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1 Generalized Baire spaces

Generalized descriptive set theory is the generalization of descriptive set theory to uncountable cardinals. For
a background on classical descriptive set theory see [11] or [12]. We will denote by κκ the set of functions
f : κ→ κ, 2κ the set of functions f : κ→ 2, and κ<κ the set of functions f : α→ κ where α < κ. During these
notes, κ will be an uncountable cardinal that satisfies κ<κ = κ, unless otherwise is stated.

The aim of this first section is to introduce the notions of κ-Borel class, ∆1
1(κ) class, κ-Borel∗ class, and

show the relation between these classes.

1.1 Topology

Definition 1.1. I ⊆ P(κ) is an ideal if the following holds:

• I ≠ ∅,

• for all x ∈ I, if y ⊆ x, then y ∈ I,

• if x, y ∈ I, then x ∪ y ∈ I.

An ideal I is < κ-complete if it is closed under the union of size less than κ. An ideal I is proper if I ≠ P(κ).

Example 1.1. The set of bounded subsets of κ, {X ⊆ κ | ∃α < κ∀β ∈ X(β < α)}, form an ideal.

Definition 1.2 (Ideal topology). Let I be a < κ-complete proper ideal on κ that extends the ideal of bounded
sets. The ideal topology associated to I is the topology generated by the following basic open sets. For every
A ∈ I, ξ ∈ κA we define the basic open set Nξ by

Nξ = {η ∈ κκ | ξ ⊆ η}.

The open sets are of the form
⋃
X where X is a collection of basic open sets.

Definition 1.3 (The Generalized Baire space B(κ)). Let κ be an uncountable cardinal. The generalized Baire
space is the set κκ endowed with the following topology. For every η ∈ κ<κ, define the following basic open set

Nη = {f ∈ κκ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Definition 1.4 (The Generalized Cantor space C(κ)). Let κ be an uncountable cardinal. The generalized
Cantor space is the set 2κ endowed with the following topology. For every η ∈ 2<κ, define the following basic
open set

Nη = {f ∈ 2κ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Exercise 1.1. Show that the topology in the previous definition is the ideal topology associated to the ideal of
bounded sets.

1.2 Borel sets

Definition 1.5 (κ-Borel class). Let S ∈ {B(κ),C(κ)}. The class κ-Borel(S) of all κ-Borel sets in S is the least
collection of subsets of S which contains all open sets and is closed under complements, unions and intersections
both of length at most κ.

Definition 1.6. Let us define the following hierarchy.

• Σ0
1 = {X ⊆ κκ | X is open}

• Π0
1 = {X ⊆ κκ | X is closed}

• Σ0
α = {

⋃
γ<κAγ | Aγ ∈

⋃
1≤β<α Π0

β}

• Π0
α = {κκ\X | X ∈ Σ0

α}

Exercise 1.2. Show that κ-Borel=
⋃

α<κ+ Σ0
α.

Exercise 1.3. Let S ∈ {B(κ),C(κ)} and B ⊂ S. If B be the minimal collection that contains all the open sets
and is closed under unions and intersections both of length at most κ, then B is the class κ-Borel(S)
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Definition 1.7. Let S ∈ {B(κ),C(κ)}.

• X ⊂ S is a Σ1
1(κ) set if there is a set Y ⊂ S × S a closed set such that pr(Y ) = {x ∈ S | ∃y ∈ S (x, y) ∈

Y } = X.

• X ⊂ S is a Π1
1(κ) set if S\X is a Σ1

1(κ) set.

• X ⊂ S is a ∆1
1(κ) set if X is a Σ1

1(κ) set and a Π1
1(κ) set.

Let θ ∈ {2, κ}. A subset T ⊂ θ<κ is a tree if for all f ∈ T with α = dom(f) > 0 and for all β < α, f ↾ β ∈ T
and f ↾ β < f . In a similar way we can define trees on θ<κ × θ<κ and θ<κ × θ<κ × θ<κ We say that a tree
T ⊆ θ<κ is pruned if for all f ∈ T and β > α = dom(f), there is g ∈ T such that f = g ↾ α and β = dom(g).
We define the body of a pruned tree T as the set

[T ] = {η ∈ θκ | ∀α < κ, η ↾ α ∈ T}.

Exercise 1.4. Show that A ⊆ κκ is closed if and only if there is a pruned tree of κ<κ such that [T ] = A.

A sequence ⟨ηi |< γ⟩ is a chain of length γ, if for all i < j, ηi < ηj .

Definition 1.8 (κ-Borel∗-set in B(κ),C(κ)). Let S ∈ {2κ, κκ}.

1. A tree T is a κ+, λ-tree if does not contain chains of length λ and its cardinality is less than κ+. It is
closed if every chain has a unique supremum in T .

2. A pair (T, h) is a κ-Borel∗-code if T is a closed κ+, λ-tree, λ ≤ κ, and h is a function with domain T
such that if x ∈ T is a leaf, then h(x) is a basic open set and otherwise h(x) ∈ {∪,∩}.

3. For an element η ∈ S and a κ-Borel∗-code (T, h), the κ-Borel∗-game B∗(T, h, η) is played as follows.
There are two players, I and II. The game starts from the root of T . At each move, if the game is at
node x ∈ T and h(x) = ∩, then I chooses an immediate successor y of x and the game continues from
this y. If h(x) = ∪, then II makes the choice. At limits the game continues from the (unique) supremum
of the previous moves. Finally, if h(x) is a basic open set, then the game ends, and II wins if and only if
η ∈ h(x).

4. A set X ⊆ S is a κ-Borel∗-set if there is a κ-Borel∗-code (T, h) such that for all η ∈ S, η ∈ X if and
only if II has a winning strategy in the game B∗(T, h, η).

We will write II ↑ B∗(T, h, η) when II has a winning strategy in the game B∗(T, h, η).

Exercise 1.5. Let S ∈ {2κ, κκ}. We define κ-Borel∗∗-sets in S by changing 2. in the previous definition for
the following

2′. A pair (T, h) is a κ-Borel∗-code if T is a closed κ+, λ-tree, λ ≤ κ, and h is a function with domain T
such that if x ∈ T is a leaf, then h(x) is an open set and otherwise h(x) ∈ {∪,∩}.
Show that X ⊆ S is a κ-Borel∗∗-set if and only if it is a κ-Borel∗-set.

Recall that κ satisfies κ<κ = κ, so it is regular. A set X ⊆ κ is a club on κ if X is unbounded and any
sequence ⟨αi | i < γ⟩ such that γ < κ and for all αi ∈ X, satisfies

⋃
i<γ αi ∈ X.

Exercise 1.6. Show that the following set is an ideal:

{X ⊆ κ | exists a club C ⊆ κ (X ∩ C = ∅)}.

Example 1.2. Let µ < κ be a regular cardinal, we say that X ⊆ κ is a µ-club if X is an unbounded set and it
is closed under µ-limits.

Let µ < κ be a regular cardinal. For all η, ξ ∈ 2κ we say that η and ξ are =2
µ equivalent if the set

{α < κ | η(α) = ξ(α)} contains a µ-club.
The relation =2

ω is a κ-Borel∗ set. Let us define the following κ-Borel∗-code (T, h):

• T = {f ∈ κ<ω+2 | f is strictly incresing}.

• For f not a leave, h(f) = ∪ if dom(f) is even and h(f) = ∩ if dom(f) is odd.

• To define h(f) for a leave f , first define the set L(g) = {f ∈ κω+1 | g ⊆ f} for all g ∈ T with domain
ω, and γg = supn<ω(g(n)). Let h ↾ L(g) be a bijection between L(g) and the set {Np × Nq | p, q ∈
κγg+1, p(γg) = q(γg)}.
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Let us show that (T, h) codes =2
ω. Suppose η =2

ω ξ, so there is an ω-club C such that ∀α ∈ C η(α) = ξ(α). The
following is a winning strategy for II in the game B∗(T, h, (η, ξ)). For every even n < ω, if the game is at f
with dom(f) = n, II chooses an immediate successor f ′ of f , such that f ⊂ f ′ and f ′(n) ∈ C. Since C is closed
under ω limits, after ω moves the game continues at g ∈ κω strictly increasing with γ = supn<ω(g(n)) ∈ C. So
there is G an immediate successor of g, such that h(G) = Nη↾γ+1 × Nξ↾γ+1. Finally if II chooses G in the ω
move, then II wins.

For the other direction, suppose η ̸=2
ω ξ, so there is A ⊂ Sκ

ω stationary (Sκ
ω is the set of ω-cofinal ordinals

below κ) such that for all α ∈ A, η(α) ̸= ξ(α).
We will show that for every σ strategy of II, σ is not a winning strategy. Let σ be an strategy for II, this

mean that σ is a function from κ<ω+1 → κ. Notice that if II follows σ as a strategy, then when the game is
at f , dom(f) = n even, II chooses f ′ such that f ⊂ f ′ and f ′(n) = σ((f(0), f(1), . . . , f(n− 1))). Let C be the
set of closed points of σ, C = {α < κ | σ(α<ω) ⊆ α}, C is unbounded and closed under ω-limits. Therefore
C ∩ A ̸= ∅. Let γ be the least element of C ∩ A that is an ω-limit of elements of C, and let {γn}n<ω be a
sequence of elements of C cofinal to γ. The following is a winning strategy for I in the game B∗(T, h, (η, ξ)), if
II uses σ as an strategy.

