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1 Generalized Baire spaces

Generalized descriptive set theory is the generalization of descriptive set theory to uncountable cardinals. For
a background on classical descriptive set theory see [11] or [12]. We will denote by k* the set of functions
f Kk — K, 2% the set of functions f : kK — 2, and k<" the set of functions f : @ — k where a < k. During these
notes, k will be an uncountable cardinal that satisfies K< = &, unless otherwise is stated.

The aim of this first section is to introduce the notions of x-Borel class, Al(x) class, x-Borel* class, and
show the relation between these classes.
1.1 Topology
Definition 1.1. Z C P(k) is an ideal if the following holds:

« T£0,

o forallz €T, ifyCux, theny €T,

o ifr,yeZ, thenxUyel.

An ideal 7 is < k-complete if it is closed under the union of size less than k. An ideal Z is proper if Z # P(k).
Example 1.1. The set of bounded subsets of k, {X C k| Ja < k¥ € X(8 < a)}, form an ideal.

Definition 1.2 (Ideal topology). Let Z be a < k-complete proper ideal on k that extends the ideal of bounded
sets. The ideal topology associated to T is the topology generated by the following basic open sets. For every
A eI, ¢cr? we define the basic open set N¢ by

Ne={ne€r"|£Cn}
The open sets are of the form |J X where X is a collection of basic open sets.

Definition 1.3 (The Generalized Baire space B(k)). Let k be an uncountable cardinal. The generalized Baire
space is the set k™ endowed with the following topology. For every n € k<%, define the following basic open set

Ny={fer"[ncf}
the open sets are of the form |J X where X is a collection of basic open sets.

Definition 1.4 (The Generalized Cantor space C(k)). Let £ be an uncountable cardinal. The generalized
Cantor space is the set 2% endowed with the following topology. For every n € 2<%, define the following basic
open set

Ny, ={fe2"|nCf}

the open sets are of the form |J X where X is a collection of basic open sets.

Exercise 1.1. Show that the topology in the previous definition is the ideal topology associated to the ideal of
bounded sets.

1.2 Borel sets

Definition 1.5 (k-Borel class). Let S € {B(k),C(k)}. The class k-Borel(S) of all k-Borel sets in S is the least
collection of subsets of S which contains all open sets and is closed under complements, unions and intersections
both of length at most k.

Definition 1.6. Let us define the following hierarchy.
o ¥V ={X Ck"|X is open}
o 119 = {X C k" | X is closed}
°« X0 = {U7<ﬁ Ayl Ay € U1g,3<a H%}
o IV = {k"\X | X € X0}
Exercise 1.2. Show that k-Borel= ], .+ 30,

Exercise 1.3. Let S € {B(k),C(k)} and B C S. If B be the minimal collection that contains all the open sets
and is closed under unions and intersections both of length at most k, then B is the class k-Borel(S)



Definition 1.7. Let S € {B(x),C(x)}.

o X C S isaXi(k) setif there is a set Y C S x S a closed set such that pr(Y)={z € S |3y € S (z,y) €
Yi=X.

o X C S isalli(k) setif S\X is a ¥1(k) set.
o X CSisaAl(k) setif X is a ¥i(k) set and a 11} (k) set.

Let 6 € {2,k}. A subset T C 0<% is a tree if for all f € T with a =dom(f) >0andforall <o, f [ SE€T
and f | 8 < f. In a similar way we can define trees on 0<% x 6<% and 6<% x §<F x 6<% We say that a tree
T C <" is pruned if for all f € T and 8 > a = dom(f), there is g € T such that f = g | a and 8 = dom(g).
We define the body of a pruned tree T as the set

[T]={neb”|Va<k, nlacT}
Exercise 1.4. Show that A C k" is closed if and only if there is a pruned tree of k<" such that [T] = A.
A sequence (n; |< ) is a chain of length v, if for all ¢ < j, n; < n;.
Definition 1.8 (k-Borel*-set in B(k), C(k)). Let S € {2",k"}.

1. A tree T is a kT, A-tree if does not contain chains of length \ and its cardinality is less than k™. It is
closed if every chain has a unique supremum in T.

2. A pair (T,h) is a k-Borel*-code if T is a closed k™, A-tree, X\ < k, and h is a function with domain T
such that if © € T is a leaf, then h(x) is a basic open set and otherwise h(xz) € {U,N}.

3. For an element n € S and a k-Borel*-code (T,h), the k-Borel*-game B*(T,h,n) is played as follows.
There are two players, I and I1. The game starts from the root of T. At each move, if the game is at
node x € T and h(x) = N, then I chooses an immediate successor y of x and the game continues from
this y. If h(z) = U, then II makes the choice. At limits the game continues from the (unique) supremum
of the previous moves. Finally, if h(x) is a basic open set, then the game ends, and II wins if and only if
n € h(z).

4. A set X C S is a k-Borel*-set if there is a k-Borel*-code (T, h) such that for allm € S, n € X if and
only if I1 has a winning strategy in the game B*(T, h,n).

We will write I1 1 B*(T, h,n) when II has a winning strategy in the game B*(T, h,n).

Exercise 1.5. Let S € {2, k"}. We define k-Borel**-sets in S by changing 2. in the previous definition for
the following

2'. A pair (T,h) is a k-Borel*-code if T is a closed K+, \-tree, X < K, and h is a function with domain T
such that if x € T is a leaf, then h(x) is an open set and otherwise h(x) € {U,N}.

Show that X C S is a k-Borel**-set if and only if it is a k-Borel*-set.

Recall that x satisfies k<" = k, so it is regular. A set X C k is a club on x if X is unbounded and any
sequence (o | i <) such that v < x and for all a; € X, satisfies [, o € X.

Exercise 1.6. Show that the following set is an ideal:
{X Ck|emistsaclubCCr (XNC=0)}.

Example 1.2. Let u < & be a reqular cardinal, we say that X C k is a p-club if X is an unbounded set and it
is closed under p-limits.

Let 4 < K be a regular cardinal. For all n,§ € 2% we say that n and & are =
{a < k| n(a) =¢&(a)} contains a p-club.

The relation =2 is a k-Borel* set. Let us define the following r-Borel*-code (T, h):

w

2
m

equivalent if the set
o T ={fer~wt2| fis strictly incresing}.
e For f not a leave, h(f) = U if dom(f) is even and h(f) =N if dom(f) is odd.

e To define h(f) for a leave f, first define the set L(g) = {f € k*Tt | g C f} for all g € T with domain
w, and Yy = Supn<w(g(n)). Let h | L(g) be a bijection between L(g) and the set {N, x N, | p,q €

K19 p(yg) = q(7g)}-



Let us show that (T, h) codes =2. Supposen =2 &, so there is an w-club C such that Vo € C n(a) = (o). The
following is a winning strategy for II in the game B*(T,h,(n,§)). For every even n < w, if the game is at f
with dom(f) = n, II chooses an immediate successor f’ of f, such that f C f’ and f'(n) € C. Since C is closed
under w limits, after w moves the game continues at g € K strictly increasing with v = supn<w(g(n)) € C. So
there is G an immediate successor of g, such that h(G) = Npjy+1 X Nepy41. Finally if II chooses G in the w
move, then IT wins.

For the other direction, suppose n #2 &, so there is A C S% stationary (S is the set of w-cofinal ordinals
below k) such that for all a € A, n(a) # &(a).

We will show that for every o strategy of 11, o is not a winning strategy. Let o be an strategy for II, this
mean that o is a function from k<t — k. Notice that if II follows o as a strategy, then when the game is
at f, dom(f) =mn even, II chooses f' such that f C f' and f'(n) = o((f(0), f(1),..., f(n—1))). Let C be the
set of closed points of o, C = {a < k | o(a=¥) C a}, C is unbounded and closed under w-limits. Therefore
CNA=#D. Let vy be the least element of C N A that is an w-limit of elements of C, and let {vn}n<w be a
sequence of elements of C' cofinal to v. The following is a winning strategy for I in the game B*(T, h, (n,£)), if
IT uses o as an strategy.

When the game is at f with dom(f) = n, n odd, then I chooses an immediate successor f' of f, such that
f C [ and f'(n) is the least element of {yn}n<w that is bigger than f(n—1). This element always ezists because
{Vn}n<w 8 cofinal to vy and v € C, 7 is a closed point of o. Since I is following o as a strategy and v is a closed
point of o, after w moves the game continues at g € k¥ strictly increasing with v = supp<w,(g(n)) € C N A.
Since n(y) # &(7), there is no G immediate successor of g, such that (n,£) € h(G). So it does not matter what
IT chooses in the w mowve, I will win.

The previous definitions are the generalization of the notions of Borel, A}, and Borel* from descriptive set
theory, the spaces w* and 2¥. A classical result in descriptive set theory states that the Borel class, the Al
class, and the Borel* class are the same. This doesn’t hold in generalized descriptive set theory as we will see.

Definition 1.9. Let T be an tree without infinite branches. For all t € T, we define rk(t) as follows:

o Ift is a leaf, then rk(t) = 0.

o Ift is not a leaf, then rk(t) = U{rk(t') + 1| t'~ =t}, where t'~ is the immediate predecessor of t'.

e IfT is not empty and has a root, r, then the rank of T is denoted by rk(T) and is equal to rk(r).
Exercise 1.7. Show that if AC k" and T ={f [ a: f € A,a <k}, then [T] is the closure of A.
Exercise 1.8. Show that if A and B are k-Borel* sets, then AU B and AN B are k-Borel* sets.

Exercise 1.9. Let (T,h) be a r-Borel*-code. Show that if T is a k™ ,w-tree, then for all , B*(T, h,n) is
determined, i.e. II has a winning strategy if and only if I doesn’t have a winning strategy.

Exercise 1.10. 1. Prove Claim 1.11. (Hint: Use the previous exercise.)
2. Prove Claim 1.12.
Theorem 1.10 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Thm 17). x-Borel C k-Borel*

Proof. Let us prove something even stronger. X is a k-Borel set if and only if there is a k-Borel*-code (T, h)
such that (T,h) codes X and T is a k™, w-tree.

We will show by induction over « that for every X € XU, there is a x-Borel*-code (T, h) such that (T, h)
codes X and T is a kT, w-tree.

For a = 1. If X € X2, then there is B a family of basic open sets such that X = [JB. Since k<" = &,
B = k|. So there is 8 < k such that B = {B; | i < 8}. Let T = {0} U {(0,4) | ¢ < 8}, h(0) = U, and
h((0,4)) = B;, clearly this is a k-Borel*-code that codes X.

Suppose « is such that for all 8 < a and X € Z%, there is a k-Borel*-code (T, h) such that (T, h) codes X
and T is a kT, w-tree.

Claim 1.11. For all f < « and X € 114, X is a k-Borel* set.

