θ_n is the ordinal such that $f_{\theta_n} = g_n \circ (f_{(2,n)} \upharpoonright f_{(2,n)}^{-1} [dom(g_n)])$. It is easy to check that for every n, the tuples $(\gamma_0, \gamma_1, \dots, \gamma_n)$ and $(\beta'_0, \beta'_1, \dots, \beta'_{2n+1})$ are elements of $\alpha^{<\omega}$, and the functions $f_{(1,n)}$, g_n , $f_{(2,n)}$ and f_{θ_n} are well defined; it is also easy to check that $\sigma((\beta_0, \beta_1, \dots, \beta_n))$ is a valid move.

Let us show that $\bigcup_{n<\omega} f_{\theta_n}$ is a partial isomorphism. It is clear that $rang(f_{(2,n)}) \subseteq rang(f_{(1,n+1)})$. By 3 and 4 in the induction, we can conclude that $rang(f_{(2,n)})$ is a subset of $dom(g_{n+1})$. Then $rang(\bigcup_{n<\omega} (f_{(2,n)})) \subseteq dom(\bigcup_{n<\omega} (g_n))$, so

$$\cup_{n<\omega}(g_n\circ (f_{(2,n)}\upharpoonright_{f_{(2,n)}^{-1}[dom(g_n)]}))=\cup_{n<\omega}(g_n)\circ \cup_{n<\omega}(f_{(2,n)}).$$

Since σ_1 and σ_2 are winning strategies, we know that $\bigcup_{n<\omega}(g_n)$ and $\bigcup_{n<\omega}(f_{(2,n)})$ are partial isomorphism. Therefore $\bigcup_{n<\omega}f_{\theta_n}$ is a partial isomorphism and σ is a winning strategy for **II** on the game $\mathrm{EF}^{\kappa}_{\omega}(\mathcal{A}_{\eta}\upharpoonright_{\alpha},\mathcal{A}_{\zeta}\upharpoonright_{\alpha})$.

Corollary 4.15. Suppose $\eta, \xi \in \kappa^{\kappa}$. Then the following hold:

- $\eta \ R_{EF}^{\kappa} \ \xi \Longleftrightarrow \exists C \subseteq \kappa \ a \ club, \ such \ that \ \eta \ R_{EF}^{\alpha} \ \xi \ for \ all \ \alpha \in C.$
- $\neg(\eta \ R_{EF}^{\alpha} \ \xi) \Longleftrightarrow \exists C \subseteq \kappa \ a \ club, \ such \ that \ \neg(\eta \ R_{EF}^{\alpha} \ \xi) \ for \ all \ \alpha \in C.$

4.3 Classifiable theories

The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 4.16 (Shelah, [19], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T that are $L_{\infty,\kappa}$ -equivalent are isomorphic.

Theorem 4.17 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 10). $L_{\infty,\kappa}$ -equivalence is equivalent to EF_{ω}^{κ} -equivalence.

From these two theorems we know that if T is a classifiable theory, then for any \mathcal{A} and \mathcal{B} models of T with domain κ ,

$$\mathbf{II} \uparrow \mathrm{EF}^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \Longleftrightarrow \mathcal{A} \cong \mathcal{B}$$
$$\mathbf{I} \uparrow \mathrm{EF}^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \Longleftrightarrow \mathcal{A} \ncong \mathcal{B}.$$

Theorem 4.18 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 70). If T is a classifiable theory, then \cong_T is $\Delta^1_1(\kappa)$.

Proof. Notice that the EF^{κ}_{ω} game can be coded as a κ -Borel* game taking at the leaves the open sets given by partial isomorphisms.