When the game is at f with dom(f) = n, n odd, then I chooses an immediate successor f ′ of f , such that
f ⊂ f ′ and f ′(n) is the least element of {γn}n<ω that is bigger than f(n−1). This element always exists because
{γn}n<ω is cofinal to γ and γ ∈ C, γ is a closed point of σ. Since I is following σ as a strategy and γ is a closed
point of σ, after ω moves the game continues at g ∈ κω strictly increasing with γ = supn<ω(g(n)) ∈ C ∩ A.
Since η(γ) ̸= ξ(γ), there is no G immediate successor of g, such that (η, ξ) ∈ h(G). So it does not matter what
II chooses in the ω move, I will win.

The previous definitions are the generalization of the notions of Borel, ∆1
1, and Borel∗ from descriptive set

theory, the spaces ωω and 2ω. A classical result in descriptive set theory states that the Borel class, the ∆1
1

class, and the Borel∗ class are the same. This doesn’t hold in generalized descriptive set theory as we will see.

Definition 1.9. Let T be an tree without infinite branches. For all t ∈ T , we define rk(t) as follows:

• If t is a leaf, then rk(t) = 0.

• If t is not a leaf, then rk(t) = ∪{rk(t′) + 1 | t′− = t}, where t′− is the immediate predecessor of t′.

• If T is not empty and has a root, r, then the rank of T is denoted by rk(T ) and is equal to rk(r).

Exercise 1.7. Show that if A ⊆ κκ and T = {f ↾ α : f ∈ A,α < κ}, then [T ] is the closure of A.

Exercise 1.8. Show that if A and B are κ-Borel∗ sets, then A ∪B and A ∩B are κ-Borel∗ sets.

Exercise 1.9. Let (T, h) be a κ-Borel∗-code. Show that if T is a κ+, ω-tree, then for all η, B∗(T, h, η) is
determined, i.e. II has a winning strategy if and only if I doesn’t have a winning strategy.

Exercise 1.10. 1. Prove Claim 1.11. (Hint: Use the previous exercise.)

2. Prove Claim 1.12.

Theorem 1.10 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Thm 17). κ-Borel ⊆ κ-Borel∗

Proof. Let us prove something even stronger. X is a κ-Borel set if and only if there is a κ-Borel∗-code (T, h)
such that (T, h) codes X and T is a κ+, ω-tree.

We will show by induction over α that for every X ∈ Σ0
α, there is a κ-Borel∗-code (T, h) such that (T, h)

codes X and T is a κ+, ω-tree.
For α = 1. If X ∈ Σ0

α, then there is B a family of basic open sets such that X =
⋃

B. Since κ<κ = κ,
|B = κ|. So there is β < κ such that B = {Bi | i < β}. Let T = {∅} ∪ {(0, i) | i < β}, h(∅) = ∪, and
h((0, i)) = Bi, clearly this is a κ-Borel∗-code that codes X.

Suppose α is such that for all β < α and X ∈ Σ0
β , there is a κ-Borel∗-code (T, h) such that (T, h) codes X

and T is a κ+, ω-tree.

Claim 1.11. For all β < α and X ∈ Π0
β, X is a κ-Borel∗ set.

Suppose X ∈ Σ0
α, so X =

⋃
γ<κAγ , where Aγ ∈

⋃
1≤β<α Π0

β . By the previous claim we know that

there are κ-Borel∗-codes {(Tγ , hγ)}γ<κ such that (Tγ , hγ) codes Aγ and Tγ is a κ+, ω-tree, for all γ. Let
T = {r} ∪

⋃
γ<κ Tγ × {γ} be the tree ordered by r < (x, j) for all (x, j) ∈

⋃
γ<κ Tγ × {γ}, and (x, γ) < (y, j)

if and only if γ = j and x < y in Tγ . Let T ⊆ κ<ω be a tree isomorphic to T and let G : T → T be a
tree isomorphism. If G(x) ̸= r, then denote G(x) by (G1(x),G2(x)). Define h by h(x) = ∪ if G(x) = r, and
h(x) = hG2(x)(G1(x)).
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Let us show that (T, h) codes X. Let η ∈ X, so there is γ < κ, such that η ∈ Xγ . II starts by choosing
G−1(x, γ), where x is the root of Tγ . II continues playing with the winning strategy from the game B∗(Tγ , hγ , η),
choosing the element given by G−1. We conclude that II ↑ B∗(T, h, η).

Let η ̸∈ X, so for all γ < κ, η ̸∈ Xγ , so II has no winning strategy for the game B∗(Tγ , hγ , η). Thus II
cannot have a winning strategy for the game B∗(T, h, η).

Let (T, h) be a κ-Borel∗-code that codes X and T is a κ+, ω-tree. We will use induction over the rank of T ,
to show that X is κ-Borel.

If rk(T ) = 0, then T has only one node r, thus X = h(r) and X is a basic open set. Let α < κ+ be such
that for all κ-Borel∗-code (T ′, h′) with T ′ κ+, ω-tree and rk(T ′) < α, (T ′, h′) codes a κ-Borel set. If rk(T ) = α,
then let B = {t ∈ T | t− = r}, where r is the root of T . For all t ∈ B, define the code (Tt, ht) as follows:

• Tt = {x ∈ T | t ≤ x},

• ht = h ↾ Tt.

Since rk(T ) = α, for all t ∈ B, rk(Tt) < α. By the induction hypothesis, (Tt, ht) codes a κ-Borel set Xt.

Claim 1.12. • If h(r) = ∪, then X = ∪t∈BXt.

• If h(r) = ∩, then X = ∩t∈BXt.

Since the class of κ-Borel sets is closed under unions and intersections of length κ, the proof follows from
the previous claim.

Theorem 1.13 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Thm 17). 1. κ-Borel∗ ⊆ Σ1
1(κ).

2. κ-Borel ⊆ Σ1
1(κ).

3. κ-Borel ⊆ ∆1
1(κ).

Proof. 1. Let X be a κ-Borel∗ set, there is a κ-Borel∗ code (T, h) such that X is coded by (T, h).

Since κ<κ = κ, we can code the strategies σ : T → T by elements of κκ.

Claim 1.14. The set Y = {(η, ξ) | ξ is a code of a winning strategy for II in B∗(T, h, η)} is closed.

Proof. Let (η, ξ) be an element not in Y . So ξ is not a winning strategy for II in B∗(T, h, η)}, there is
α < κ such that for every ζ ∈ Nξ↾α, ζ is not a winning strategy for II in B∗(T, h, η)}. Otherwise T would
have a branch of length κ. Because of the same reason, there is β < κ such that for every f ∈ Nη↾β ,
ζ ∈ Nξ↾α, ζ is not a winning strategy for II in B∗(T, h, f)}. So Nη↾β ×Nξ↾α is a subset of the complement
of Y .

Since pr(Y ) = X, we are done.

2. It follows from Theorem 1.10 and (1).

3. It follows from (2) and the fact that κ-Borel sets are closed under complement.

1.3 Separation theorem

Definition 1.15. A dual of a κ-Borel∗ set B is the set Bd = {η | I ↑ B∗(T, h, η)} where (T, h) satisfy
B = {η | II ↑ B∗(T, h, η)}.

Notice that the dual of a κ-Borel∗ set is not unique.

Definition 1.16. If T is a tree on κ<κ × κ<κ and f ∈ κκ, let

T (f) = {g ↾ α | (f ↾ α, g ↾ α) ∈ T}.

Exercise 1.11. Show that if A ⊆ κκ is Π1
1(κ), then there is a tree T such that for all f ∈ κκ,

f ∈ A⇔ T (f) has no branch of length κ.

Let us denote by TO the set of trees that don’t have branches of length κ.

Definition 1.17. • Let T and S be trees. Then T is order preservingly embeddable into S, T ≤ S, if there
is a function f : T → S such that for all t <T t′ implies f(t) <S f(t

′).
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• If T is a tree, then σT is the tree of all initial segments of branches of T ordered by end-extension. We
say that T ≪ T ′ if and only if σT ≤ T ′.

Definition 1.18. • If A is a Π1
1(κ) set and T is a tree such that

f ∈ A⇔ T (f) has no branch of length κ,

and J ∈ TO we define AT,J as the set {f ∈ κκ | T (f) ≤ J}.

• If A is a Σ1
1(κ) set and T is a tree such that

f ∈ A⇔ T (f) has a branch of length κ,

and J ∈ TO we define AT,J as the set {f ∈ κκ | J ≪ T (f)}.

Exercise 1.12. 1. Let A is a Π1
1(κ) set and T is a tree such that

f ∈ A⇔ T (f) has no branch of length κ,

and J ∈ TO. Show that AT,J ⊆ A.

2. Let A is a Σ1
1(κ) set and T is a tree such that

f ∈ A⇔ T (f) has a branch of length κ,

and J ∈ TO. Show that A ⊆ AT,J .

Lemma 1.19 (Covering property, Mekler-Väänänen, [14], Proposition 11). Suppose A is a Π1
1(κ) set and T is

a tree such that
f ∈ A⇔ T (f) has no branch of length κ,

and B ⊆ A is a Σ1
1(κ) set. The there is an element J ∈ TO such that B ⊆ AT,J .

Proof. Let S be a tree such that

f ∈ B ⇔ S(f) has a branch of length κ.

Let T ′ be the set of triples (f ↾ α, g ↾ α, h ↾ α) such that g ↾ α ∈ T (f) and h ↾ α ∈ S(f). Notice that T ′ has no
branch of length κ, otherwise B\A ̸= ∅.

Let f ∈ B and let ⟨h ↾ α | α < κ⟩ be a branch in S(f) of length κ. For g ↾ α ∈ T (f), let ϱ : T (f) → T ′

be defined as ϱ(g ↾ α) = (f ↾ α, g ↾ α, h ↾ α). It is clear that ϱ is an order preserving embedding. Thus
f ∈ AT,T ′

.