Suppose X € X% so X = U, <x Ay, where A, € Ui<5., IT). By the previous claim we know that
there are k-Borel*-codes {(Ty,hy)}y<x such that (T,,h,) codes A, and T, is a kT, w-tree, for all 7. Let
T ={r}UU, <, Ty x {7} be the tree ordered by r < (z,j) for all (z,j) € U, T x {7}, and (z,7) < (y,7)
if and only if v = j and 2 < y in T,. Let T C k=“ be a tree isomorphic to 7 and let G : T — T be a
tree isomorphism. If G(x) # r, then denote G(x) by (Gi(z),Gz2(z)). Define h by h(z) = U if G(x) = r, and
W) = hg,(a)(G1(2)).



Let us show that (T, h) codes X. Let n € X, so there is v < &, such that n € X,. II starts by choosing
G~ (z,7), where x is the root of 7. II continues playing with the winning strategy from the game B* (T, h+,1),
choosing the element given by G=!. We conclude that II 1 B*(T, h, 7).

Let n € X, so for all v < K, n € X, so II has no winning strategy for the game B*(T%,h,n). Thus II
cannot have a winning strategy for the game B*(T, h, 7).

Let (T, h) be a k-Borel*-code that codes X and T is a kT, w-tree. We will use induction over the rank of T
to show that X is x-Borel.

If rk(T) = 0, then T has only one node r, thus X = h(r) and X is a basic open set. Let o < k* be such
that for all k-Borel*-code (T”,h’) with T” kT, w-tree and rk(T") < a, (1", ') codes a k-Borel set. If rk(T) = «,
then let B = {t € T |t~ =r}, where r is the root of T. For all t € B, define the code (T3, h;) as follows:

o Ii={xecT|t<uz},

o hy=h|T,.
Since rk(T) = a, for all t € B, rk(T;) < «. By the induction hypothesis, (1%, h;) codes a x-Borel set X;.
Claim 1.12. o Ifh(r) =U, then X = UepX;.

o Ifh(r) =0, then X = MiepX;.

Since the class of k-Borel sets is closed under unions and intersections of length &, the proof follows from
the previous claim. O

Theorem 1.13 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Thm 17). 1. k-Borel* C %}(k).
2. k-Borel C $1(k).
3. k-Borel C Al(k).
Proof. 1. Let X be a x-Borel* set, there is a xk-Borel* code (T, h) such that X is coded by (T, h).

Since k<" = k, we can code the strategies o : T — T by elements of x".

Claim 1.14. The setY ={(n,€) | £ is a code of a winning strategy for I1 in B*(T,h,n)} is closed.

Proof. Let (n,£) be an element not in Y. So £ is not a winning strategy for II in B*(T, h,n)}, there is
a < & such that for every ¢ € N¢jq, € is not a winning strategy for IT in B*(T, h,n)}. Otherwise T' would
have a branch of length x. Because of the same reason, there is 8 < k such that for every f € Ny;s,
¢ € Ngja, € is not a winning strategy for IT in B*(T\, h, f)}. So N, g x N¢|q is a subset of the complement
of Y. O

Since pr(Y) = X, we are done.
2. Tt follows from Theorem 1.10 and (1).

3. Tt follows from (2) and the fact that x-Borel sets are closed under complement.

1.3 Separation theorem

Definition 1.15. A dual of a k-Borel* set B is the set B¢ = {n | 1 + B*(T,h,n)} where (T,h) satisfy
B={n |11t B*(T,h,n)}.

Notice that the dual of a xk-Borel* set is not unique.

Definition 1.16. If T is a tree on k<% x k<% and f € k*, let
T(f)={glal(fla,gla)eT}
Exercise 1.11. Show that if A C k" is I1}(k), then there is a tree T such that for all f € K",
f e As T(f) has no branch of length k.

Let us denote by T'O the set of trees that don’t have branches of length k.

Definition 1.17. o LetT and S be trees. Then T is order preservingly embeddable into S, T < S, if there
is a function f:T — S such that for all t <p t' implies f(t) <g f(t').



o IfT is a tree, then oT is the tree of all initial segments of branches of T ordered by end-extension. We
say that T < T if and only if T < T'.

Definition 1.18. o If Ais all}(k) set and T is a tree such that
f € As T(f) has no branch of length k,

and J € TO we define AT/ as the set {f € x| T(f) < J}.

o If Ais a X1(k) set and T is a tree such that
f € A& T(f) has a branch of length &,

and J € TO we define Ap,y as the set {f € k" | J < T(f)}.

Exercise 1.12. 1. Let A is a I11 (k) set and T is a tree such that
f € A< T(f) has no branch of length K,

and J € TO. Show that AT’ C A.

2. Let A is a 1(k) set and T is a tree such that
f e A< T(f) has a branch of length k,

and J € TO. Show that A C Ar ;.

Lemma 1.19 (Covering property, Mekler-Véininen, [14], Proposition 11). Suppose A is a 11} (k) set and T is
a tree such that
f € A< T(f) has no branch of length k,

and B C A is a X1(k) set. The there is an element J € TO such that B C AT/,

Proof. Let S be a tree such that
f € B< S(f) has a branch of length k.

Let T" be the set of triples (f | a, g | a, h | &) such that g [ @« € T(f) and h | @ € S(f). Notice that 7" has no
branch of length x, otherwise B\ A # 0.

Let f € B and let (h | a | @ < k) be a branch in S(f) of length k. For g [ « € T(f), let o : T(f) — T"
be defined as o(g | «) = (f | a,9 | a,h | «). It is clear that g is an order preserving embedding. Thus
fe AT O

Lemma 1.20 (Mekler-Véaananen, [14], Proposition 32). Let T' be a tree on k<% x k<" and J a tree with no
branches of length k. The sets
Bo={fer"|T(f) <J},

Bi={fer"|J<T(f)}
are k-Borel* set and duals.
Proof. Let H be the set of sequences (1o, (do, t0),n1, (d1,t1),-..,ns, (ds, ts)) satisfying the following:
e forall a<d,d, €{0,1}.
e d,=1if and only if « = 6, t5 = 0..
o (to | @ <) is a chain in J.
e For all a« < 4§, n, € k%, and (n, | @ <) is a chain in k<7,

Let K be the set of initial segments of the elements of H, ordered by end-extension (i.e. z,y € K are such
that x < y if and only if there is @ € H such that x,y are initial segments of @ and x is an initial segment of
y). notice that K is isomorphic to a kT, k-tree. Thus we can construct a Borel*-code with K. Let us define
h:K — {UnN}UXY let a € K be such that (n € k<" | n € @) has length §

U if @ ends with n, € k<",
h(a) = {n if @ ends with (da, ta) and do = 0 or @ = (),
{fer"|(fdns)¢T} otherwise.



Claim 1.21. 1.
T(f) < J < II has a winning strategy for B*(K, h, f).

J < T(f) <1 has a winning strategy for B*(K, h, f).

Proof. 1. Let us suppose that T'(f) < J and G : T(f) — J witnesses it. Let us define the following strategy
for IL, if (f | 0,ms5) ¢ T, II chooses (1,0). Otherwise, ns € T(f), and IT chooses (0, G(ns)). It is clear that
this is a winning strategy for II. For the other direction, let p be a winning strategy for II. When the game
is at @ ending in 7, and the strategy p says that IT has choose (0,t,), then n, € T(F), so G(ns) = tq is
an embedding.

2. Let us suppose J < T(f) and G : 0J — T(f) witnesses it. Let us define the following strategy for I,
suppose the game is at a ending with (0,t,), so (¢t | 8 < «) is a chain in J. Thus I should choose
G((tg | B < a)). It clear that this is a winning strategy for I. The other direction is similar as in the
previous item.

O
O

Theorem 1.22 (Separation property, Mekler-Vaanéanen, [14], Corollary 34). Suppose A and B are disjoint
Y1(k) sets. There are k-Borel* sets Cy and Cy such that A C Cy, B C C1, and Cy and Cy are duals.

Proof. Since B is $1(k), £\ B is I} (x) and there is T a tree such that
f € k"\B < T'(f) has no branch of length &,

and A C k"\B. Thus by the covering property, there is J € TO such that A C (k%\B)""/. By the previous
exercise, B C Br ;. From Definition 1.18

(k"\B)"" = {f € 6" | T(f) < J},
Br g = {f € Rr" | J K T(f)}
The proof follows from Lemma 1.20. O
Theorem 1.23 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 17). Al(k) C k-Borel*

Proof. Let A be a Al(k) set. Let B = B(x)\A, by Theorem 1.22, there are x-Borel* sets Cy and C; such that
A C Cy, BC (Cq, and Cy and C; are duals. Since Cy and C; are duals, Cy and Cy are disjoint. So Cy N B = (),
thenA:Co,B:C’l. O]

Corollary 1.24 (Mekler-Viininen, [14], Corollary 35). X is Al(k) if there is a k-Borel*-code (T, h) that codes
X and
I+ B*(T, h,n) < 1Y B*(T, h,n)

for all m € k™ the game is determined.

Exercise 1.13. Prove the claims of the following proof.

Theorem 1.25 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 18). 1. xk-BorelC A}(k)
2. Al(k) C T1(r)

Proof. 1. Let & — (Tg, he) be a continuous coding of the x-Borel*-codes with T a kT w-tree, such that for all
kT w-tree, T, and h, there is € such that (T, he) = (T, h).
Claim 1.26. The set B = {(n,£) | n is in the set coded by (T, he)} is Al(k) and is not r-Borel, otherwise
D ={n| (n,n) ¢ B} would be Borel.
(Hint: use the set C = {(n,&,0) | 0 is a winning strategy for II in B*(T¢, he,n)}).

Claim 1.27. There is A C 2% x 2% such that if B C 2% is a $1(k) set, then there is n € 2% such that
B=A{¢](&n) € A}

(Hint: the construction used in the classical case works too).
The set D = {n | (n,n) € A} is £}(x) but not I} ().



From the previous results, we can see that
x-Borel C Al(k) € Z1(k)

and
Ai(k) C k-Borel* C X (k).

Therefore we are missing to determine whether one of the following holds:
e Al(k) € x-Borel* C X1(k);
o Al(k) C K-Borel* = X1(k);
e Al(k) = s-Borel” € 21(k).
As we will see, only case has not been answered.

Question 1.28. Is the following consistent Al(k) = k-Borel* C ¥1(k)?

2 Reductions

Let 3,0 € {2,k}, and E; and E> be equivalence relations on 8% and 6*, respectively. We say that E; is reducible
to Fs if there is a function f: 8 — 6" that satisfies

(n.§) € Ex <= (f(n), f(£)) € E».

We call f a reduction of 7 to E5 and we denote by Fy <, Fs the existence of a reduction of E; to Es. It is
clear that E; <, Fs holds if and only if F; doesn’t have more equivalence classes than Fj.