From Lemma 4.12, we know the following two hold for any \mathcal{A} and \mathcal{B} models of a classifiable theory (with domain κ):

- $\mathcal{A} \cong \mathcal{B} \iff \mathbf{II} \uparrow \mathrm{EF}_{\omega}^{\kappa}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .
- $\mathcal{A} \ncong \mathcal{B} \iff \mathbf{I} \uparrow \mathrm{EF}^{\kappa}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Clearly R_{EF}^{κ} coincide with \cong_T when T is classifiable. So

- $\eta \cong_T^{\kappa} \xi \iff \exists C \subseteq \kappa \text{ a club, such that } \eta R_{EF}^{\alpha} \xi \text{ for all } \alpha \in C.$
- $\neg(\eta \cong_T^{\alpha} \xi) \Longleftrightarrow \exists C \subseteq \kappa \text{ a club, such that } \neg(\eta R_{EF}^{\alpha} \xi) \text{ for all } \alpha \in C.$

Theorem 4.19 (Hyttinen-Moreno, [9] Theorem 2.8). Assume T is a countable complete classifiable theory over a countable vocabulary, $S \subseteq \kappa$ a stationary set, and μ a regular cardinal. Then $\cong_T^{\kappa} \hookrightarrow_L =_S^{\kappa}$.

Proof. It follows from the approximation lemma (Lemma 2.19), Lemma 4.14, and Lemma 4.12. \Box

Exercise 4.5. Prove Theorem 4.20.

Theorem 4.20 (Hyttinen-Weisnstein(Kulikov)-Moreno, [7] Lemma 2). Assume T is a countable complete classifiable theory over a countable vocabulary. Let $S \subseteq \kappa$ a stationary set. If \diamondsuit_S holds, then $\cong_T^{\kappa} \hookrightarrow_L =_S^2$.

5 Further results

5.1 Borel sets, Δ_1^1 sets, Borel* sets and Σ_1^1 sets

Theorem 5.1 (Hyttinen-Weisnstein(Kulikov), [6], Corollary 3.2). It is consistent that $\Delta_1^1(\kappa) \subsetneq \kappa$ -Bore $l^* \subsetneq \Sigma_1^1(\kappa)$.

Lemma 5.2 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Corollary 14). The set $\{(\eta, \xi) \in \kappa^{\kappa} \times \kappa^{\kappa} \mid \mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}\}$ is $\Sigma_{1}^{1}(\kappa)$.

Theorem 5.3 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 24). A set $B \subseteq \kappa^{\kappa}$ is κ -Borel and closed under permutations if and only if there is a sentence φ in $L_{\kappa^{+}\kappa}$ such that $B = \{ \eta \in \kappa^{\kappa} \mid \mathcal{A}_{\eta} \models \varphi \}$.

Theorem 5.4 (Friedman-Hyttinen-Kulikov).

- 1. Let $\kappa^{<\kappa} = \kappa > 2^{\omega}$. If T is classifiable and shallow, then \cong_T is κ -Borel. ([5], Theorem 68)
- 2. If T is classifiable non-shallow, then \cong_T is $\Delta_1^1(\kappa)$ not κ -Borel. ([5], Theorem 69 and 70)
- 3. If T is unstable or stable with the OTOP or superstable with the DOP and $\kappa > \omega_1$, then \cong_T is not $\Delta_1^1(\kappa)$. ([5], Theorem 71)
- 4. If T is stable unsuperstable, then \cong_T is not κ -Borel. ([5], Theorem 72)

5.2 Non-reducible results

Theorem 5.5 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 52). Assume GCH, $\mu < \kappa$ a regular cardinal such that if $\kappa = \lambda^+$, then $\mu \leq cf(\lambda)$. Then in a cofinality and GCH preserving forcing extension, there stationary sets $K(A) \subseteq S^{\kappa}_{\mu}$ for each $A \subseteq \kappa$ such that $= {\kappa \choose K(A)} \not\hookrightarrow B = {\kappa \choose K(B)}$ if and only if $A \not\subseteq B$.

Theorem 5.6 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 56). For a cardinal κ which is a successor of a regular cardinal or it is inaccessible, there is a cofinality-preserving forcing extension in which for all regular $\lambda < \kappa$, the relations $=^{\kappa}_{\lambda}$ are \hookrightarrow_{B} -incomparable with each other.

Theorem 5.7 (Dense non-reduction; Fernandes-Moreno-Rinot, [3] Corollary 6.19). There exists a cofinality-preserving forcing extension in which:

- For all stationary subsets X, S of S, there exist stationary subsets $X' \subseteq X$ and $Y' \subseteq Y$ such that $=_{X'}^2 \not\hookrightarrow_B =_{Y'}^{\kappa}$.
- For all two disjoint stationary subsets X, Y of κ , $=_X^2 \not\hookrightarrow_B =_Y^{\kappa}$.