Lemma 1.20 (Mekler-Väänänen, [14], Proposition 32). Let T be a tree on κ<κ × κ<κ and J a tree with no
branches of length κ. The sets

B0 = {f ∈ κκ | T (f) ≤ J},

B1 = {f ∈ κκ | J ≪ T (f)}

are κ-Borel∗ set and duals.

Proof. Let H be the set of sequences (η0, (d0, t0), η1, (d1, t1), . . . , ηδ, (dδ, tδ)) satisfying the following:

• for all α ≤ δ, dα ∈ {0, 1}.

• dα = 1 if and only if α = δ, tδ = ∅..

• ⟨tα | α < δ⟩ is a chain in J .

• For all α ≤ δ, ηα ∈ κα, and ⟨ηα | α ≤ δ⟩ is a chain in κ<κ.

Let K be the set of initial segments of the elements of H, ordered by end-extension (i.e. x, y ∈ K are such
that x < y if and only if there is ā ∈ H such that x, y are initial segments of ā and x is an initial segment of
y). notice that K is isomorphic to a κ+, κ-tree. Thus we can construct a Borel∗-code with K. Let us define
h : K → {∪,∩} ∪ Σ0

1, let ā ∈ K be such that ⟨η ∈ κ<κ | η ∈ ā⟩ has length δ

h(ā) =


∪ if ā ends with ηα ∈ κ<κ,

∩ if ā ends with (dα, tα) and dα = 0 or ā = ⟨⟩,
{f ∈ κκ | (f ↾ δ, ηδ) /∈ T} otherwise.
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Claim 1.21. 1.
T (f) ≤ J ⇔ II has a winning strategy for B∗(K,h, f).

2.
J ≪ T (f) ⇔ I has a winning strategy for B∗(K,h, f).

Proof. 1. Let us suppose that T (f) ≤ J and G : T (f) → J witnesses it. Let us define the following strategy
for II, if (f ↾ δ, ηδ) /∈ T , II chooses (1, ∅). Otherwise, ηδ ∈ T (f), and II chooses (0, G(ηδ)). It is clear that
this is a winning strategy for II. For the other direction, let ρ be a winning strategy for II. When the game
is at ā ending in ηα and the strategy ρ says that II has choose (0, tα), then ηα ∈ T (F ), so G(ηα) = tα is
an embedding.

2. Let us suppose J ≪ T (f) and G : σJ → T (f) witnesses it. Let us define the following strategy for I,
suppose the game is at ā ending with (0, tα), so ⟨tβ | β < α⟩ is a chain in J . Thus I should choose
G(⟨tβ | β ≤ α⟩). It clear that this is a winning strategy for I. The other direction is similar as in the
previous item.

Theorem 1.22 (Separation property, Mekler-Väänänen, [14], Corollary 34). Suppose A and B are disjoint
Σ1

1(κ) sets. There are κ-Borel∗ sets C0 and C1 such that A ⊆ C0, B ⊆ C1, and C0 and C1 are duals.

Proof. Since B is Σ1
1(κ), κ

κ\B is Π1
1(κ) and there is T a tree such that

f ∈ κκ\B ⇔ T (f) has no branch of length κ,

and A ⊆ κκ\B. Thus by the covering property, there is J ∈ TO such that A ⊆ (κκ\B)T,J . By the previous
exercise, B ⊆ BT,J . From Definition 1.18

(κκ\B)T,J = {f ∈ κκ | T (f) ≤ J},

BT,J = {f ∈ κκ | J ≪ T (f)}.

The proof follows from Lemma 1.20.

Theorem 1.23 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 17). ∆1
1(κ) ⊆ κ-Borel∗

Proof. Let A be a ∆1
1(κ) set. Let B = B(κ)\A, by Theorem 1.22, there are κ-Borel∗ sets C0 and C1 such that

A ⊆ C0, B ⊆ C1, and C0 and C1 are duals. Since C0 and C1 are duals, C0 and C1 are disjoint. So C0 ∩B = ∅,
then A = C0, B = C1.

Corollary 1.24 (Mekler-Väänänen, [14], Corollary 35). X is ∆1
1(κ) if there is a κ-Borel∗-code (T, h) that codes

X and
II ↑ B∗(T, h, η) ⇔ I ̸↑ B∗(T, h, η)

for all η ∈ κκ the game is determined.

Exercise 1.13. Prove the claims of the following proof.

Theorem 1.25 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 18). 1. κ-Borel⊊ ∆1
1(κ)

2. ∆1
1(κ) ⊊ Σ1

1(κ)

Proof. 1. Let ξ 7→ (Tξ, hξ) be a continuous coding of the κ-Borel∗-codes with T a κ+ω-tree, such that for all
κ+ω-tree, T , and h, there is ξ such that (Tξ, hξ) = (T, h).

Claim 1.26. The set B = {(η, ξ) | η is in the set coded by (Tξ, hξ)} is ∆1
1(κ) and is not κ-Borel, otherwise

D = {η | (η, η) /∈ B} would be Borel.

(Hint: use the set C = {(η, ξ, σ) | σ is a winning strategy for II in B∗(Tξ, hξ, η)}).

2.

Claim 1.27. There is A ⊆ 2κ × 2κ such that if B ⊆ 2κ is a Σ1
1(κ) set, then there is η ∈ 2κ such that

B = {ξ | (ξ, η) ∈ A}.
(Hint: the construction used in the classical case works too).

The set D = {η | (η, η) ∈ A} is Σ1
1(κ) but not Π

1
1(κ).
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From the previous results, we can see that

κ-Borel ⊊ ∆1
1(κ) ⊊ Σ1

1(κ)

and
∆1

1(κ) ⊆ κ-Borel∗ ⊆ Σ1
1(κ).

Therefore we are missing to determine whether one of the following holds:

• ∆1
1(κ) ⊊ κ-Borel∗ ⊊ Σ1

1(κ);

• ∆1
1(κ) ⊊ κ-Borel∗ = Σ1

1(κ);

• ∆1
1(κ) = κ-Borel∗ ⊊ Σ1

1(κ).

As we will see, only case has not been answered.

Question 1.28. Is the following consistent ∆1
1(κ) = κ-Borel∗ ⊊ Σ1

1(κ)?

2 Reductions

Let β, θ ∈ {2, κ}, and E1 and E2 be equivalence relations on βκ and θκ, respectively. We say that E1 is reducible
to E2 if there is a function f : βκ → θκ that satisfies

(η, ξ) ∈ E1 ⇐⇒ (f(η), f(ξ)) ∈ E2.

We call f a reduction of E1 to E2 and we denote by E1 ↪→r E2 the existence of a reduction of E1 to E2. It is
clear that E1 ↪→r E2 holds if and only if E1 doesn’t have more equivalence classes than E2.

Definition 2.1 (Reductions). Apart from a “cardinality” reduction, ↪→r, we define the following notions which
allow us to have a better spectrum of complexities.

• Borel reduction. A function f : βκ → θκ is said to be κ-Borel if for any open set A ⊆ θκ, f−1[A] is a
κ-Borel set. The existence of a κ-Borel reduction of E0 to E1 is denoted by E0 ↪→B E1.

• Continuous reduction. The existence of a continuous reduction of E0 to E1 is denoted by E0 ↪→c E1.

• Lipschitz reduction. For all η, ξ ∈ βκ, denote

∆(η, ξ) := min({α < κ | η(α) ̸= ξ(α)} ∪ {κ}).

A function f : βκ → θκ is said to be Lipschitz if for all η, ξ ∈ βκ,

∆(η, ξ) ≤ ∆(f(η), f(ξ)).

The existence of a Lipschitz reduction of E0 to E1 is denoted by E0 ↪→L E1.

2.1 Basic reductions

Fact 2.2 (Folklore). If f : κκ → κκ × κκ is a continuous functions, then for all κ-Borel X ⊆ κκ × κκ, f−1[X]
is κ-Borel.

Proof. Let us proceed by induction over Σ0
α. Since f is continuous, if X ∈ Σ0

1, then f
−1[X] is open. Thus X

is κ-Borel. Let us suppose that α < κ+ is such that for all β < α, if X ∈ Σ0
β , then f−1[X] is κ-Borel. Let

X ∈ Π0
β , for some β < α. Then, X = κκ\A, for some A ∈ Σ0

β . It is clear that f−1[X] = κκ\f−1[A]. By the

induction hypothesis f−1[A] is κ-Borel, so f−1[X] is κ-Borel.
Let X ∈ Σ0

α. So, X =
⋃

γ<κAγ , where Aγ ∈
⋃

β<α Π0
β . It is easy to see that f−1[X] =

⋃
γ<κ f

−1[Aγ ]. As
it was proved above, Aγ is κ-Borel, therefore X is κ-Borel.

Exercise 2.1. Show that if f : κκ → κκ is a κ-Borel function, then for all κ-Borel∗ set B ⊆ κκ, f−1[B] is a
κ-Borel∗ set.

Fact 2.3 (Folklore). Suppose E0 ↪→r E1. Then the following hold:

• If E1 is κ-Borel and E0 ↪→B E1, then E0 is κ-Borel.

• If E1 is ∆1
1(κ) and E0 ↪→B E1, then E0 is ∆1

1(κ).
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• If E1 is open and E0 ↪→c E1, then E0 is open.

Proof. It follows from the previous exercise and the following claim.

Claim 2.4. κκ × κκ and κκ are homeomorphic.