Definition 2.1 (Reductions). Apart from a “cardinality” reduction, <., we define the following notions which
allow us to have a better spectrum of complezities.

e Borel reduction. A function f: 3% — 0% is said to be k-Borel if for any open set A C 0%, f~1[A] is a
k-Borel set. The ezistence of a k-Borel reduction of Eg to E; is denoted by Ey —p Fy.

e Continuous reduction. The existence of a continuous reduction of Eg to E1 is denoted by Ey —. E.

e Lipschitz reduction. For alln,& € 57, denote
A(n,§) :== min({a < s [ n(a) # {(a)} U {x}).
A function f: " — 0" is said to be Lipschitz if for all n,& € B~,

A, &) < A(f(n), f(£))-

The existence of a Lipschitz reduction of Ey to F1 is denoted by Fy — E.

2.1 Basic reductions

Fact 2.2 (Folklore). If f: k™ — k" X k" is a continuous functions, then for all k-Borel X C k" x k", f~1[X]
s k-Borel.

Proof. Let us proceed by induction over 3. Since f is continuous, if X € %9, then f~![X] is open. Thus X
is k-Borel. Let us suppose that o < kT is such that for all 3 < o, if X € X%, then f~![X] is x-Borel. Let
X € TIj, for some § < a. Then, X = #*\A, for some A € %9. Tt is clear that f~'[X] = x"\f~'[A]. By the
induction hypothesis f~![A] is x-Borel, so f~![X] is x-Borel.

Let X € 3. So, X = U, 4, where A, € g, IT}. Tt is easy to see that f~'[X] =, ., f'[A4,]. As
it was proved above, A, is k-Borel, therefore X is x-Borel. O

Exercise 2.1. Show that if f : k® — k" is a k-Borel function, then for all k-Borel* set B C k*, f~Y[B] is a
k-Borel" set.

Fact 2.3 (Folklore). Suppose Ey <, Ey. Then the following hold:
o If Fy is k-Borel and Ey —p FE1, then Ey is k-Borel.
o IfEy is Al(k) and Ey —p Ei, then Ey is Al(k).



o If Ey is open and By —. FEy, then Eqy is open.
Proof. Tt follows from the previous exercise and the following claim.

Claim 2.4. k" X k" and K" are homeomorphic.

Proof. Let g : k — {0,1} x k be a bijection, we denote g(«) by (g1(), go2()). Let us define F : k* x k% — K~
by F((n0,71))(a) = h(a) = g, (a)(g2()). Let us show that F' is a homeomorphism.

Injective. Let us assume, towars contradiction, that there are (1n9,71) and (&, &1) such that F'((ng,m)) =
F((§0,&1)). Thus, for all a < K, g, () (92(@)) = &g, () (92(@)). Let Ag ={a <k | gi(a) =0} and A; = {a <& |
g1() = 1}. Therefore, for all a € Ag, 1o(g2()) = &o(g2(a)) and for all a € Ay, n1(g2()) = &1 (92()). Finally,
since g is a bijection, ga[Ag] = g2[41] = &, for all 8 < &, no(B) = & (B) and n1(B8) = &1(B). a contradiction.

Surjective. Let Ay and A; as before. Let n € k”. Let us define & by &o(g2()) = n(a) for all o € Ag. Let
us define & by &1(g2(a)) = n(e) for all a € A;. Clearly F((&1,&)) = -

Continuty. Let a < &, and 7, & and & be such that (£,&) € F71[Nya]. So, for all B < a, n(B) =
F(&0,61)(B) = &4,(8)(92(8)). Let v = sup{g2(B) | B < o} and (¢o,¢1) € Negpy X Ne, 1y Clearly for all 8 < a,
(6o, (1)) (8) = Cor () (02(8)) = En (3 (92(8)) = F((€0, £0))(8) = n(B). Thus Neyj x Nesir C F-[Nyjal.

Open sets. Let o, o < K, and 1, & and &; be such that n € F[Ne¢ oo X Ne,taq - Let ~ v = sup{92 Yz, B) |
z € {0,1} & B < max(ai,a2)}, ¢ € Ny, and Y9 and ¥y be such that F((dy,91)) = ¢, thus for all 3 < v,
F((90,91))(B) = vg,(8)(92(8)) = ¢(B) = n(B). We conclude that Ny, € F[Ngjtag X Ne,tay]- O

If By —p Ej, then we would have [f x f]7![E;] = Ep and since E; is Borel*, this yield Eg to be Borel*. [J
Fact 2.5 (Folklore). Let E be a k-Borel equivalence relation. Then the equivalence classes of E are k-Borel.

Proof. Let x € k", and let us define f : k" — k" x k™ as f(n) = (n,x). It is clear that f is continuous. On the
other hand [z]z (the E-equivalence class of x) is equal to f~1[(k" x {x}) N E]. Clearly x* x {x} is x-Borel and
since E is k-Borel, by Fact 2.2 f~}[(s" x {z}) N E] is k-Borel. O

Lemma 2.6 (Mangraviti-Motto Ros, [13]). Let Ey be a k-Borel equivalence relation with v < k equivalence
classes and E5 be an equivalence relation with 0 equivalence classes. If v < 0, then E1 —p Es.

Proof. Let us choose (y; | ¢ < ) representatives of each Ej-equivalence class and (x; | ¢ < 6) representatives of
each Es-equivalence class. Let us define F : k* — " as F(n) = x;, where ¢ < + is such that  E; y;. Since
v <0, F is well defined.

Claim 2.7. n Ey € if and only if F(n) E2 F(§).

Proof. By the way F' was defined, it is enough to prove that n E; ¢ if and only if #; Ey x;, where ¢ and j are
such that n Fy y; and { Ey y;. Since £ is an equivalence relation, n F; £ if and only if y; Eq y;.
If n By &, then y; By y; and ¢ = j. We conclude that x; = x; and x; > ;. The other direction is similar. [

Let us show that F'is k-Borel. Let X C k" be an open set. Then,

Fﬁl[X] = U [y’L]El

x,€X
By the previous fact, [y;]g, is x-Borel for all 7 < ~. Since v <k, U, cx[vilp, i3 x-Borel. O

Definition 2.8 (Counting classes). Let 0 < o < k be a cardinal. Let us define the equivalence relation
0, € K" X K™ as follows: n 0, & if and only if one of the following holds:

e 0 is finite:

—n(0)=¢0)<o—-1;
- 1(0),6(0) > o — 1.

e o is infinite:

—n(0) =£(0) <o
Lemma 2.9 (Moreno, [16]). Let E be a Borel equivalence relation with o < k equivalence classes. Then

FE “—B Og and OQ —L E.

If E is not open, then E 4+, 0,



Proof. It is clear that for all 0, is open, then by Lemma 2.6, E —p 0,.
Let show the case o > w, let (x; | i < p) representatives of each E-equivalence class. Clearly the function

if
F(n) = Tho)+1 i n(0) <o,
) n(0) = o.

is Lipschitz and a reduction from 0, to E, i.e. 0, — E.
Finally, suppose £ <. 0,. Since 0, is open, by Fact 2.3, E is open. O]

Let us define ES", the equivalence modulo bounded, as:

Eg®i={(n,§) €2" x 2" [3a <k [VB > a (n(B) = £(B)])}-
Let i¢ds be the identity relation of 2.
Exercise 2.2. Show that ES" is an equivalence relation.
Theorem 2.10 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 34). 1. Eg" is k-Borel.

2. ZdQ e .EO<'Li

Proof. 1. Let us denote by [x]<" the set of subsets of k of size smaller than . Clearly
Byt = | M09 In(e) =¢)}
A€[k]<r agA

and {(1,€) | n(a) = €(a)} is open.

2. Let (A;)i<x be a partition of x such that for all ¢ < &, |A;] = K. Let us define F : 2" — k" by
F(n)(a) = n(i)if and only if o € A;. Clearly, if n = &, then F(n) = F(§) and F(n) ES" F(€). If n # &,
then there is ¢ < k such that n(i) # £(4). So

Ai CH{a <[ Fn)(a) # F(&)(a)}-

Since |A4;| = k, we conclude that F(n) and F(€) are not ES" equivalent.
O

Definition 2.11. Let S C k be an unbounded set. We say that a function f : k* — k" is S-recursive if there is a
function H : k<% — k<% such that for all« € S and n € k%, f(n)(0) = H(n | a)(0) for all 8 < min(S\(a+1)).

Exercise 2.3 (Moreno, [16]). Let S C x be unbounded and f : k" — k" an S-recursive function.
1. f is continuous.

2. If S is a club that satisfies the following:

(1) am = min(S) is such that for all n,& € ¥ and B < am, n | B=E 1 B implies f(n) | 8= (&) | 5.
Then f is Lipschitz.

Exercise 2.4 (Moreno, [16]). 1. Find S C & and a function f, such that f is S-recursive but not k-recursive.

2. Find S C k and a function f, such that f is k-recursive but not S-recursive.

2.2 Equivalence modulo S

Definition 2.12. We say that a set S C k is stationary if for all club C C k, SNC # .
Notice that if S C k is stationary and C' C & is a club, then SN C is stationary.
Definition 2.13. Given S C k and 6 € {2, K}, we define the equivalence relation :‘Z C 0% x 0", as follows
n=2¢ —= {a<k|nla)#E)}NS is non-stationary.
It is clear that :% % 0" x 0" if and only if S is stationary.
Exercise 2.5. Show that n =% ¢ if and only if there is a club C C k, such that CNS C {a < k| n(a) = &(a)}.

Exercise 2.6. Show that if C is a club, then the set of limits of C is also a club.
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Exercise 2.7. Prove Lemma 2.14

Lemma 2.14 (Monotonicity, Fernandes-Moreno-Rinot, [3] Lemma 2.7 ). Suppose 6,0, \, X' € {2,x} are such
that 0 < 0', A< X, and, X C X' and S C S’ are stationary sets such that :&,(—n:g, then zg((—n:g,.

Definition 2.15. Let (T, h) be a k-Borel*-code and o < k. Let (T, ho) = (T, h) | o be the a-approximation of
(T, h) defined by T, =T Na<* and he = h | Ty.

We say that a k-Borel equivalence relation E C 2% x 2% has an approximation if there is a k-Borel*-code,
(T, h), such that the following hold

e T doesn’t have infinite branches,

e (T,h) codes E,

e there is a club C such that for all « € C, (T, h) [ a codes an equivalence relation F,,
e for all & € C and leaf [ € T N <, there are 1, € 2<% such that ho(l) = N, x Ng.

Lemma 2.16 (Friedman-Hyttinen-Weisnstein(Kulikov), [4] Theorem 11). Let E be a x-Borel equivalence rela-
tion with an approzimation (T, h) and C C k. For all stationary set S C k, E —.=%.

Proof. Since F is approximated by (T,h) and C' C k, (T,h) | « is an equivalence relation for all « € C. Let
us denote these equivalence relations by E,. For all a € C, let (¢ | 0 < i < k) be an enumeration of the
FE,-equivalence classes. Let us define the function F': k" — k" by

i ifacCandneaxy,

0 otherwise.