Theorem 5.8 (Friedman-Hyttinen-Weinstein(Kulikov), [5] Theorem 77). If a first order countable complete theory over a countable vocabulary T is classifiable, then $=_{\omega}^{2} \nleftrightarrow_{c} \cong_{T}$.

5.3 Reflections

Theorem 5.9 (Shelah, [20] Claim 2.3). For an uncountable cardinal λ , and a stationary subset $S \subseteq S_{\neq cf(\lambda)}^{\lambda^+}$, the following are equivalent:

- $2^{\lambda} = \lambda^+$,
- $\diamondsuit_{\lambda^+}(S)$.

Definition 5.10. For a stationary $S \subseteq \kappa$, \diamondsuit_S^{++} asserts the existence of a sequence $\langle K_\alpha \mid \alpha \in S \rangle$ satisfying the following:

- 1. for every infinite $\alpha \in S$, K_{α} is a set of size $|\alpha|$;
- 2. for every $X \subseteq \kappa$, there exists a club $C \subseteq \kappa$ such that, for all $\alpha \in C \cap S$, $C \cap \alpha$, $X \cap \alpha \in K_{\alpha}$;
- 3. the following set is stationary in $[H_{\kappa^+}]^{<\kappa}$:

$$\{M \in [H_{\kappa^+}]^{<\kappa} \mid M \cap \kappa \in S \& \operatorname{clps}(M, \in) = (K_{M \cap \kappa}, \in)\}.$$

Theorem 5.11 (Sakai, [18] Prop 1.4). \diamondsuit_S^{++} holds in L.

Lemma 5.12 (Fernandes-Moreno-Rinot, [3], Thm 4.10). For every stationary $S \subseteq \kappa$, \diamondsuit_S^{++} implies $\mathrm{Dl}_S^*(\Pi_2^1)$.

Definition 5.13. Let \mathbb{S} be the poset of all pairs (k, \mathcal{B}) with the following properties:

- 1. k is a function such that $dom(k) < \kappa$;
- 2. for each $\alpha \in dom(k), k(\alpha)$ is a transitive model of ZF^- of size $\leq \max\{\aleph_0, |\alpha|\}$, with $k \upharpoonright \alpha \in k(\alpha)$;
- 3. \mathcal{B} is a subset of $\mathcal{P}(\kappa)$ of size $\leq \text{dom}(k)$;

 $(k', \mathcal{B}') \leq (k, \mathcal{B})$ in \mathbb{S} if the following holds:

- (i) $k' \supset k$, and $\mathcal{B}' \supset \mathcal{B}$;
- (ii) for any $B \in \mathcal{B}$ and any $\alpha \in dom(k') \setminus dom(k)$, $B \cap \alpha \in k'(\alpha)$.

Lemma 5.14 (Sakai, [18] Prop 1.5). For every stationary $S \subseteq \kappa$, $V^{\mathbb{S}} \models \Diamond_{S}^{++}$.

Corollary 5.15 (Fernandes-Moreno-Rinot, [3] Lemma 4.10 and Proposition 4.14). There exists $a < \kappa$ -closed κ^+ -cc forcing extension in which $\mathrm{Dl}^*_{\check{\mathbf{S}}}(\Pi^1_2)$ holds for all $\check{\mathbf{S}} \subseteq \kappa$ stationary set (S stationary in V).

Since \diamondsuit_S^{++} holds in L, in L we have κ -Borel* = $\Sigma_1^1(\kappa)$. Also there is a $< \kappa$ -closed κ^+ -cc forcing which forces κ -Borel* = $\Sigma_1^1(\kappa)$.

Definition 5.16. For a given cardinal $\lambda = \mu^+$ and a stationary set $S \subseteq \lambda$, \diamondsuit_S^+ is the statement that there is a sequence $\langle \mathcal{A}_{\alpha} \mid \alpha \in S \rangle$ such that

- For all $\alpha \in S$, $\mathcal{A}_{\alpha} \subseteq \mathcal{P}(\alpha)$ and $|\mathcal{A}_{\alpha}| \leq \mu$.
- If $Z \subseteq \lambda$, then there exists a club $C \subseteq \lambda$ such that

$$C \cap S \subseteq \{\alpha \in S \mid Z \cap \alpha \in \mathcal{A}_{\alpha} \& C \cap \alpha \in \mathcal{A}_{\alpha}\}.$$

Lemma 5.17 (Fernandes-Moreno-Rinot, [3] Corollary 4.12). It is consistent that \diamondsuit_S^+ holds, but \diamondsuit_S^{++} fails.