Proof. Let g : κ → {0, 1} × κ be a bijection, we denote g(α) by (g1(α), g2(α)). Let us define F : κκ × κκ → κκ

by F ((η0, η1))(α) = h(α) = ηg1(α)(g2(α)). Let us show that F is a homeomorphism.
Injective. Let us assume, towars contradiction, that there are (η0, η1) and (ξ0, ξ1) such that F ((η0, η1)) =

F ((ξ0, ξ1)). Thus, for all α < κ, ηg1(α)(g2(α)) = ξg1(α)(g2(α)). Let A0 = {α < κ | g1(α) = 0} and A1 = {α < κ |
g1(α) = 1}. Therefore, for all α ∈ A0, η0(g2(α)) = ξ0(g2(α)) and for all α ∈ A1, η1(g2(α)) = ξ1(g2(α)). Finally,
since g is a bijection, g2[A0] = g2[A1] = κ, for all β < κ, η0(β) = ξ0(β) and η1(β) = ξ1(β). a contradiction.

Surjective. Let A0 and A1 as before. Let η ∈ κκ. Let us define ξ0 by ξ0(g2(α)) = η(α) for all α ∈ A0. Let
us define ξ1 by ξ1(g2(α)) = η(α) for all α ∈ A1. Clearly F ((ξ1, ξ0)) = η.

Continuty. Let α < κ, and η, ξ0 and ξ1 be such that (ξ0, ξ1) ∈ F−1[Nη↾α]. So, for all β < α, η(β) =
F (ξ0, ξ1)(β) = ξg1(β)(g2(β)). Let γ = sup{g2(β) | β < α} and (ζ0, ζ1) ∈ Nξ0↾γ × Nξ1↾γ . Clearly for all β < α,
F ((ζ0, ζ1))(β) = ζg1(β)(g2(β)) = ξg1(β)(g2(β)) = F ((ξ0, ξ1))(β) = η(β). Thus Nξ0↾γ ×Nξ1↾γ ⊆ F−1[Nη↾α].

Open sets. Let α0, α1 < κ, and η, ξ0 and ξ1 be such that η ∈ F [Nξ0↾α0 ×Nξ1↾α1 ]. Let γ = sup{g−1
2 (x, β) |

x ∈ {0, 1} & β < max(α1, α2)}, ζ ∈ Nη↾γ , and ϑ0 and ϑ1 be such that F ((ϑ0, ϑ1)) = ζ, thus for all β < γ,
F ((ϑ0, ϑ1))(β) = νg1(β)(g2(β)) = ζ(β) = η(β). We conclude that Nη↾γ ∈ F [Nξ0↾α0

×Nξ1↾α1
].

If E0 ↪→B E1, then we would have [f×f ]−1[E1] = E0 and since E1 is Borel∗, this yield E0 to be Borel∗.

Fact 2.5 (Folklore). Let E be a κ-Borel equivalence relation. Then the equivalence classes of E are κ-Borel.

Proof. Let x ∈ κκ, and let us define f : κκ → κκ × κκ as f(η) = (η, x). It is clear that f is continuous. On the
other hand [x]E (the E-equivalence class of x) is equal to f−1[(κκ ×{x})∩E]. Clearly κκ ×{x} is κ-Borel and
since E is κ-Borel, by Fact 2.2 f−1[(κκ × {x}) ∩ E] is κ-Borel.

Lemma 2.6 (Mangraviti-Motto Ros, [13]). Let E1 be a κ-Borel equivalence relation with γ ≤ κ equivalence
classes and E2 be an equivalence relation with θ equivalence classes. If γ ≤ θ, then E1 ↪→B E2.

Proof. Let us choose ⟨yi | i < γ⟩ representatives of each E1-equivalence class and ⟨xi | i < θ⟩ representatives of
each E2-equivalence class. Let us define F : κκ → κκ as F (η) = xi, where i < γ is such that η E1 yi. Since
γ ≤ θ, F is well defined.

Claim 2.7. η E1 ξ if and only if F (η) E2 F (ξ).

Proof. By the way F was defined, it is enough to prove that η E1 ξ if and only if xi E2 xj , where i and j are
such that η E1 yi and ξ E1 yj . Since E1 is an equivalence relation, η E1 ξ if and only if yi E1 yj .

If η E1 ξ, then yi E1 yj and i = j. We conclude that xi = xj and xi E2 xj . The other direction is similar.

Let us show that F is κ-Borel. Let X ⊆ κκ be an open set. Then,

F−1[X] =
⋃

xi∈X

[yi]E1
.

By the previous fact, [yi]E1
is κ-Borel for all i < γ. Since γ ≤ κ,

⋃
xi∈X [yi]E1

is κ-Borel.

Definition 2.8 (Counting classes). Let 0 < ϱ ≤ κ be a cardinal. Let us define the equivalence relation
0ϱ ∈ κκ × κκ as follows: η 0ϱ ξ if and only if one of the following holds:

• ϱ is finite:

– η(0) = ξ(0) < ϱ− 1;

– η(0), ξ(0) ≥ ϱ− 1.

• ϱ is infinite:

– η(0) = ξ(0) < ϱ;

– η(0), ξ(0) ≥ ϱ.

Lemma 2.9 (Moreno, [16]). Let E be a Borel equivalence relation with ϱ ≤ κ equivalence classes. Then

E ↪→B 0ϱ and 0ϱ ↪→L E.

If E is not open, then E ̸↪→c 0ϱ.
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Proof. It is clear that for all 0ϱ is open, then by Lemma 2.6, E ↪→B 0ϱ.
Let show the case ϱ ≥ ω, let ⟨xi | i ≤ ϱ⟩ representatives of each E-equivalence class. Clearly the function

F (η) =

{
xη(0)+1 if η(0) < ϱ,

x0 η(0) ≥ ϱ.

is Lipschitz and a reduction from 0ϱ to E, i.e. 0ϱ ↪→L E.
Finally, suppose E ↪→c 0ϱ. Since 0ϱ is open, by Fact 2.3, E is open.

Let us define E<κ
0 , the equivalence modulo bounded, as:

E<κ
0 := {(η, ξ) ∈ 2κ × 2κ | ∃α < κ [∀β > α (η(β) = ξ(β)])}.

Let id2 be the identity relation of 2κ.

Exercise 2.2. Show that E<κ
0 is an equivalence relation.

Theorem 2.10 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 34). 1. E<κ
0 is κ-Borel.

2. id2 ↪→c E<κ
0 .

Proof. 1. Let us denote by [κ]<κ the set of subsets of κ of size smaller than κ. Clearly

E<κ
0 =

⋃
A∈[κ]<κ

⋂
α/∈A

{(η, ξ) | η(α) = ξ(α)}

and {(η, ξ) | η(α) = ξ(α)} is open.

2. Let (Ai)i<κ be a partition of κ such that for all i < κ, |Ai| = κ. Let us define F : 2κ → κκ by
F (η)(α) = η(i)if and only if α ∈ Ai. Clearly, if η = ξ, then F (η) = F (ξ) and F (η) E<κ

0 F (ξ). If η ̸= ξ,
then there is i < κ such that η(i) ̸= ξ(i). So

Ai ⊆ {α < κ | F (η)(α) ̸= F (ξ)(α)}.

Since |Ai| = κ, we conclude that F (η) and F (ξ) are not E<κ
0 equivalent.

Definition 2.11. Let S ⊆ κ be an unbounded set. We say that a function f : κκ → κκ is S-recursive if there is a
function H : κ<κ → κ<κ such that for all α ∈ S and η ∈ κκ, f(η)(θ) = H(η ↾ α)(θ) for all θ < min(S\(α+1)).

Exercise 2.3 (Moreno, [16]). Let S ⊆ κ be unbounded and f : κκ → κκ an S-recursive function.

1. f is continuous.

2. If S is a club that satisfies the following:

(†) αm = min(S) is such that for all η, ξ ∈ κκ and β < αm, η ↾ β = ξ ↾ β implies f(η) ↾ β = f(ξ) ↾ β.

Then f is Lipschitz.

Exercise 2.4 (Moreno, [16]). 1. Find S ⊆ κ and a function f , such that f is S-recursive but not κ-recursive.

2. Find S ⊆ κ and a function f , such that f is κ-recursive but not S-recursive.

2.2 Equivalence modulo S

Definition 2.12. We say that a set S ⊆ κ is stationary if for all club C ⊆ κ, S ∩ C ̸= ∅.

Notice that if S ⊆ κ is stationary and C ⊆ κ is a club, then S ∩ C is stationary.

Definition 2.13. Given S ⊆ κ and θ ∈ {2, κ}, we define the equivalence relation =θ
S ⊆ θκ × θκ, as follows

η =θ
S ξ ⇐⇒ {α < κ | η(α) ̸= ξ(α)} ∩ S is non-stationary.

It is clear that =θ
S ̸= θκ × θκ if and only if S is stationary.

Exercise 2.5. Show that η =θ
S ξ if and only if there is a club C ⊆ κ, such that C ∩S ⊆ {α < κ | η(α) = ξ(α)}.

Exercise 2.6. Show that if C is a club, then the set of limits of C is also a club.
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Exercise 2.7. Prove Lemma 2.14

Lemma 2.14 (Monotonicity, Fernandes-Moreno-Rinot, [3] Lemma 2.7 ). Suppose θ, θ′, λ, λ′ ∈ {2, κ} are such
that θ ≤ θ′, λ ≤ λ′, and, X ⊆ X ′ and S ⊆ S′ are stationary sets such that =θ′

X′ ↪→c=
λ
S, then =θ

X ↪→c=
λ′

S′ .