Fn)(e) = {

Let us show that n E § if and only if F'(n) =% F(&).

If n E &, then IT has a winning strategy o for the game B*(T, h, (n,£)). Notice that the set D = {a < & |
o(a<¥) C a} is a club, thus for all « € CN D, o is a winning strategy of II for the game B*(Ty, hq, (1,£)). We
conclude that n E.¢ and F(n)(a) = F(§)(a). We conclude that C N D C {a < k | F(n)(a) = F(&)(«)} and
{a < k| F(n)(a) # F(§)(a)} NS is non-stationary. So F(n) =% F(&).

From Exercise 1.9 and a similar argument, it is possible to show that there is a club D C k such that
CND C{a< k| F(n)(a)# F(&)(a)}. Thus {a < k| F(n)(a) # F(&)(a)}NS is stationary. So F(n) #% F(£).

Exercise 2.8. Show that F is C-recursive and continuous.

O
Exercise 2.9. Prove Lemma 2.17.

Lemma 2.17 (Fernandes-Moreno-Rinot, [3] Lemma 2.10). Suppose x is such that |k| = [2*| for some \ < k,
and X, S C k be stationary sets. Show that if =% —.=%, then =< .=%.
(Hint: Similar to Fact 2.10 (2).) Use the following two facts:

o If (D; |i <~ < k) is a sequence of clubs of k, then ﬂKv D; is a club of k.

o If S C k is stationary and {S; | i <y < K) is a sequence of disjoint subsets of S such that Ui<~/ S; =9,
then there is j <y, such that S; is a stationary set of k.

Show that the following function F' is a reduction:
o Let h:r — 2> is a bijection.

o Define 7 : k% — (2%)* by w(n) = (n; | i < \) where

o Let f:25 — 2% a continuous reduction from =% to =%.

e Define F: k" — k" by F(n) =, where m(n) = (n; |1 < A) and () = (f(n:) | i < A).
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2.3 The approximation lemma

Definition 2.18 (S-approximation). Let 6§ € {2,k} and let S C & be a stationary set, we say that an equivalence
relation E C 0% x 0% has an S-approzimation if there is (Eq | @ < k) a sequence of relations, E, C 0% x 6%,
such that the following hold:

1. There is C C k a club such that for all « € C, E, is an equivalence relation.

2. For alln,& € 0%, if n E &, then there is D C C a club, such that for all a € D,
nlakE, T a.
3. For alln,& € 0%, if ~(n E &), then there is 8" C S a stationary set, such that for all o € ',
~(nlaEa &l a)

Lemma 2.19 (Approximation lemma in £"). Suppose 6 € {2,k}, S C k is a stationary set, and E C 0% x 6"
is an equivalence relation with an S-approzimation, (Eq | @ < k). Then

E HL:g .

Proof. Let C C & be the club that witnesses that (E, | o < k) is an S-approximation. For all a € C, let
(¢ | 0 < i < K) be an enumeration of the F,-equivalence classes (this can be done since k<" = k). Let us
define F': 0% — k" as follows:
i ifaeCandn|acezf,
Fn)(a) = ‘
(n)(e) {0 otherwise.
Let us show that n E £ if and only if F(n) =% F(£).
Claim 2.20. n E ¢ implies F(n) =% F(§).
Proof. Suppose 1,& € 6" are such that n E £. Since (E, | @ < k) is an S-approximation, by Definition 2.18
item 2, there is a club D C C such that for all « € D,

nlakEy &l o

So, for all @« € DN S, F(n)(e) = F(§)(a). Thus {a < k | n(a) # ()} N S is non-stationary and we conclude
that F(n) =% F(§). 0O

Claim 2.21. —(n E &) implies =(F(n) =% F(£)).

Proof. Suppose 1,¢ € 6" are such that =(n E &). Since (E, | @ < k) is an S-approximation, by Definition 2.18
item 3, there is a stationary subset S’ C S such that for all o € S’,

(o Byl a).

So, for all @« € C NS, F(n)(a) # F(&)(a). Thus CN S C {a < k| n(a) # &(a)} N S is stationary and we
conclude that —(F(n) =¢ F(¢)). O

Claim 2.22. F is C-recursive

Proof. Let us define H : 0<% — k<* as follows:

Hnla)= F(n) o ifaeCand o =min(C\(a+1)),
! |04 otherwise.

Where 0, is the function constant to 0 with domain «. Clearly, if o, 3 € C are such that 8 < «, then
H(nlpB)CH®n a).

Let us show that H is well define. Let n,& € 6% and « € C are such that n [ @« = £ | . Let o/ = min(C\(a+
1)). Clearly for all 5§ < o' such that 8 ¢ C, F(n)(8) =0 = F(&)(B). So F(n) [ & (8) =0=F(&) | o (8)
for all 8 € &/\C. On the other hand, by the definition of F, for all 8 < &’ such that 8 € C, F(n)(8) = i
and F(£)(B) = j, wheren | § € :r:f and £ [ B € acf Since n | 8 =& | B and Eg is an equivalence relation

(since g € C), a:f = xf, and i = j. Thus F(n) | o (8) = F(§) | & (B) for all 3 € o/ NC. We conclude that
Fn)loa =F&) o, Hnla)=H(E «)and H is well defined.
Finally, from the way H was defined, for all & € C and n € 6%, F(n)(8) = H(n | «)(B) for all 8 <

min(S\(a + 1)). O
Notice that for all 8 < min(C) and n € 0%, F(n)(8) = 0. By Exercise 2.3, F' is Lipschitz. O
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3 Combinatorics

3.1 Filter reflection
Definition 3.1. We say that a stationary set S C k reflects at o if SN« is stationary at «, where cf(a) > w.

We say that a stationary set S C & reflects to X if for all & € X, S reflects at a. We say that S strongly
reflects to X if for all stationary Z C S there is Y C X, such that Z reflects to Y.

Recall that the cofinality of an ordinal «, cf(a), is the smallest cardinal 4 such that there is a function
G : v — a, such that for all 8 < «, there is 6§ < v, such that 5§ < G(). For all regular cardinal v < k, define
S% as the set of ordinals below x with cofinality 7.

Lemma 3.2 (Aspero-Hyttinen-Weisnstein(Kulikov)-Moreno, [1] Proposition 2.8). Suppose v < A\ < k are
reqular cardinals If S5 strongly reflects to SY, then =5—.=5.

Proof. For all a € S%, let E, be the equivalence relation defined by
nEa§ = {B < a|n(B)#&(B)}NSY is non-stationary in a.

Let (z¢ | 0 < i < k) be an enumeration of the E,-equivalence classes. Let us define the function F': k* — k"
by

i ifae Sy and n € xf,

0 otherwise.

Fn)(e) = {

Let us show that  =Z ¢ if and only if F(n) =5 F(¢).

Suppose 7 =5 &. There is a club C' C &, such that CNSY C {a < k| n(a) = {(a)}. Thus for all « € CNSE
limit in C, CNSFNa C{B <a|n(B)=¢E(B)} and nE.&. Therefore there is a club D C & (the limits of C)
such that DN SY C {a < k| F(n)(a) = F(§)(a)}. we conclude that F(n) =5 F(§).

Suppose . #5 £ Then Z = {a < k| n(a) # {(a)} N SE is stationary. By strong reflection, there
is a stationary Y C X such that Z reflects to Y. Thus, for all @« € Y, Z N « is stationary in a. Since
ZNaC{B<al|nB)#&LB)rNnSy, foralla €Y, {B < a|n(B) #E(B)} NSy is stationary in a. Therefore
for all & € Y, n and £ have different equivalence classes in E, and F(n)(«) # F(£§)(«). We conclude that

F(n) #X F().

Same as in Exercise 2.8, F' is S§-recursive and continuous. O
Definition 3.3. F C P(9) is a filter over § if the following holds:

e §EF,

o forallz e F,ifx Cy, theny € F,

o ifr,ye F, thenxNy € F.

Given a filter F over §, we denote by F*+ the set {A C 6 |VB € F(ANB #0)}.

Definition 3.4. Let F C P(k) be a filter over k. For any set R, F induces an equivalence relation over the
space R*. Let ~§ be the following relation:

n~FESIWeF (W {a<n|n(a)=¢a)})
Exercise 3.1. Show that for any filter F, N}D_f s an equivalence relation.
We say that an equivalence relation F is filtered if and only if there is a filter F such that n F £ &1 N% £.

Exercise 3.2. Show that the following are filtered equivalence relations:

2. 0.
3. Eg".
4. :%, where S C k is stationary.
Exercise 3.3. Show that 0, is not a filtered relation when o < k.

Let us define EO<F"’K, the equivalence modulo bounded over k", as:

ES™" = {(n,€) € " x " | Ja < k [V8 > a (n(B) = £(B)])}.
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Exercise 3.4. 1. Show that E0<”"{ is a filtered equivalence relation.

<K,k

2. Prove that for any stationary set S C k, Ej —L=g.

Definition 3.5. Suppose S C k is a stationary set and F = (Fa | @ € S) is a sequence of filters, i.e. for
all € S, F, is a filter over a. We say that F captures clubs if and only if for every club C' C k, the set
{a eS| CnNna¢F,} is non-stationary.

Example 3.1. Let w < A < k be a regular cardinal. For all o € S§, let F, be the club filter of . Clearly

—

F =(Fo|a€S%) captures clubs.

Definition 3.6. Suppose X,S C k are stationary sets, and F= (Fo | @ € S) is a sequence of filters. We
say that X F-reflects to S if and only if F captures clubs, and for every stationary set Y C X, the set
{a € S|YNaeFI} is stationary.

We say that X f-reflects to S if and only if there exists a sequence F over a stationary subset S C S such
that X F-reflects to S’.

Exercise 3.5. Prove Lemma 3.7.

Lemma 3.7 (Monotonicity, Fernandes-Moreno-Rinot, [3] Lemma 2.4 ). Suppose Y C X Ck and SCT C k
are stationary sets. If X f-reflects to S, then Y f-reflects to T.

Lemma 3.8 (Fernandes-Moreno-Rinot, [3] Lemma 2.8 ). If X f-reflects to S, then =% ="%.

Proof. Suppose that F = (F, | o € §) witnesses that X f-reflects to S. For every a € S, define an equivalence
relation ~, over kK by letting n ~, & iff there is W € F,, such that WNX C {f < a|n(B) =&(B)}. As there
are at most |£%| many equivalence classes and as k<" = K, we can enumerate the equivalence classes [1]~,,
(x| 0 < i < k). Next, define a map f : " — k" by letting for all n € k" and o < &:

fn)(e) == oY

i ifaeS and[n|al., =z
0, otherwise.

Clearly f is Lipschitz and S’-recursive. To show that it is a reduction from =% to =%, let n, & be arbitrary
elements of k*.

e 1 =% & There is a club C such that C N X C {8 < x| n(B) = £(8)}. Since F captures clubs, there is a
club D C & such that, foralla e DNS’, CNa € F,.