Theorem 5.18 (Fernandes-Moreno-Rinot, [3] Corollary 5.7). If κ is strongly inaccessible, then in the forcing extension by $Add(\kappa, \kappa^+)$, for all stationary subsets X, S of κ , the following are equivalent:

- 1. X f-reflects to S;
- 2. every stationary subset of X reflects in S.

Theorem 5.19 (Fernandes-Moreno-Rinot, [3] Corollary 5.12). There exists a cofinality-preserving forcing extension in which, for all stationary subsets X, S of κ , X does not \mathfrak{f} -reflects to S.

5.4 Model theory

The smallest ordinal α such that $A \in \Sigma^0_{\alpha} \cup \Pi^0_{\alpha}$ is called the Borel rank of A and denoted by $rk_B(A)$. Given a theory T, let us denote by $B(\kappa, T)$ the rank $rk_B(\cong_T)$.

Theorem 5.20 (Descriptive Main Gap; Mangraviti-Motto Ros, [13] Theorem 1.9). Let $\kappa > 2^{\omega}$. If T is classifiable shallow of depth α , then $B(\kappa, T) \leq 4\alpha$.

A theory T is κ -categorical if there is only one model of T of size κ up to isomorphism. A theory T is categorical in κ if T is κ -categorical.

Theorem 5.21 (Morley's categoricity theorem, [17] Theorem 5.6). Let T be a first-order countable complete theory. If T is categorical in one uncountable cardinal, then T is categorical in every uncountable cardinal.

Theorem 5.22 (Mangraviti-Motto Ros, [13] Theorem 3.3). Let T be a countable first-order theory in a countable vocabulary (not necessarily complete). T is κ -categorical if and only if $rk_B(\cong_T) = 0$, i.e. \cong_T is clopen.

Theorem 5.23 (Strictly stable; Hyttinen-Kulikov-Moreno, [7] Corollary 2). Suppose that $\kappa = \lambda^+$ and $\lambda^\omega = \lambda$. If T_1 is a classifiable theory and T_2 is a stable unsuperstable theory, then $\cong_{T_1} \hookrightarrow_c \cong_{T_2}$ and $\cong_{T_2} \not\hookrightarrow_B \cong_{T_1}$.

Theorem 5.24 (Unsuperstable; Moreno, [15] Corollary 4.12). Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{\omega} = \lambda$. If T_1 is a classifiable theory, and T_2 is an unsuperstable theory, then $\cong_{T_1} \hookrightarrow_c \cong_{T_2}$ and $\cong_{T_2} \not\hookrightarrow_B \cong_{T_1}$.

Theorem 5.25 (Borel reducibility Main Gap; Moreno, [16] Theorem 5.5). Let $\mathfrak{c} = 2^{\omega}$. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. If T_1 is a countable complete classifiable shallow theory, T_2 is a countable complete classifiable theory not shallow, and T_3 is a countable complete non-classifiable theory, then the following hold:

1. Classifiable vs Non-classifiable. For $T = T_1, T_2$ there is $\gamma < \kappa$ such that:

$$\cong_T \hookrightarrow_c =_{\gamma}^2 \hookrightarrow_c \cong_{T_3} and \cong_{T_3} \not\hookrightarrow_B \cong_T$$
.

2. Shallow vs Non-shallow. If $\kappa = \aleph_{\mu}$ is such that $\beth_{\omega_1}(|\mu|) \leq \kappa$, then

$$\cong_{T_1} \hookrightarrow_B 0_{\kappa} \hookrightarrow_B \cong_{T_2} \hookrightarrow_c \cong_{T_3}$$
.

In particular,

$$\cong_{T_3} \not\hookrightarrow_B \cong_{T_2} \not\hookrightarrow_r 0_{\kappa} \not\hookrightarrow_r \cong_{T_1}$$
.