Definition 2.15. Let (T, h) be a κ-Borel∗-code and α < κ. Let (Tα, hα) = (T, h) ↾ α be the α-approximation of
(T, h) defined by Tα = T ∩ α<ω and hα = h ↾ Tα.

We say that a κ-Borel equivalence relation E ⊆ 2κ × 2κ has an approximation if there is a κ-Borel∗-code,
(T, h), such that the following hold

• T doesn’t have infinite branches,

• (T, h) codes E,

• there is a club C such that for all α ∈ C, (T, h) ↾ α codes an equivalence relation Eα,

• for all α ∈ C and leaf l ∈ T ∩ α<ω, there are η, ξ ∈ 2<α such that hα(l) = Nη ×Nξ.

Lemma 2.16 (Friedman-Hyttinen-Weisnstein(Kulikov), [4] Theorem 11). Let E be a κ-Borel equivalence rela-
tion with an approximation (T, h) and C ⊆ κ. For all stationary set S ⊆ κ, E ↪→c=

κ
S.

Proof. Since E is approximated by (T, h) and C ⊆ κ, (T, h) ↾ α is an equivalence relation for all α ∈ C. Let
us denote these equivalence relations by Eα. For all α ∈ C, let ⟨xαi | 0 < i < κ⟩ be an enumeration of the
Eα-equivalence classes. Let us define the function F : κκ → κκ by

F (η)(α) =

{
i if α ∈ C and η ∈ xαi ,

0 otherwise.

Let us show that η E ξ if and only if F (η) =κ
S F (ξ).

If η E ξ, then II has a winning strategy σ for the game B∗(T, h, (η, ξ)). Notice that the set D = {α < κ |
σ(α<ω) ⊆ α} is a club, thus for all α ∈ C ∩D, σ is a winning strategy of II for the game B∗(Tα, hα, (η, ξ)). We
conclude that η Eαξ and F (η)(α) = F (ξ)(α). We conclude that C ∩ D ⊆ {α < κ | F (η)(α) = F (ξ)(α)} and
{α < κ | F (η)(α) ̸= F (ξ)(α)} ∩ S is non-stationary. So F (η) =κ

S F (ξ).
From Exercise 1.9 and a similar argument, it is possible to show that there is a club D ⊆ κ such that

C∩D ⊆ {α < κ | F (η)(α) ̸= F (ξ)(α)}. Thus {α < κ | F (η)(α) ̸= F (ξ)(α)}∩S is stationary. So F (η) ̸=κ
S F (ξ).

Exercise 2.8. Show that F is C-recursive and continuous.

Exercise 2.9. Prove Lemma 2.17.

Lemma 2.17 (Fernandes-Moreno-Rinot, [3] Lemma 2.10). Suppose κ is such that |κ| = |2λ| for some λ < κ,
and X,S ⊆ κ be stationary sets. Show that if =2

X ↪→c=
2
S, then =κ

X ↪→c=
κ
S.

(Hint: Similar to Fact 2.10 (2).) Use the following two facts:

• If ⟨Di | i < γ < κ⟩ is a sequence of clubs of κ, then
⋂

i<γ Di is a club of κ.

• If S ⊆ κ is stationary and ⟨Si | i < γ < κ⟩ is a sequence of disjoint subsets of S such that
⋃

i<γ Si = S,
then there is j < γ, such that Sj is a stationary set of κ.

Show that the following function F is a reduction:

• Let h : κ→ 2λ is a bijection.

• Define π : κκ → (2κ)λ by π(η) = ⟨ηi | i < λ⟩ where

ηi(α) = h(η(α))(i).

• Let f : 2κ → 2κ a continuous reduction from =2
X to =2

S.

• Define F : κκ → κκ by F (η) = ζ, where π(η) = ⟨ηi | i < λ⟩ and π(ζ) = ⟨f(ηi) | i < λ⟩.
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2.3 The approximation lemma

Definition 2.18 (S-approximation). Let θ ∈ {2, κ} and let S ⊆ κ be a stationary set, we say that an equivalence
relation E ⊆ θκ × θκ has an S-approximation if there is ⟨Eα | α < κ⟩ a sequence of relations, Eα ⊆ θα × θα,
such that the following hold:

1. There is C ⊆ κ a club such that for all α ∈ C, Eα is an equivalence relation.

2. For all η, ξ ∈ θκ, if η E ξ, then there is D ⊆ C a club, such that for all α ∈ D,

η ↾ α Eα ξ ↾ α.

3. For all η, ξ ∈ θκ, if ¬(η E ξ), then there is S′ ⊆ S a stationary set, such that for all α ∈ S′,

¬(η ↾ α Eα ξ ↾ α).

Lemma 2.19 (Approximation lemma in κκ). Suppose θ ∈ {2, κ}, S ⊆ κ is a stationary set, and E ⊆ θκ × θκ

is an equivalence relation with an S-approximation, ⟨Eα | α < κ⟩. Then

E ↪→L=
κ
S .

Proof. Let C ⊆ κ be the club that witnesses that ⟨Eα | α < κ⟩ is an S-approximation. For all α ∈ C, let
⟨xαi | 0 < i < κ⟩ be an enumeration of the Eα-equivalence classes (this can be done since κ<κ = κ). Let us
define F : θκ → κκ as follows:

F (η)(α) =

{
i if α ∈ C and η ↾ α ∈ xαi ,

0 otherwise.

Let us show that η E ξ if and only if F (η) =κ
S F (ξ).

Claim 2.20. η E ξ implies F (η) =κ
S F (ξ).

Proof. Suppose η, ξ ∈ θκ are such that η E ξ. Since ⟨Eα | α < κ⟩ is an S-approximation, by Definition 2.18
item 2, there is a club D ⊆ C such that for all α ∈ D,

η ↾ α Eα ξ ↾ α.

So, for all α ∈ D ∩ S, F (η)(α) = F (ξ)(α). Thus {α < κ | η(α) ̸= ξ(α)} ∩ S is non-stationary and we conclude
that F (η) =κ

S F (ξ).

Claim 2.21. ¬(η E ξ) implies ¬(F (η) =κ
S F (ξ)).

Proof. Suppose η, ξ ∈ θκ are such that ¬(η E ξ). Since ⟨Eα | α < κ⟩ is an S-approximation, by Definition 2.18
item 3, there is a stationary subset S′ ⊆ S such that for all α ∈ S′,

¬(η ↾ α Eα ξ ↾ α).

So, for all α ∈ C ∩ S′, F (η)(α) ̸= F (ξ)(α). Thus C ∩ S′ ⊆ {α < κ | η(α) ̸= ξ(α)} ∩ S is stationary and we
conclude that ¬(F (η) =κ

S F (ξ)).

Claim 2.22. F is C-recursive

Proof. Let us define H : θ<κ → κ<κ as follows:

H(η ↾ α) =

{
F (η) ↾ α′ if α ∈ C and α′ = min(C\(α+ 1)),

0̄α otherwise.

Where 0̄α is the function constant to 0 with domain α. Clearly, if α, β ∈ C are such that β < α, then
H(η ↾ β) ⊆ H(η ↾ α).

Let us show that H is well define. Let η, ξ ∈ θκ and α ∈ C are such that η ↾ α = ξ ↾ α. Let α′ = min(C\(α+
1)). Clearly for all β < α′ such that β /∈ C, F (η)(β) = 0 = F (ξ)(β). So F (η) ↾ α′ (β) = 0 = F (ξ) ↾ α′ (β)
for all β ∈ α′\C. On the other hand, by the definition of F , for all β < α′ such that β ∈ C, F (η)(β) = i

and F (ξ)(β) = j, where η ↾ β ∈ xβi and ξ ↾ β ∈ xβj . Since η ↾ β = ξ ↾ β and Eβ is an equivalence relation

(since β ∈ C), xβi = xβi , and i = j. Thus F (η) ↾ α′ (β) = F (ξ) ↾ α′ (β) for all β ∈ α′ ∩ C. We conclude that
F (η) ↾ α′ = F (ξ) ↾ α′, H(η ↾ α) = H(ξ ↾ α) and H is well defined.

Finally, from the way H was defined, for all α ∈ C and η ∈ θκ, F (η)(β) = H(η ↾ α)(β) for all β <
min(S\(α+ 1)).

Notice that for all β < min(C) and η ∈ θκ, F (η)(β) = 0. By Exercise 2.3, F is Lipschitz.
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3 Combinatorics

3.1 Filter reflection

Definition 3.1. We say that a stationary set S ⊆ κ reflects at α if S ∩ α is stationary at α, where cf(α) > ω.

We say that a stationary set S ⊆ κ reflects to X if for all α ∈ X, S reflects at α. We say that S strongly
reflects to X if for all stationary Z ⊆ S there is Y ⊆ X, such that Z reflects to Y .

Recall that the cofinality of an ordinal α, cf(α), is the smallest cardinal γ such that there is a function
G : γ → α, such that for all β < α, there is θ < γ, such that β < G(θ). For all regular cardinal γ < κ, define
Sκ
γ as the set of ordinals below κ with cofinality γ.

Lemma 3.2 (Aspero-Hyttinen-Weisnstein(Kulikov)-Moreno, [1] Proposition 2.8). Suppose γ < λ < κ are
regular cardinals If Sκ

γ strongly reflects to Sκ
λ , then =κ

γ ↪→c=
κ
λ.

Proof. For all α ∈ Sκ
λ , let Eα be the equivalence relation defined by

ηEαξ ⇐⇒ {β < α | η(β) ̸= ξ(β)} ∩ Sκ
γ is non-stationary in α.