Claim 3.9. Dn{a € S| f(n)(a) # f(§)(a)} =0, so f(n) =5 f(S)-

Proof. Let a € D be arbitrary. If o ¢ S’, then f(n)(a) =0 = f(§)(a).

If « € 8, then for W := C'N«, we have that W € F, and WNX C {8 < a | n(8) = £(8)}, so that
[n 1 al~, =[§ 1 al~, and f(n)(a) = f(§)(a). O

o n#5 & SoY :={B e X |n(B) #&(B)} is stationary. Since F = (F, | a € §') witnesses that X f-reflects
to S, T:={ae S |YNae Fl} is stationary. Now, for every a € T and any W € F,, WNY Na # 0.
Sothat WNYNaCWNX, WNX Z{B<al|nB)=~£0)},and n|a]., # [ ] o], . It follows that

T C{aec s | f(n)(a) # f(E)(@)}, so that f(n) #s f(£)-
O

Exercise 3.6. Prove Lemma 3.10.

Lemma 3.10 (Fernandes-Moreno-Rinot, [3] Lemma 2.17). Suppose X,Y,Z are stationary subsets of k, with
X NY =0. Prove the following:

1. If X f-reflects to' Y and Y f-reflects to X, then there is a function simultaneously witnessing

=x = =y & =y =L =x.

2. If Z f-reflects to Y and Z f-reflects to X, then there is a function simultaneously witnessing

=z =L =y & =z = =x.
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3.2 Diamond principle

Definition 3.11. For a given cardinal A and a stationary set S C X\, OA(S) is the statement that there is a
sequence (Dy, | a € S) such that

e Forallaw€ S, D, C «.
o For all AC A, the set {a € S| Do = AN} is stationary.

Exercise 3.7. Show that if X is an infinite cardinal and S C A\t is a stationary set. Then $y+(S) implies
AT =P(\)| =2

Lemma 3.12 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 60). Let S C & be stationary and suppose
that . (S). Then
E5"r =%

Proof. Let (D, | o € S) be a sequence that witnesses ¢, (S). For all a € S, let 1, : & — 2 be the function

if o
nel8) = {1 if 3¢ D

0, otherwise.

For all a € S let F, be the filter {Z Ca |30 < a (ZU S = a)}, and ~,, the equivalent relation induced by F,.

Define f : 2% — 2% by:
1 ifna€nlale;
(e = {0, otherwise.

It is clear that f is Lipschitz.

e Suppose n E5" ¢ Thus there is f < k such that for all @ > 8, | @ ~o & | a. Then, for all a > 3,
f(n)(a) = f(€)(a). In particular, for all a € SN B, so f(n) =% f(£).

e Suppose —=(n E5" €). There is an unbounded set S C k, such that Vo € A, n(a) # £(a). So there is a club
C C k,such that A C C and for all « € C, e alimit of C, =(n [ @ ~o & [ @). Thus [n | a]~, #[€ ] o]~
On the other hand, by . (5), the set

e

R={a<k|nla=mna}

={a<w|(la)"' 1] =ng"1]}
={a<k|n ]Na=D,}
is stationary. So, for all « € CNR, 1y € [ | &]~,, and 4 € [€ | @]~ . We conclude that for all « € CNR,

a

f(n)(a) =1 and f(n)(a) = 0. Since R is stationary, C N R is stationary and f(n) #% f(£).
O

Definition 3.13. We say that X F-reflects with ¢ to S iff F captures clubs and there exists a sequence
(Yo | @ € S) such that, for every stationary Y C X, the set {a € S | Y, =Y Na & Y Na € F} is stationary.

We say that X f-reflects with { to S if and only if there exists a sequence F over a stationary subset S’ C S
such that X F-reflects with  to S’.

Lemma 3.14 (Fernandes-Moreno-Rinot, [3] Claim 2.14.1). Let X,S C & be stationary sets such that X §-
reflects with & to S. There is S' C S stationary, a sequence (o | a € S'), and (F, | a € S) such that, for every
stationary Y C X and every n € k", the set {a € S" | no =n [ a & Y Na € F,} is stationary.

Proof. Let 8" C k, F = (Fo | @ € 8”) and (Y, | @ € S”) witness together that X f-reflects with { to S. Let
S":={a€S"|Y, € Ff}. Foreach a € 9, let F, be the filter over a generated by F, U {Y,}.

Let C be the set of limit points of X and B := X\, so, C'is a club and B is not stationary and has cardinality
k. Let {ag | B € B} be an enumeration of K<". Then, for each o € S’ let n, := ((U{ap | B8 € YaNB})N(ax ).

Claim 3.15. (1, | « € §’) is as wanted.

Proof. Let n € k" and Y C X stationary. Let f : kK — B be the unique function to satisfy that, for all
€ < K, apey = 1 [ e Notice that Y N C is a stationary subset of X disjoint from Im(f). In particular,
Y’ = (Y NC)UIm(f) is a stationary subset of X, and hence G :={a € 5" | Y, =Y' Na &Y' Nae Ff}isa
stationary subset of S”.

Now, as F captures clubs, let us fix a club D C & such that, for alla € DN S’, CNa € F,. Therefore
T={acGND| fla] Ca & nla] C a} is a stationary subset of S’. Let us show that foralla € T, n, =71 |
andYNaeF, LetaeT.
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° Sinceg €D, CNa€Fy,CFy SinceacG, Y Na=Y, € F,. Thereforg, the intersection Y/ NC N«
isin F,. But YYNCNa=Y NCNa, and hence the superset Y N« is in F,, as well.

e Sincea € G, Y, =Y Naand Y, NB =Im(f)Na. Since fla] C a, fla] CY,NB CIm(f). As nle] C «a,
we get that n [ @ = 7N (a x a). Recalling the definition of f and the definition of 7,, it follows that
nlaCn, Cn, sothat n, =71 .

O
O

Exercise 3.8. Prove Lemma 3.16.

Theorem 3.16 (Fernandes-Moreno-Rinot, [3] Theorem 2.14). If X f-reflects with { to S, then =< =%.
Hint: Similar to Lemma 3.12). Use the previous lemma to guess the equivalence classes.

Exercise 3.9. Suppose $w(S) holds. Show that the following holds: there is a sequence (fq | & € S) such that
o forallae S, fo:a— a,
o for all f € k", the set {a € S| fo. = f | a} is stationary.

Exercise 3.10. Let id, be the identity relation in the space k. Show that id, <, ids.

3.3 Reflection of II}-sentences

In this session we will focus on proving the consistency of x-Borel* = X1(k). This was initially proved by
Friedman-Hyttinen-Weisnstein in [5].

Theorem 3.17 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 18). If V = L, then k-Borel* = %1 (k).

We will show another proof which shows that x-Borel* = X1 (k) holds under certain reflection principle.
A TIi-sentence ¢ is a formula of the form VX3Y ¢ where ¢ is a first-order sentence over a relational language
L as follows:

e [ has a predicate symbol € of arity 2;

e £ has a predicate symbol X of arity m(X);

e £ has a predicate symbol Y of arity m(Y);

e £ has infinitely many predicate symbols (A, )new, each A, is of arity m(A,,).

Definition 3.18. A cardinal \ is I1}-indescribable if for every I1i-sentence ¢ and a set A C Vy with (Vy, €
,A) = ¢, there is a < k such that (V,,€,ANa) E ¢.

Exercise 3.11. Show that if k is Ui-indescernible cardinal, then Reg(k) = {a < k | cf(a) = a}, the set of
reqular cardinals below k, is stationary.

We say that an equivalence relation E is Yi-complete if it is a 31 equivalence relation and for all 31
equivalence relation, R, R —p F.
Let us show that if & is IT3-indescernible cardinal, then =g 18 2 Y1-complete equivalence relation.

Theorem 3.19 (Aspero-Hyttinen-Weisnstein(Kulikov)-Moreno, [1] Thm 3.7). If k is a I13—indescribable car-
dinal, then =%, is ¥ (r)-complete.

Proof. Let E be a ¥1(x) equivalence relation on x*. Then there is a closed set C on " x k" x k" such that n E £
if and only if there exists ¢ € k" such that (7,£,¢) € C. Let us define U = {(n [ o, ¢ [ a, ¢ [ ) | (,€,Q) €
C & a < k}, and for every v < k define C, = {(7,£,{) € V" x " x 7Y | Va<y (n [ a,§ [ a,( [ o) € U}. Let
E, C 7Y x 47 be the relation defined by (n,€) € E, if and only if there exists ¢ € 47 such that (1,¢,¢) € C,.
Since £ is an equivalence relation, it follows that E, is reflexive and symmetric, but not necessary transitive.
Let (% | 0 < ¢ < k) be an enumeration fo the equivalence classes of E,, when E, is an equivalence relation.
Let us define the reduction by

1 if F, is an equivalence relation,n [ o € o® and 7 € z

F(n)(a) = {

0 otherwise.

Let us prove that if (n,§) € E, then F(n) =7, F(£). Suppose (1,§) € E. Then there is ¢ € " such that
(n,£,¢) € C and for all @ < k we have that (n [ @,& [ @, [ a) € U. On the other hand, we know that there is
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a club D such that for all « € DN Reg(k), n [ a, £ [ o, ¢ [ a € a®. We conclude that for all & € D N Reg(k),
if E, is an equivalence relation, then (n,§) € E,. Therefore, for all « € D N Reg(x), F(n)(a) = F(§)(a), so
F(n) =R, F(§). Let us prove that if (n,€) ¢ E, then F(n) #%,, F(§). Suppose n, { € " are such that
(n,€) ¢ E. We know that there is a club D such that for all « € DN Reg(k), n [ o, £ [ « € a™.

Notice that because C'is closed (n,§) ¢ F is equivalent to

Veer” Fa<r (€ la,(la)¢U),

so the sentence (n,£) ¢ E is a II1 property of the structure (V,, €,U,n,£). On the other hand, the sentence
V¢1, G, G € K7[((¢1,62) € EA((2,¢3) € E) = ((1,(3) € E] is equivalent to the sentence V(y, (o, (3,01,02 €
KR[305 € £7(¢1 V 1ha V 1)3)], where )1, 19 and 13 are, respectively, the formulas Joy < K (¢ [ a1,(e | 1,0 |
a1) ¢ U, Jag < k (2 [ aa,(3 [ a,02 | a2) ¢ U, and Vaz < k ({1 | a3,(3 | as,05 [ ag) € U. Therefore, the
sentence V(1, (2, (3 € k%[((¢1,¢2) € EA((2,(3) € E) — ((1,(3) € E] is a II] property of the structure (V,, €,U).
It follows that the sentence

(D is unbounded in ) A ((n,€) ¢ E) A (E is an equivalence relation) A (k is regular)

is a I1} property of the structure (Vi,€,U,n,&). By II3 reflection, we know that there are stationary many
v € Reg(k) such that v is a limit point of D, E, is an equivalence relation, and (n [ v,£ [ v) ¢ E,. We conclude
that there are stationary many v € Reg(k) such that f,(n) # f,(£), and hence F(n) #5., F(n) O

reg

As we can see from the previous theorem, I} reflection implies that =/, g 18 ¥1(k)-complete. Unfortunately

=Teg 18 DOL necessarily k-Borel*. As we saw, =[ is a k-Borel* equivalence relation. Therefore, if there is a I13

reflection notion on the set {a < k | ¢f(a) = w}, then we conclude that x-Borel* = $1(k). Let us define a
notion of reflection on ordinals of cofinality w.