Theorem 5.26 (*L*-Main Gap Dichotomy; Hyttinen-Kulikov-Moreno, [8] Theorem 4.11). (V = L). Suppose $\kappa = \lambda^+$ and λ is a regular uncountable cardinal. If T is a countable first-order theory in a countable vocabulary, not necessarily complete, then one of the following holds:

- $\bullet \cong_T is \Delta^1_1(\kappa).$
- \cong_T is $\Sigma_1^1(\kappa)$ -complete.

Theorem 5.27 (Main Gap Dichotomy; Moreno, [16] Theorem 5.16). Let κ be inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

- $\bullet \cong_T is \Delta^1_1(\kappa).$
- \cong_T is $\Sigma_1^1(\kappa)$ -complete.

References

- [1] D. Asperó, T. Hyttinen, V. Kulikov, and M. Moreno, Reducibility of equivalence relations arising from non-stationary ideals under large cardinal assumptions, Notre Dame Journal of Formal Logic **60**, 665 682 (2019).
- [2] G. Fernandes, M. Moreno, A. Rinot, Inclusion modulo nonstationary, Monatshefte f
 ür Mathematik 192, 827 – 851 (2020).
- [3] G. Fernandes, M. Moreno, A. Rinot, Fake reflection, Israel Journal of Mathematics. 245 295 345, (2021).
- [4] S. D. Friedman, T. Hyttinen, and V. Kulikov, On borel reducibility in generalised baire space, Fundamenta Mathematicae.. **245** 295 345, (2021).
- [5] S. D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory.
 Mem. Am. Math. Soc. 230(1081), (American Mathematical Society, 2014).
- [6] Hyttinen, T., and Kulikov, V.: Borel* sets in the generalized Baire space. Jaakko Hintikka on Knowledge and Game-Theoretical Semantics, van Ditmarsch, H. and Sandu, G., 395–412 (2018).
- [7] T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. Math. Logic **56**, 175 185 (2017). DOI:10.1007/s00153-017-0521-3, MR3633791.
- [8] T. Hyttinen, V. Kulikov, and M. Moreno, On Σ_1^1 -completeness of Quasi-orders on κ^{κ} , Fund. Math. 251, 245 268 (2020). DOI:10.4064/fm679-1-2020, MR4125865.
- [9] T. Hyttinen, and M. Moreno, On the reducibility of isomorphism relations, MLQ Math. Log. Q. 63, 175–185 (2017). DOI:10.1002/malq.201500062, MR3724375.
- [10] P. Holy, M. Koelbing, P. Schlicht, W. Wohofsky, *Ideal topologies in higher descriptive set theory*, Ann. Pure Appl. Log. **173** 103061 (2022). https://doi.org/10.1016/j.apal.2021.103061
- [11] T. Jech, Set theory, Springer-Verlag Berlin Heidelberg, New York (2003).
- [12] A. Kechris, Classical descriptive set theory. Springer-Verlag Berlin Heidelberg, New York (1994).
- [13] F. Mangraviti, and L. Motto Ros, A descriptive main gap theorem, J. Math. Log. 21, 2050025 (2020). DOI:10.1142/S0219061320500257, MR4194559.
- [14] A. Mekler and J. Väänänen, Trees and Π_1^1 subsets of $\omega_1^{\omega_1}$. J. Symbolic Logic. **58**(3), 1052–1070, (1993).
- [15] M. Moreno, On unsuperstable theories in GDST, The Journal of Symbolic Logic 89, 1720–1746 (2024). DOI:10.1017/jsl.2023.82
- [16] M. Moreno, Shelah's Main Gap and the generalized Borel-reducibility. Submitted (arXiv:2308.07510).
- [17] M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114, 514–538 (1965). DOI:10.2307/1994188, MR0175782.
- [18] H. Sakai, Improper ω_1 -stationary preserving poset of size ω_1 , http://www2.kobe-u.ac.jp/ hsakai/Research/works.html, 2011. Unpublished note.
- [19] S. Shelah, Classification theory, Stud. Logic Found. Math. Vol. 92, (North-Holland, Amsterdam, 1990).
- [20] S. Shelah, Diamonds, Proc. Amer. Math. Soc. **138**, 187–202 (2010). DOI:10.1090/S0002-9939-10-10254-8, MR2596054.