Let ⟨xαi | 0 < i < κ⟩ be an enumeration of the Eα-equivalence classes. Let us define the function F : κκ → κκ

by

F (η)(α) =

{
i if α ∈ Sκ

λ and η ∈ xαi ,

0 otherwise.

Let us show that η =κ
γ ξ if and only if F (η) =κ

λ F (ξ).
Suppose η =κ

γ ξ. There is a club C ⊆ κ, such that C∩Sκ
γ ⊆ {α < κ | η(α) = ξ(α)}. Thus for all α ∈ C∩Sκ

λ

limit in C, C ∩ Sκ
γ ∩ α ⊆ {β < α | η(β) = ξ(β)} and ηEαξ. Therefore there is a club D ⊆ κ (the limits of C)

such that D ∩ Sκ
λ ⊆ {α < κ | F (η)(α) = F (ξ)(α)}. we conclude that F (η) =κ

λ F (ξ).
Suppose η ̸=κ

γ ξ. Then Z = {α < κ | η(α) ̸= ξ(α)} ∩ Sκ
γ is stationary. By strong reflection, there

is a stationary Y ⊆ X such that Z reflects to Y . Thus, for all α ∈ Y , Z ∩ α is stationary in α. Since
Z ∩ α ⊆ {β < α | η(β) ̸= ξ(β)} ∩ Sκ

γ , for all α ∈ Y , {β < α | η(β) ̸= ξ(β)} ∩ Sκ
γ is stationary in α. Therefore

for all α ∈ Y , η and ξ have different equivalence classes in Eα and F (η)(α) ̸= F (ξ)(α). We conclude that
F (η) ̸=κ

λ F (ξ).
Same as in Exercise 2.8, F is Sκ

λ -recursive and continuous.

Definition 3.3. F ⊆ P(δ) is a filter over δ if the following holds:

• δ ∈ F ,

• for all x ∈ F , if x ⊆ y, then y ∈ F ,

• if x, y ∈ F , then x ∩ y ∈ F .

Given a filter F over δ, we denote by F+ the set {A ⊆ δ | ∀B ∈ F(A ∩B ̸= ∅)}.

Definition 3.4. Let F ⊆ P(κ) be a filter over κ. For any set R, F induces an equivalence relation over the
space Rκ. Let ∼R

F be the following relation:

η ∼R
F ξ ⇔ ∃W ∈ F (W ⊆ {α < κ | η(α) = ξ(α)})

Exercise 3.1. Show that for any filter F , ∼R
F is an equivalence relation.

We say that an equivalence relation E is filtered if and only if there is a filter F such that η E ξ ⇔ η ∼R
F ξ.

Exercise 3.2. Show that the following are filtered equivalence relations:

1. id2.

2. 0κ.

3. E<κ
0 .

4. =2
S where S ⊆ κ is stationary.

Exercise 3.3. Show that 0ϱ is not a filtered relation when ϱ < κ.

Let us define E<κ,κ
0 , the equivalence modulo bounded over κκ, as:

E<κ,κ
0 := {(η, ξ) ∈ κκ × κκ | ∃α < κ [∀β > α (η(β) = ξ(β)])}.

13



Exercise 3.4. 1. Show that E<κ,κ
0 is a filtered equivalence relation.

2. Prove that for any stationary set S ⊆ κ, E<κ,κ
0 ↪→L=

κ
S.

Definition 3.5. Suppose S ⊆ κ is a stationary set and F⃗ = ⟨Fα | α ∈ S⟩ is a sequence of filters, i.e. for

all α ∈ S, Fα is a filter over α. We say that F⃗ captures clubs if and only if for every club C ⊆ κ, the set
{α ∈ S | C ∩ α /∈ Fα} is non-stationary.

Example 3.1. Let ω < λ < κ be a regular cardinal. For all α ∈ Sκ
λ , let Fα be the club filter of α. Clearly

F⃗ = ⟨Fα | α ∈ Sκ
λ⟩ captures clubs.

Definition 3.6. Suppose X,S ⊆ κ are stationary sets, and F⃗ = ⟨Fα | α ∈ S⟩ is a sequence of filters. We

say that X F⃗-reflects to S if and only if F⃗ captures clubs, and for every stationary set Y ⊆ X, the set
{α ∈ S | Y ∩ α ∈ F+

α } is stationary.

We say that X f-reflects to S if and only if there exists a sequence F⃗ over a stationary subset S′ ⊆ S such
that X F⃗-reflects to S′.

Exercise 3.5. Prove Lemma 3.7.

Lemma 3.7 (Monotonicity, Fernandes-Moreno-Rinot, [3] Lemma 2.4 ). Suppose Y ⊆ X ⊆ κ and S ⊆ T ⊆ κ
are stationary sets. If X f-reflects to S, then Y f-reflects to T .

Lemma 3.8 (Fernandes-Moreno-Rinot, [3] Lemma 2.8 ). If X f-reflects to S, then =κ
X ↪→L=

κ
S.

Proof. Suppose that F⃗ = ⟨Fα | α ∈ S′⟩ witnesses that X f-reflects to S. For every α ∈ S′, define an equivalence
relation ∼α over κα by letting η ∼α ξ iff there is W ∈ Fα such that W ∩X ⊆ {β < α | η(β) = ξ(β)}. As there
are at most |κα| many equivalence classes and as κ<κ = κ, we can enumerate the equivalence classes [η]∼α

,
⟨xαi | 0 < i < κ⟩. Next, define a map f : κκ → κκ by letting for all η ∈ κκ and α < κ:

f(η)(α) :=

{
i if α ∈ S′ and [η ↾ α]∼α = xαi ;

0, otherwise.

Clearly f is Lipschitz and S′-recursive. To show that it is a reduction from =κ
X to =κ

S , let η, ξ be arbitrary
elements of κκ.

• η =κ
X ξ: There is a club C such that C ∩X ⊆ {β < κ | η(β) = ξ(β)}. Since F⃗ captures clubs, there is a

club D ⊆ κ such that, for all α ∈ D ∩ S′, C ∩ α ∈ Fα.

Claim 3.9. D ∩ {α ∈ S | f(η)(α) ̸= f(ξ)(α)} = ∅, so f(η) =κ
S f(ξ).

Proof. Let α ∈ D be arbitrary. If α ̸∈ S′, then f(η)(α) = 0 = f(ξ)(α).

If α ∈ S′, then for W := C ∩ α, we have that W ∈ Fα and W ∩ X ⊆ {β < α | η(β) = ξ(β)}, so that
[η ↾ α]∼α

= [ξ ↾ α]∼α
and f(η)(α) = f(ξ)(α).

• η ̸=κ
X ξ: So Y := {β ∈ X | η(β) ̸= ξ(β)} is stationary. Since F⃗ = ⟨Fα | α ∈ S′⟩ witnesses that X f-reflects

to S, T := {α ∈ S′ | Y ∩ α ∈ F+
α } is stationary. Now, for every α ∈ T and any W ∈ Fα, W ∩ Y ∩ α ̸= ∅.

So that W ∩ Y ∩ α ⊆W ∩X, W ∩X ⊈ {β < α | η(β) = ξ(β)}, and [η ↾ α]∼α
̸= [ξ ↾ α]∼α

. It follows that
T ⊆ {α ∈ S′ | f(η)(α) ̸= f(ξ)(α)}, so that f(η) ̸=S f(ξ).

Exercise 3.6. Prove Lemma 3.10.

Lemma 3.10 (Fernandes-Moreno-Rinot, [3] Lemma 2.17). Suppose X,Y, Z are stationary subsets of κ, with
X ∩ Y = ∅. Prove the following:

1. If X f-reflects to Y and Y f-reflects to X, then there is a function simultaneously witnessing

=X ↪→L =Y & =Y ↪→L =X .

2. If Z f-reflects to Y and Z f-reflects to X, then there is a function simultaneously witnessing

=Z ↪→L =Y & =Z ↪→L =X .
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3.2 Diamond principle

Definition 3.11. For a given cardinal λ and a stationary set S ⊆ λ, ♢λ(S) is the statement that there is a
sequence ⟨Dα | α ∈ S⟩ such that

• For all α ∈ S, Dα ⊆ α.

• For all A ⊆ λ, the set {α ∈ S | Dα = A ∩ α} is stationary.

Exercise 3.7. Show that if λ is an infinite cardinal and S ⊆ λ+ is a stationary set. Then ♢λ+(S) implies
λ+ = |P(λ)| = 2λ.

Lemma 3.12 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 60). Let S ⊆ κ be stationary and suppose
that ♢κ(S). Then

E<κ
0 ↪→L=

2
S

Proof. Let ⟨Dα | α ∈ S⟩ be a sequence that witnesses ♢κ(S). For all α ∈ S, let ηα : α→ 2 be the function

ηα(β) :=

{
1 if β ∈ Dα;

0, otherwise.

For all α ∈ S let Fα be the filter {Z ⊆ α | ∃β < α (Z ∪β = α)}, and ∼α the equivalent relation induced by Fα.
Define f : 2κ → 2κ by:

f(η)(α) :=

{
1 if ηα ∈ [η ↾ α]∼α

;

0, otherwise.

It is clear that f is Lipschitz.

• Suppose η E<κ
0 ξ. Thus there is β < κ such that for all α > β, η ↾ α ∼α ξ ↾ α. Then, for all α > β,

f(η)(α) = f(ξ)(α). In particular, for all α ∈ S ∩ β, so f(η) =2
S f(ξ).