Definition 3.20. For sets N and x, we say that N sees x iff N is transitive, p.r.-closed, and z U {x} C N.

Suppose that a set N sees an ordinal «, and that ¢ = VX3Y ¢ is a [Ii-sentence, where ¢ is a first-order
sentence in the above-mentioned language £. For every sequence (A, )new such that, for all n € w, A,, C a™(®n),
we write

<OZ, S (An)n€w> ):N ¢
to express that the two hold:
1' (An)new € N;
2. (N,€) = (VX C am™N3Y C a™)[(a, €, X, Y, (An)new) E ¢, where:
e c is the interpretation of ;
e X is the interpretation of X;
e Y is the interpretation of Y, and

e for all n € w, A, is the interpretation of A,,.
We write a™ for |a|T, and write (o, €, (A,)new) F ¢ for
<O[, €, (An)n€w> ':HQJr ¢

Definition 3.21. Let k be a regular and uncountable cardinal, and S C k stationary.
DI%(T13) asserts the existence of a sequence N = (N, | a € S) satisfying the following:

1. for every a € S, N, is a set of cardinality < k that sees a;
2. for every X C k, there exists a club C C k such that, for alla € CNS, X N € Ny;

3. whenever (k, €, (Ap)new) E ¢, with ¢ a I1i-sentence, there are stationarily many o € S such that |N,| =
la| and (a, €, (A, N (O‘m(A")))nEw> FN, ¢

The principle DI§(II}) provide us the reflection principle that we need, let us show that there is a Xi-
complete quasi-order of 2%. If @; and Q2 are quasi-orders on Bq,By € {27, k"}, respectively, then we say
that @7 is Borel-reducible to Qo if there exists a x-Borel map f: B; — By such that for all n,& € 2 we have

nQ1§ <= f(n)Q21(€) and this is also denoted by Q1 —p5 Qo.

Definition 3.22. Given a stationary subset S C k, we define a quasi-order C° over 2% by letting, for any two
elementsn:k — 2 and & : Kk — 2,

n C% & iff {a € S| n(a) > &(a)} is nonstationary.
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Lemma 3.23 (Transversal lemma, Fernandes-Moreno-Rinot, [2], Prop 3.1). Suppose that (N, | o € S) is a
DI (I13)-sequence, for a given stationary S C k. For every I1-sentence ¢, there exists a transversal (n, | o €
S) € [lacg Na satisfying the following.

For every n € k", whenever (k, €, (An)necw) = ¢, there are stationarily many o € S such that

1. na=nla, and
2. (o, €, (A, N (Oém(An))>nEw> =N, ¢

Exercise 3.12. There is a first-order sentence V¥ in the language with binary predicate symbols € and X such
that, for every ordinal a and every X C a X a,

(X is a function from a to o) iff (o, €, X) = Yc)-

Exercise 3.13. Let a be an ordinal. Suppose that ¢ is a Yi-sentence involving a predicate symbol A and two
binary predicate symbols Xo,X1. Denote Ry := {(Xo, X1) | (o, €, 4, X0, X1) = ¢}. Then there are I1}-sentences
’l/}RCﬂcxivc and Q;ZJTransitivc such that:

1. (R¢ :—) {(7777’) | ne aa}) fo (<a7 €7A> ): quReﬂexive);
2. (Ry 1is transitive) iff ({a, €, A) = Yrransitive)-
Definition 3.24. Denote by Levs(k) the set of level sequences in k<" of length 3:

Levs(k) := U KT X KT x K.

Fiz an injective enumeration {{s | § < r} of Levs(k). For each § < k, we denote by = (£9,0},0%). We then
encode each T C Levs(k) as a subset of k° via:

Ty := {(6,8,45(8). 6(8), 63(8)) | 6 < k, €5 € T, B € dom(£5)}.

Theorem 3.25 (Fernandes-Moreno-Rinot, [2], Thm 3.5). Suppose DI§(I13) holds for a given stationary S C k.
For every analytic quasi-order Q over k%, Q —pC?.

Proof. Let Q be an analytic quasi-order over k. Fix a tree T on k<% x k<% x k<" such that @ = pr([T]), that
is,

M8 e@ < e Vr<rk(nInglIn(lT)eT.

We shall be working with a first-order language having a 5-ary predicate symbol A and binary predicate
symbols X, Xy, X and e. By Exercise 3.12, for each i < 3, let us fix a sentence v . concerning the binary
predicate symbol X; instead of X, so that

(Xi S :“EK) iff (<:‘€, E,A, X07X17 X2> ): wgnc)'
Define a sentence (¢ to be the conjunction of four sentences: ¥p, ., i, Y2 ., and

Vr30YB[e(B, 7) = FvoInFre(Xo(B,70) AXi(B,71) AXa(B,v2) ANA(S, B,70,71,72)))-

Set A := T} as in Definition 3.24. Evidently, for all n,¢,¢ € P(k X k), we get that

(r,€,4,m,6,¢) = ¢q
iff the two hold:
1. n,&,¢ € k¥, and
2. for every T < k, there exists § < k, such that {5 = (n [ ,§ [ 7,( [ 7) isin T.

Let ¢g := IXa(pg). Then ¢¢ is a Yi-sentence involving predicate symbols A,Xq,X; and e for which the
induced binary relation

R¢Q = {("7’5) € (,P(”i X H))Q ‘ <H5 eaA’n7£> ': ¢Q}

coincides with the quasi-order ). Now, appeal to Exercise 3.13 with ¢¢g to receive the corresponding I13-
sentences YReflexive aNd Yyansitive- ' Lhen, consider the following two IT3-sentences:

i w% = 1pReﬂexive A wTransitive A ¢Q7 and

L4 le = wReﬁexive A wTransitive A _'(QSQ)
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Let N = (N, | @ € S) be a DI%(II})-sequence. Appeal to Lemma 3.23 with the IIi-sentence wb to obtain a
corresponding transversal (1, | @ € S) € [[,cg No- Note that we may assume that, for all o € S, 7, € “a, as
this does not harm the key feature of the chosen transversal.

For each n € k", let

Zy={a€S|ANa® and n | a are in N,}.

Claim 3.26. Suppose n € k*. Then S\ Z, is nonstationary.

Proof. Fix primitive-recursive bijections ¢ : k% ++ k and d : k% <+ k. Given ) € k", consider the club Dy of all
a < k such that:

o] Ca
e claxa] =a;
e dlaxaxaxaxal=a.

Now, as ¢[n] is a subset of k, by the choice ]\7, we may find a club D; C k such that, for all « € D; N S,
¢[n] N« € N,. Likewise, we may find a club Dy C k such that, for all « € Dy N S, d[A] N € N,.
For all « € SN Dy N Dy N Dy, we have

ecplal=cnn(axa)]=chnNcaxal =cnnaecN,, and
e d[ANa’] =d[A]Nd[e®] =d[A]Na € N,.

As N, is p.r.-closed, it then follows that n | « and ANa® are in N,. Thus, we have shown that S\ Z,, is disjoint
from the club Dy N D1 N Ds. ]

For all n € " and a € Z,, let
Ppa={p€a*NN,y|{(a,e,ANa’ p,n|a)Enw, 1/122}.
Finally, define a function f : k* — 2" by letting, for all n € k¥ and «a < &,

1, fae Z, and 7o € Pp.a;
0, otherwise.

Exercise 3.14. f is Borel.
Claim 3.27. Suppose (1,€) € Q. Then f(n) C° f(£).

Proof. As (n,€) € Q, let us fix ( € k" such that, for all 7 < k, (n [ 7,& | 7,{ [ 7) € T. Define a function
g : k — K by letting, for all 7 < k&,

g(r) :=min{d <k [ls=(n[7,E17,.¢7)}

\ Z;) are nonstationary, let us fix a club C C & such that CNS C Z, N Z N Z,.
eC

As (S\ Zy), (5 Z) and
{ | gla] € a}. We shall show that, for every « € DN S, if f(n)(a) = 1 then

Consider the club D :=

f(€)(a) = 1.
Fix an arbitrary a € D N S satisfying f(n)(«a) = 1. In effect, the following three conditions are satisfied:

1. <Oz, SH AN Oé5> ):Na wReﬂexivev
2. <a, <, AN Ol5> ):Na 'l/JTransitivev and
3. (v, €,ANA°,na,n | @) En, ¢

In addition, since « is a closure point of g, by definition of ¢g, we have

(aye,Ana’ ] aéla,Cla) g

(S

As o € S and g is first-order,

(a,€,ANa® a1 a,(la) En, o

so that, by definition of ¢q,
(a,e,ANa° | @) =N, 9q-

By combining the preceding with clauses (2) and (3) above, we infer that the following holds, as well:
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(4) <Oé, S AN O[5, Ua,f T C¥> 'ZN(1 d)Q
Altogether, f(£)(«) =1, as sought. O
Claim 3.28. Suppose (n,€) € k" x k" \ Q. Then f(n) Z° f(£).

Proof. As (S'\ Z,) and (S'\ Z¢) are nonstationary, let us fix a club C' C & such that CNS C Z, N Z¢. As Q is
a quasi-order and (7,&) ¢ @, we have:

1. <:‘€, SH A> ': YReflexives
2. <I€, ISH A> ': Yvansitive, and

3. (K, €, 4,n,8) | ~(¢q)

so that, altogether,
(r,€,4,m,6) | g

Then, by the choice of the transversal (n, | a € S), there is a stationary subset S’ C SN C such that, for all
acS"

1. <a, <, AN Ol5> ):Na YReflexives

2. <Oé, <, AN Ol5> ):Na ¢Transitivea

3. {v,e,ANa’n & | @) Fn, ~(¢q), and

4. na=n1Ta.

By Clauses (3’) and (4’), we have that n, ¢ Pe¢ o, so that f(£)(a) = 0.
By Clauses (1’), (2’) and (4’), we have that 1, € P, «, so that f(n)(a) = 1.
Altogether, {a € S| f(n)(a) > f(£)(a)} covers the stationary set S', so that f(n) €5 f(£).

This completes the proof of Theorem 3.25 O

Corollary 3.29. Suppose DI§(I13) holds for a given stationary S C k.
For every analytic equivalence relation E over k%, E f—>B:25,

K

As we have seen, the equivalence relations =J;

_K _2
=u —B =L

Question 3.30. Is =], —p :i a theorem of ZFC?

and =2 play a crucial role. It is clear that DI},(TI3) implies

4 The Isomorphism relation

Denote by S™(A) the set of all consistent types over A in m variables (modulo change of variables), and
S(A) = Um<wS™(A).

e We say that T is &-stable if for any set A, |A| <&, |S(A)] <&.
e We say that T is stable if there is an infinite £, such that T is &-stable.
e We say that T is unstable if there is no infinite &, such that 7' is &-stable.

e We say that T is superstable is there is an infinite £ such that for all & > &, T is £’-stable.

Definition 4.1 (OTOP). A theory T has the omitting type order property (OTOP) if there is a sequence
(¢m)m<w of first order formulas such that for every linear order 1 there is a model M and n-tuples a; (t € 1)
of members of M, n < w, such that s < t if and only if there is a k-tuple ¢ of members of M, k < w, such that
for every m < w,

M E pm(c,as, ar).
The non-forking notion | and the isolation notion F% (Chapter 4 [19]) are needed to define the DOP.

Definition 4.2 (DOP). A theory T has the dimensional order property (DOP) if there are F%-saturated models
(M;)i<s, Mo C MyN My, My Ly, Ma, and the F%-prime model over My U Ms is not F%-minimal over My U Ms.

Definition 4.3.
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o We say that T is classifiable if T is superstable without DOP and without OTOP. These theories are
diveded into:

— shallow;

— non-shallow (deep).
o We say that T is non-classifiable if it satisfies one of the following:

1. T is stable unsuperstable;

2. T is superstable and has DOP;
3. T is superstable and has OTOP;
4

. T 1is unstable.

Theorem 4.4 (Main Gap, Shelah [19, XII, Theorem 6.1]). Let T be a first order countable complete theory and
denote by I(\,T) the number of non-isomorphic models of T of size A.

1. IfT is not superstable or (is superstable) deep or has the DOP or has the OTOP, then for every uncountable
A TN T) =22

2. If T is shallow superstable without the DOP and without the OTOP (i.e. classifiable and shallow), then
for every a > 0, IRy, T) < 3y, (J])-

Theorem 4.5 (Morley’s Conjecture, Shelah [19, XIII, Theorem 3.7]). Let T be a countable complete first-order
theory. Then for A\ > p > R, I(A,T) > I(p, T) except when A > u = R, T is complete, Ry -categorical not
No-categorical.

4.1 Coding structures
We can code structures of any size (not bigger than x) with elements of x".

Definition 4.6. Let w < p < k be a cardinal and L = {Q,, | m € w} be a countable relational language. Fix
a bijection m, between p<* and p. For every n € k™ define the structure A, with domain p as follows: For
every tuple (a1, ag,...,a,) in u"

(a1,a9,...,a,) € Qe & Q,, has arity n and n(m,(m, ay,az, ..., a,)) > 0.
Notice that the structure A, [ o is not necessary coded by the function n | a.
Exercise 4.1. There is a club Cr such that for all o € Cr, Ay | a = Ayjja

For every first-order theory in a relational countable language (not necessarily complete), we have coded the
models of T of size u < k in the GBS, x”. In the same way we can define these structures in the GCS, 2".

Definition 4.7. Let w < u < k be a cardinal and T a first-order theory in a relational countable language. We
define the isomorphism relation of models of size p, =4 C k" X K™, as the relation

{(7775”(-'417[# =T, Afru =T, Anru = Aﬁm) or (Anru =T, Afru = T)}

~K

Let us denote by 27 the isomorphism relation of models of size k of T (i.e. 2.). To simplify notation we
will refer to =1 as the isomorphism relation of T. We will also denote by A, the structure A,,,, for obvious
reasons.

Exercise 4.2. Let T be a first-order theory in a relational countable language. Show that the isomorphism
relation of T, =1, in the space kK is continuous reducible to the isomorphism relation of T in 2".

Exercise 4.3. Prove Proposition 4.8.

Proposition 4.8 (Moreno, [16] Proposition 5.28). Let w < p < § < k be cardinals. For all first-order countably
theory in a relational countable language T, not necessarily complete,

> e %% .
(Hint: Use Theorem 4.5 and k<" = k.
Exercise 4.4. Prove 4.9.

Proposition 4.9 (Moreno, [16] Proposition 5.30). Let k = X, be such that I, (| v |) < k and k = AT = 22,
Suppose T is classifiable shallow, Ty classifiable non-shallow, and T3 non-classifiable. Then

A
&n —=p 0 —p &5, <

(Hint: Use Theorem 4.4).
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4.2 The Ehrenfeucht-Fraissé game

Let su denote by P, (k) the set of subsets of x of size less than &.

Definition 4.10 (The Ehrenfeucht-Fraissé game). Fiz an enumeration {X,}, <. of the elements of P..(k) and
an enumeration {fy}y<x of all the functions with both the domain and range in Py(k). For every pair of
structures A and B with domain k, the EFg (A, B) is a game played by players I and II as follows.

In the n-th mowve, first I chooses an ordinal B, < k such that Xg, | C Xg, . Then II chooses an ordinal
0, < Kk such that X C dom(fe,) Nran(fe,) and fo, , C fo, (if n =0 then Xz, =0 and fo, , =0). The
game finishes after w moves. The player 1T wins if |, fo,: A — B is a partial isomorphism. Otherwise the
player 1 wins.

Definition 4.11 (Restricted game). For every o < k the game EF. (A [4, B [o) on the restrictions A [ o and
B | a of the structures A and B with domain k is defined as follows:

In the n-th move, first I chooses an ordinal B, < o such that Xg, C o and Xg, , € Xg, . Then II chooses
an ordinal 0, < « such that dom(fy,),ran(fo,) C «, Xa, C dom(fe,) Nran(fe,) and fo, , < fo, (if n =10
then Xp, | =0 and fg,_, =0). The game ends after w moves. Player IT wins if J,_, fo,: A [a— B [a is a
partial isomorphism. Otherwise player I wins. If a = k then this is the same as the standard EF-game which
is usually denoted by EF.

We will write I T EF(A [, B o) when I has a winning strategy in the game EFC(A o, B o). Similarly
for I1.

Lemma 4.12 (Hyttinen-Moreno, [9] Lemma 2.4). If A and B are structures with domain k, then the following
hold:

o II 1 EF(A,B) < 3C C k a club, such that I11 EF](A [a, B [a) for all a € C.
e I1EF.(A,B) < 3C C k a club, such that 11 EF(A 14,8 ) for alla € C.

Proof. Tt is easy to see that if o : k<% — k is a winning strategy for II in the game EF%(A | k,B | k), then
o | <% is a winning strategy for IT in the game EFZ (A [, B [4) if o[a<?*] C a. So II 1+ EF5(A I, B [,) for «
a closed point of o.

We conclude that if IT + EFZ(A | k,B | k), then II + EFZ(A o, B [o) for club-many «. The same holds
for I. To show the other direction, notice that EFZ (A | ,B | k) is a determined game, so if IT doesn’t have
a winning strategy, then I has a winning strategy. Therefore, if IT doesn’t have a winning strategy in the
game EFF (A [ k,B | k), then I 1 EFE(A [, B [4) for club-many «, and II cannot have a winning strategy in
EFS(A [a, B [o) for club-many . O

Definition 4.13. Assume T is a complete first order theory in a countable vocabulary. For every a < k and
n,& € K%, we write n REp & if one of the following holds, Ay, o T and A¢ [oE=T, or Ay [oET, Ae o= T
and I1 1 EF(Ay Tas Ae Ta)-

Lemma 4.14 (Hyttinen-Moreno, [9] Lemma 2.7). For every complete first order theory T in a countable
vocabulary, there are club many o such that R%p is an equivalence relation.

Proof. Define the following functions:

e hy:k — K, hi(a) =7 where f, is the identity function of X,.

e ho:k — K, ho(a) =y where f 1 = f,.

o h3:k? =k, ha(a,B) = Xo UXp = X,.

o hy:k — K, ha(a) = rang(fo) = X,.

o h5: Kk — K, hs(a) = dom(fa) = X,.

o hg: k? — K, he(a, ) = v where fo 0 fg = f, fa o fs is defined on the set fﬁ_l[mng(fg) Ndom(fa)]-
Each of these functions defines a club,

o C; ={y <kNa <~vy(hi(a) <)} for i € {1,2,4,5}.

o Ci= {7 < VB, < y(hi(a, B) < 7)} for i € {3,6}.
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Denote by C' the club NY_;C;. We will show that for every a € C, R% . is an equivalence relation.

By definition n R%, & implies that either both A, and A¢ are models of T" or non of them is a model of
T. Thus R%r = R~ UR™T, where R is the restriction of R%p to the set A = {n € s|A, £ T} and R* is the
restriction of R% . to the complement of A. Since R~ N RT = (), it is enough to prove that R~ and R* are
equivalence relations.

By definition it is easy to see that R~ = A x A, therefore R~ is an equivalence relation. Now we will prove
that R is an equivalence relation.

Reflexivity
By the way C) was defined, for every 8 < a, h1(f) < a and fj,(g) is the identity function of Xg. Therefore,
the function o((Bo, 81, ..., Bn)) = hi(Bn) is a winning strategy for IT in the game EF (A, [4, Ay o)

Symmetry

Let o be a winning strategy for IT in the game EFf (A, |4, A [o). Since o € Cy and o((5o, f1,---,5n)) < @,
we know that ho(o((Bo, 81, -.,6n))) < . Notice that if U;<, fp, : @@ = o is a partial isomorphism from A, [
to A¢ [a, then Uiy, fr,0,) = Ui<wf9:1 is a partial isomorphism from A¢ [, to A, [o. Therefore, the function
' ((Bo, By .-+ Pn)) = ha(a((Bo, Bi, .-, Bn))) is & winning strategy for IT in the game EFY (A¢ [o, Ay o).

Transitivity
Let 01 and o2 be two winning strategies for II on the games EFF (A, [, Ae o) and EFE(Ag o, Ac o),
respectively.

For a given tuple (8o, f1, - - -, Bn) let us construct by induction the tuples (Y0, 71, - -+ Vn)s (80: 81 - - - Bons Bong1),
and the functions f(1 ,), gn and f(o n):

1. Let 8 = Bo and for ¢ > 0, let B85, be the least ordinal such that Xpy,  UXp, = Xpy .
2. fi) 1= for (85811 85
3. 7 is the ordinal such that X, = rang(fu,:)-

4. 9 = fos((romsi))-

ot

- B3;41 is the ordinal such that Xg; = dom(g;).