• Suppose ¬(η E<κ
0 ξ). There is an unbounded set S ⊆ κ, such that ∀α ∈ A, η(α) ̸= ξ(α). So there is a club

C ⊆ κ, such that A ⊆ C and for all α ∈ C, α a limit of C, ¬(η ↾ α ∼α ξ ↾ α). Thus [η ↾ α]∼α
̸= [ξ ↾ α]∼α

.
On the other hand, by ♢κ(S), the set

R = {α < κ | η ↾ α = ηα}

= {α < κ | (η ↾ α)−1[1] = η−1
α [1]}

= {α < κ | η−1[1] ∩ α = Dα}
is stationary. So, for all α ∈ C∩R, ηα ∈ [η ↾ α]∼α and ηα /∈ [ξ ↾ α]∼α . We conclude that for all α ∈ C∩R,
f(η)(α) = 1 and f(η)(α) = 0. Since R is stationary, C ∩R is stationary and f(η) ̸=2

S f(ξ).

Definition 3.13. We say that X F⃗-reflects with ♢ to S iff F⃗ captures clubs and there exists a sequence
⟨Yα | α ∈ S⟩ such that, for every stationary Y ⊆ X, the set {α ∈ S | Yα = Y ∩ α & Y ∩ α ∈ F+

α } is stationary.

We say that X f-reflects with ♢ to S if and only if there exists a sequence F⃗ over a stationary subset S′ ⊆ S
such that X F⃗-reflects with ♢ to S′.

Lemma 3.14 (Fernandes-Moreno-Rinot, [3] Claim 2.14.1). Let X,S ⊆ κ be stationary sets such that X f-
reflects with ♢ to S. There is S′ ⊆ S stationary, a sequence ⟨ηα | α ∈ S′⟩, and ⟨F̄α | α ∈ S⟩ such that, for every
stationary Y ⊆ X and every η ∈ κκ, the set {α ∈ S′ | ηα = η ↾ α & Y ∩ α ∈ F̄α} is stationary.

Proof. Let S′′ ⊆ κ, F⃗ = ⟨Fα | α ∈ S′′⟩ and ⟨Yα | α ∈ S′′⟩ witness together that X f-reflects with ♢ to S. Let
S′ := {α ∈ S′′ | Yα ∈ F+

α }. For each α ∈ S′, let F̄α be the filter over α generated by Fα ∪ {Yα}.
Let C be the set of limit points ofX and B := X\C, so, C is a club and B is not stationary and has cardinality

κ. Let {aβ | β ∈ B} be an enumeration of κ<κ. Then, for each α ∈ S′, let ηα := (
⋃
{aβ | β ∈ Yα∩B})∩ (α×α).

Claim 3.15. ⟨ηα | α ∈ S′⟩ is as wanted.

Proof. Let η ∈ κκ and Y ⊆ X stationary. Let f : κ → B be the unique function to satisfy that, for all
ϵ < κ, af(ϵ) = η ↾ ϵ. Notice that Y ∩ C is a stationary subset of X disjoint from Im(f). In particular,
Y ′ = (Y ∩ C) ∪ Im(f) is a stationary subset of X, and hence G := {α ∈ S′ | Yα = Y ′ ∩ α & Y ′ ∩ α ∈ F+

α } is a
stationary subset of S′.

Now, as F⃗ captures clubs, let us fix a club D ⊆ κ such that, for all α ∈ D ∩ S′, C ∩ α ∈ Fα. Therefore
T = {α ∈ G∩D | f [α] ⊆ α & η[α] ⊆ α} is a stationary subset of S′. Let us show that for all α ∈ T , ηα = η ↾ α
and Y ∩ α ∈ F̄α. Let α ∈ T .
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• Since α ∈ D, C ∩ α ∈ Fα ⊆ F̄α. Since α ∈ G, Y ′ ∩ α = Yα ∈ F̄α. Therefore, the intersection Y ′ ∩ C ∩ α
is in F̄α. But Y

′ ∩ C ∩ α = Y ∩ C ∩ α, and hence the superset Y ∩ α is in F̄α, as well.

• Since α ∈ G, Yα = Y ′ ∩ α and Yα ∩B = Im(f)∩ α. Since f [α] ⊆ α, f [α] ⊆ Yα ∩B ⊆ Im(f). As η[α] ⊆ α,
we get that η ↾ α = η ∩ (α × α). Recalling the definition of f and the definition of ηα, it follows that
η ↾ α ⊆ ηα ⊆ η, so that ηα = η ↾ α.

Exercise 3.8. Prove Lemma 3.16.

Theorem 3.16 (Fernandes-Moreno-Rinot, [3] Theorem 2.14). If X f-reflects with ♢ to S, then =κ
X ↪→L=

2
S.

Hint: Similar to Lemma 3.12). Use the previous lemma to guess the equivalence classes.

Exercise 3.9. Suppose ♢κ(S) holds. Show that the following holds: there is a sequence ⟨fα | α ∈ S⟩ such that

• for all α ∈ S, fα : α→ α,

• for all f ∈ κκ, the set {α ∈ S | fα = f ↾ α} is stationary.

Exercise 3.10. Let idκ be the identity relation in the space κκ. Show that idκ ↪→L id2.

3.3 Reflection of Π1
2-sentences

In this session we will focus on proving the consistency of κ-Borel∗ = Σ1
1(κ). This was initially proved by

Friedman-Hyttinen-Weisnstein in [5].

Theorem 3.17 (Friedman-Hyttinen-Weisnstein(Kulikov), [5] Theorem 18). If V = L, then κ-Borel∗ = Σ1
1(κ).

We will show another proof which shows that κ-Borel∗ = Σ1
1(κ) holds under certain reflection principle.

A Π1
2-sentence ϕ is a formula of the form ∀X∃Y φ where φ is a first-order sentence over a relational language

L as follows:

• L has a predicate symbol ϵ of arity 2;

• L has a predicate symbol X of arity m(X);

• L has a predicate symbol Y of arity m(Y);

• L has infinitely many predicate symbols (An)n∈ω, each An is of arity m(An).

Definition 3.18. A cardinal λ is Π1
2-indescribable if for every Π1

2-sentence ϕ and a set A ⊆ Vλ with (Vκ,∈
, A) |= ϕ, there is α < κ such that (Vα,∈, A ∩ α) |= ϕ.

Exercise 3.11. Show that if κ is Π1
2-indescernible cardinal, then Reg(κ) = {α < κ | cf(α) = α}, the set of

regular cardinals below κ, is stationary.

We say that an equivalence relation E is Σ1
1-complete if it is a Σ1

1 equivalence relation and for all Σ1
1

equivalence relation, R, R ↪→B E.
Let us show that if κ is Π1

2-indescernible cardinal, then =κ
Reg is a Σ1

1-complete equivalence relation.

Theorem 3.19 (Aspero-Hyttinen-Weisnstein(Kulikov)-Moreno, [1] Thm 3.7). If κ is a Π1
2–indescribable car-

dinal, then =κ
Reg is Σ1

1(κ)–complete.

Proof. Let E be a Σ1
1(κ) equivalence relation on κκ. Then there is a closed set C on κκ×κκ×κκ such that η E ξ

if and only if there exists ζ ∈ κκ such that (η, ξ, ζ) ∈ C. Let us define U = {(η ↾ α, ξ ↾ α, ζ ↾ α) | (η, ξ, ζ) ∈
C & α < κ}, and for every γ < κ define Cγ = {(η, ξ, ζ) ∈ γγ × γγ × γγ | ∀α < γ (η ↾ α, ξ ↾ α, ζ ↾ α) ∈ U}. Let
Eγ ⊂ γγ × γγ be the relation defined by (η, ξ) ∈ Eγ if and only if there exists ζ ∈ γγ such that (η, ξ, ζ) ∈ Cγ .
Since E is an equivalence relation, it follows that Eγ is reflexive and symmetric, but not necessary transitive.
Let ⟨xαi | 0 < i < κ⟩ be an enumeration fo the equivalence classes of Eα, when Eα is an equivalence relation.
Let us define the reduction by

F (η)(α) =

{
i if Eα is an equivalence relation,η ↾ α ∈ αα and η ∈ xαi
0 otherwise.

Let us prove that if (η, ξ) ∈ E, then F (η) =κ
reg F (ξ). Suppose (η, ξ) ∈ E. Then there is ζ ∈ κκ such that

(η, ξ, ζ) ∈ C and for all α < κ we have that (η ↾ α, ξ ↾ α, ζ ↾ α) ∈ U . On the other hand, we know that there is
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a club D such that for all α ∈ D ∩ Reg(κ), η ↾ α, ξ ↾ α, ζ ↾ α ∈ αα. We conclude that for all α ∈ D ∩ Reg(κ),
if Eα is an equivalence relation, then (η, ξ) ∈ Eα. Therefore, for all α ∈ D ∩ Reg(κ), F (η)(α) = F (ξ)(α), so
F (η) =κ

Reg F (ξ). Let us prove that if (η, ξ) /∈ E, then F (η) ̸=κ
Reg F (ξ). Suppose η, ξ ∈ κκ are such that

(η, ξ) /∈ E. We know that there is a club D such that for all α ∈ D ∩Reg(κ), η ↾ α, ξ ↾ α ∈ αα.
Notice that because C is closed (η, ξ) /∈ E is equivalent to

∀ζ ∈ κκ (∃α < κ (η ↾ α, ξ ↾ α, ζ ↾ α) /∈ U),

so the sentence (η, ξ) /∈ E is a Π1
1 property of the structure (Vκ,∈, U, η, ξ). On the other hand, the sentence