6. f(2,i) = Jor (8.8 .BL:.8%51))"

Define the function o : <% — «a by o((Bo,B1,---,5n)) = On, where 8, is the ordinal such that fy, = g, o
(fem) [f<_1 Jldom(g )]). It is easy to check that for every n, the tuples (yo,71,...,7) and (8,61, Bont1)
o n

are elements of <%, and the functions Jfam)» 9n, fan) and fo, are well defined; it is also easy to check that
o((Bo, P1,---,0n)) is a valid move.
Let us show that Uy« fg, is a partial isomorphism. It is clear that rang(fi,n)) € rang(fa,ns1)). By 3 and
4 in the induction, we can conclude that rang(f(2,,)) is a subset of dom(g,y1). Then rang(Un<u(fi2,n))) €
dom(Un<w(gn)), 0

Un<w(gn o (f(Q,n) Ff(;}n)[dom(gn)])) = Un<w(9n) o Un<w(f(2,n))~

Since oy and o3 are winning strategies, we know that U,<,(gn) and Un<w(f(2,n)) are partial isomorphism.
Therefore U, <, fo, is a partial isomorphism and o is a winning strategy for IT on the game EF (A, [, A¢ o
). O

Corollary 4.15. Suppose n,& € k™. Then the following hold:
o ) Rp £ <= 3C C Kk a club, such that 71 Ry & for alla € C.

o ~(n Ry &) <= 3C C & a club, such that —(n R%p &) for all a € C.

4.3 Classifiable theories

The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 4.16 (Shelah, [19], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T' that
are Lo -equivalent are isomorphic.

Theorem 4.17 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 10). Lo . -equivalence is equivalent to
EF? -equivalence.
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From these two theorems we know that if T is a classifiable theory, then for any A and B models of T with
domain &,
IITEF; (A B)«<— A=B

I1EFS(A,B) < A%B.

Theorem 4.18 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 70). If T is a classifiable theory, then
%T 5 A%(KJ)

Proof. Notice that the EF}, game can be coded as a x-Borel* game taking at the leaves the open sets given by
partial isomorphisms. O

From Lemma 4.12, we know the following two hold for any A and B models of a classifiable theory (with
domain k):

o A= B <= 1II11EF:(A [qa,B [a) for club-many a.

e A2 B<=11EF:(A |, B [s) for club-many a.

Clearly Ry coincide with =p when T is classifiable. So

o ) =4 £ <= 3JC C k aclub, such that n Ry,  for all a € C.

o —(n =% §) <= 3C C k aclub, such that —(n R%&p &) forall a € C.

Theorem 4.19 (Hyttinen-Moreno, [9] Theorem 2.8). Assume T is a countable complete classifiable theory over
a countable vocabulary, S C K a stationary set, and p a regular cardinal. Then =% —p =%.

Proof. 1t follows from the approximation lemma (Lemma 2.19), Lemma 4.14, and Lemma 4.12. O
Exercise 4.5. Prove Theorem 4.20.

Theorem 4.20 (Hyttinen-Weisnstein(Kulikov)-Moreno, [7] Lemma 2). Assume T is a countable complete
classifiable theory over a countable vocabulary. Let S C k a stationary set. If g holds, then 2 —p =2,

5 Further results

5.1 Borel sets, A] sets, Borel* sets and Y] sets

Theorem 5.1 (Hyttinen-Weisnstein(Kulikov), [6], Corollary 3.2). It is consistent that Al(k) C k-Borel* C
Yi(k).

Lemma 5.2 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Corollary 14). The set {(n,§) € k" x " | A, = A¢}
is Y1 (k).

Theorem 5.3 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 24). A set B C k" is k-Borel and closed
under permutations if and only if there is a sentence ¢ in L+, such that B = {n € k" | A, = ¢}.

Theorem 5.4 (Friedman-Hyttinen-Kulikov).
1. Let k<% =k > 2¥. If T is classifiable and shallow, then =1 is k-Borel. ([5], Theorem 68)
2. If T is classifiable non-shallow, then =7 is A}(k) not k-Borel. ([5], Theorem 69 and 70)

3. If T is unstable or stable with the OTOP or superstable with the DOP and k > w1, then = is not Al(k).
([5], Theorem 71)

4. If T is stable unsuperstable, then = is not k-Borel. ([5], Theorem 72)
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5.2 Non-reducible results

Theorem 5.5 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 52). Assume GCH, p < & a regular
cardinal such that if k = A%, then p < cf(N\). Then in a cofinality and GCH preserving forcing extension, there
stationary sets K(A) C Sji for each A C k such that :%(A)%B:’;((B) if and only if AL B.

Theorem 5.6 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 56). For a cardinal k which is a successor
of a regular cardinal or it is inaccessible, there is a cofinality-preserving forcing extension in which for all reqular
A < K, the relations =5 are — p-incomparable with each other.

Theorem 5.7 (Dense non-reduction; Fernandes-Moreno-Rinot, [3] Corollary 6.19). There exists a cofinality-
preserving forcing extension in which:

e For all stationary subsets X, S of S, there exist stationary subsets X' C X and Y' C Y such that
:g(/ (7L>B :';//-
e For all two disjoint stationary subsets X,Y of k, =% #>p =%
Theorem 5.8 (Friedman-Hyttinen-Weinstein(Kulikov), [5] Theorem 77). If a first order countable complete

theory over a countable vocabulary T is classifiable, then =2 ++. 7.

5.3 Reflections

Theorem 5.9 (Shelah, [20] Claim 2.3). For an uncountable cardinal A\, and a stationary subset S C S;\ézf(/\),
the following are equivalent:

o 2) = )\*,
o <>,\+(S)-

Definition 5.10. For a stationary S C k, <>§+ asserts the existence of a sequence (K, | a € S) satisfying the
following:

1. for every infinite o € S, K,, is a set of size |a;
2. for every X C k, there exists a club C C k such that, for alla € CNS, CNa, X Na € K,;

3. the following set is stationary in [H,+]<":

{Me[H~+]"|MnkreS & clps(M,€) = (Kpyne, €)}-

Theorem 5.11 (Sakai, [18] Prop 1.4). $ET holds in L.
Lemma 5.12 (Fernandes-Moreno-Rinot, [3], Thm 4.10). For every stationary S C k, $&T implies DIg(I13).
Definition 5.13. Let S be the poset of all pairs (k,B) with the following properties:
1. k is a function such that dom(k) < k;
2. for each o € dom(k), k() is a transitive model of ZF~ of size < max{Ry, |a|}, with k | a € k(a);
3. B is a subset of P(k) of size < dom(k);
(K',B") < (k,B) in' S if the following holds:
(i) ¥ 2k, and B' 2 B;
(i1) for any B € B and any o € dom(k") \ dom(k), BN € K'(«).
Lemma 5.14 (Sakai, [18] Prop 1.5). For every stationary S C k, VS = L.

Corollary 5.15 (Fernandes-Moreno-Rinot, [3] Lemma 4.10 and Proposition 4.14). There ezists a < k-closed
k¥ -cc forcing extension in which DI§(II3) holds for all S C k stationary set (S stationary in'V ).

Since Q;"‘ holds in L, in L we have x-Borel* = X1 (k). Also there is a < s-closed kT -cc forcing which forces
k-Borel* = ¥1(k).

Definition 5.16. For a given cardinal A = u* and a stationary set S C A, <>§ is the statement that there is a
sequence (A, | a € S) such that
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o Forallac S, Ay, C P(a) and |Ay| < po.
o If Z C A, then there exists a club C C X such that

CNnSC{aeS|ZnNnae A, & Cnace Ay}

Lemma 5.17 (Fernandes-Moreno-Rinot, [3] Corollary 4.12). It is consistent that & holds, but O3 fails.

Theorem 5.18 (Fernandes-Moreno-Rinot, [3] Corollary 5.7). If k is strongly inaccessible, then in the forcing
extension by Add(k, k™), for all stationary subsets X, S of k, the following are equivalent:

1. X f-reflects to S;
2. every stationary subset of X reflects in S.

Theorem 5.19 (Fernandes-Moreno-Rinot, [3] Corollary 5.12). There exists a cofinality-preserving forcing ex-
tension in which, for all stationary subsets X, S of k, X does not f-reflects to S.

5.4 Model theory

The smallest ordinal « such that A € X2 UTI? is called the Borel rank of A and denoted by 7kp(A). Given a
theory T', let us denote by B(k,T) the rank rkp(2r).

Theorem 5.20 (Descriptive Main Gap; Mangraviti-Motto Ros, [13] Theorem 1.9). Let k > 2¢. If T is
classifiable shallow of depth «, then B(k,T) < 4a.

A theory T is k-categorical if there is only one model of T of size k up to isomorphism. A theory T is
categorical in x if T is k-categorical.

Theorem 5.21 (Morley’s categoricity theorem, [17] Theorem 5.6). Let T' be a first-order countable complete
theory. If T is categorical in one uncountable cardinal, then T is categorical in every uncountable cardinal.

Theorem 5.22 (Mangraviti-Motto Ros, [13] Theorem 3.3). Let T' be a countable first-order theory in a countable
vocabulary (not necessarily complete). T is k-categorical if and only if rkg(=r) =0, i.e. = is clopen.

Theorem 5.23 (Strictly stable; Hyttinen-Kulikov-Moreno, [7] Corollary 2). Suppose that k = At and \* = \.
If Ty is a classifiable theory and Ts is a stable unsuperstable theory, then =1, —. =Zr, and =1, B =Z1.

Theorem 5.24 (Unsuperstable; Moreno, [15] Corollary 4.12). Suppose k = AT = 2* and \* = \. If T} is a
classifiable theory, and Ts is an unsuperstable theory, then =p, —. =7, and =1, g =Z7,.

Theorem 5.25 (Borel reducibility Main Gap; Moreno, [16] Theorem 5.5). Let ¢ = 2¥. Suppose k = AT = 22
and 2 < X\ = X1, If Ty is a countable complete classifiable shallow theory, Ts is a countable complete classifiable
theory not shallow, and T3 is a countable complete non-classifiable theory, then the following hold:

1. Classifiable vs Non-classifiable. For T = T3,T5 there is v < k such that:
Sp e =2 e Zq, and Zp, S Ep
2. Shallow vs Non-shallow. If k =X, is such that 3, (| p |) < &, then
=r —=p 0 =B =, = =1, .

In particular,

§T3 c7L>B %Tz (7L>7‘ OH 7L>T gT1 .

Theorem 5.26 (L-Main Gap Dichotomy; Hyttinen-Kulikov-Moreno, [8] Theorem 4.11). (V = L). Suppose
k = AT and X\ is a reqular uncountable cardinal. If T is a countable first-order theory in a countable vocabulary,
not necessarily complete, then one of the following holds:

o ~r s Al(k).
o =7 is X1(k)-complete.

Theorem 5.27 (Main Gap Dichotomy; Moreno, [16] Theorem 5.16). Let x be inaccessible, or k = A\t = 22
and 2° < XA = A\<¥1. There exists a < k-closed k¥ -cc forcing extension in which for any countable first-order
theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

o = ois A%(I{)

o =7 is B1(k)-complete.
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