∀ζ1, ζ2, ζ3 ∈ κκ[((ζ1, ζ2) ∈ E ∧ (ζ2, ζ3) ∈ E) → (ζ1, ζ3) ∈ E] is equivalent to the sentence ∀ζ1, ζ2, ζ3, θ1, θ2 ∈
κκ[∃θ3 ∈ κκ(ψ1 ∨ ψ2 ∨ ψ3)], where ψ1, ψ2 and ψ3 are, respectively, the formulas ∃α1 < κ (ζ1 ↾ α1, ζ2 ↾ α1, θ1 ↾
α1) /∈ U , ∃α2 < κ (ζ2 ↾ α2, ζ3 ↾ α2, θ2 ↾ α2) /∈ U , and ∀α3 < κ (ζ1 ↾ α3, ζ3 ↾ α3, θ3 ↾ α3) ∈ U . Therefore, the
sentence ∀ζ1, ζ2, ζ3 ∈ κκ[((ζ1, ζ2) ∈ E ∧ (ζ2, ζ3) ∈ E) → (ζ1, ζ3) ∈ E] is a Π1

2 property of the structure (Vκ,∈, U).
It follows that the sentence

(D is unbounded in κ) ∧ ((η, ξ) /∈ E) ∧ (E is an equivalence relation) ∧ (κ is regular)

is a Π1
2 property of the structure (Vκ,∈, U, η, ξ). By Π1

2 reflection, we know that there are stationary many
γ ∈ Reg(κ) such that γ is a limit point of D, Eγ is an equivalence relation, and (η ↾ γ, ξ ↾ γ) /∈ Eγ . We conclude
that there are stationary many γ ∈ Reg(κ) such that fγ(η) ̸= fγ(ξ), and hence F (η) ̸=κ

reg F (η)

As we can see from the previous theorem, Π1
2 reflection implies that =κ

Reg is Σ1
1(κ)-complete. Unfortunately

=κ
Reg is not necessarily κ-Borel∗. As we saw, =κ

ω is a κ-Borel∗ equivalence relation. Therefore, if there is a Π1
2

reflection notion on the set {α < κ | cf(α) = ω}, then we conclude that κ-Borel∗ = Σ1
1(κ). Let us define a

notion of reflection on ordinals of cofinality ω.

Definition 3.20. For sets N and x, we say that N sees x iff N is transitive, p.r.-closed, and x ∪ {x} ⊆ N .

Suppose that a set N sees an ordinal α, and that ϕ = ∀X∃Y φ is a Π1
2-sentence, where φ is a first-order

sentence in the above-mentioned language L. For every sequence (An)n∈ω such that, for all n ∈ ω, An ⊆ αm(An),
we write

⟨α,∈, (An)n∈ω⟩ |=N ϕ

to express that the two hold:

1. (An)n∈ω ∈ N ;

2. ⟨N,∈⟩ |= (∀X ⊆ αm(X))(∃Y ⊆ αm(Y))[⟨α,∈, X, Y, (An)n∈ω⟩ |= φ], where:

• ∈ is the interpretation of ϵ;

• X is the interpretation of X;
• Y is the interpretation of Y, and
• for all n ∈ ω, An is the interpretation of An.

We write α+ for |α|+, and write ⟨α,∈, (An)n∈ω⟩ |= ϕ for

⟨α,∈, (An)n∈ω⟩ |=Hα+ ϕ.

Definition 3.21. Let κ be a regular and uncountable cardinal, and S ⊆ κ stationary.
Dl∗S(Π

1
2) asserts the existence of a sequence N⃗ = ⟨Nα | α ∈ S⟩ satisfying the following:

1. for every α ∈ S, Nα is a set of cardinality < κ that sees α;

2. for every X ⊆ κ, there exists a club C ⊆ κ such that, for all α ∈ C ∩ S, X ∩ α ∈ Nα;

3. whenever ⟨κ,∈, (An)n∈ω⟩ |= ϕ, with ϕ a Π1
2-sentence, there are stationarily many α ∈ S such that |Nα| =

|α| and ⟨α,∈, (An ∩ (αm(An)))n∈ω⟩ |=Nα
ϕ.

The principle Dl∗S(Π
1
2) provide us the reflection principle that we need, let us show that there is a Σ1

1-
complete quasi-order of 2κ. If Q1 and Q2 are quasi-orders on B1,B2 ∈ {2κ, κκ}, respectively, then we say
that Q1 is Borel-reducible to Q2 if there exists a κ-Borel map f : B1 → B1 such that for all η, ξ ∈ 2κ we have
ηQ1ξ ⇐⇒ f(η)Q2f(ξ) and this is also denoted by Q1 ↪→B Q2.

Definition 3.22. Given a stationary subset S ⊆ κ, we define a quasi-order ⊆S over 2κ by letting, for any two
elements η : κ→ 2 and ξ : κ→ 2,

η ⊆S ξ iff {α ∈ S | η(α) > ξ(α)} is nonstationary.
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Lemma 3.23 (Transversal lemma, Fernandes-Moreno-Rinot, [2], Prop 3.1). Suppose that ⟨Nα | α ∈ S⟩ is a
Dl∗S(Π

1
2)-sequence, for a given stationary S ⊆ κ. For every Π1

2-sentence ϕ, there exists a transversal ⟨ηα | α ∈
S⟩ ∈

∏
α∈S Nα satisfying the following.

For every η ∈ κκ, whenever ⟨κ,∈, (An)n∈ω⟩ |= ϕ, there are stationarily many α ∈ S such that

1. ηα = η ↾ α, and

2. ⟨α,∈, (An ∩ (αm(An)))n∈ω⟩ |=Nα
ϕ.

Exercise 3.12. There is a first-order sentence ψfnc in the language with binary predicate symbols ϵ and X such
that, for every ordinal α and every X ⊆ α× α,

(X is a function from α to α) iff (⟨α,∈, X⟩ |= ψfnc).

Exercise 3.13. Let α be an ordinal. Suppose that ϕ is a Σ1
1-sentence involving a predicate symbol A and two

binary predicate symbols X0,X1. Denote Rϕ := {(X0, X1) | ⟨α,∈, A,X0, X1⟩ |= ϕ}. Then there are Π1
2-sentences

ψReflexive and ψTransitive such that:

1. (Rϕ ⊇ {(η, η) | η ∈ αα}) iff (⟨α,∈, A⟩ |= ψReflexive);

2. (Rϕ is transitive) iff (⟨α,∈, A⟩ |= ψTransitive).

Definition 3.24. Denote by Lev3(κ) the set of level sequences in κ<κ of length 3:

Lev3(κ) :=
⋃
τ<κ

κτ × κτ × κτ .

Fix an injective enumeration {ℓδ | δ < κ} of Lev3(κ). For each δ < κ, we denote ℓδ = (ℓ0δ , ℓ
1
δ , ℓ

2
δ). We then

encode each T ⊆ Lev3(κ) as a subset of κ5 via:

Tℓ := {(δ, β, ℓ0δ(β), ℓ1δ(β), ℓ2δ(β)) | δ < κ, ℓδ ∈ T, β ∈ dom(ℓ0δ)}.

Theorem 3.25 (Fernandes-Moreno-Rinot, [2], Thm 3.5). Suppose Dl∗S(Π
1
2) holds for a given stationary S ⊆ κ.

For every analytic quasi-order Q over κκ, Q ↪→B⊆S.

Proof. Let Q be an analytic quasi-order over κκ. Fix a tree T on κ<κ × κ<κ × κ<κ such that Q = pr([T ]), that
is,

(η, ξ) ∈ Q ⇐⇒ ∃ζ ∈ κκ ∀τ < κ (η ↾ τ, ξ ↾ τ, ζ ↾ τ) ∈ T.

We shall be working with a first-order language having a 5-ary predicate symbol A and binary predicate
symbols X0,X1,X2 and ϵ. By Exercise 3.12, for each i < 3, let us fix a sentence ψi

fnc concerning the binary
predicate symbol Xi instead of X, so that

(Xi ∈ κκ) iff (⟨κ,∈, A,X0, X1, X2⟩ |= ψi
fnc).

Define a sentence φQ to be the conjunction of four sentences: ψ0
fnc, ψ

1
fnc, ψ

2
fnc, and

∀τ∃δ∀β[ϵ(β, τ) → ∃γ0∃γ1∃γ2(X0(β, γ0) ∧ X1(β, γ1) ∧ X2(β, γ2) ∧ A(δ, β, γ0, γ1, γ2))].

Set A := Tℓ as in Definition 3.24. Evidently, for all η, ξ, ζ ∈ P(κ× κ), we get that

⟨κ,∈, A, η, ξ, ζ⟩ |= φQ

iff the two hold:

1. η, ξ, ζ ∈ κκ, and

2. for every τ < κ, there exists δ < κ, such that ℓδ = (η ↾ τ, ξ ↾ τ, ζ ↾ τ) is in T .

Let ϕQ := ∃X2(φQ). Then ϕQ is a Σ1
1-sentence involving predicate symbols A,X0,X1 and ϵ for which the

induced binary relation
RϕQ

:= {(η, ξ) ∈ (P(κ× κ))2 | ⟨κ,∈, A, η, ξ⟩ |= ϕQ}

coincides with the quasi-order Q. Now, appeal to Exercise 3.13 with ϕQ to receive the corresponding Π1
2-

sentences ψReflexive and ψTransitive. Then, consider the following two Π1
2-sentences:

• ψ0
Q := ψReflexive ∧ ψTransitive ∧ ϕQ, and

• ψ1
Q := ψReflexive ∧ ψTransitive ∧ ¬(ϕQ).
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Let N⃗ = ⟨Nα | α ∈ S⟩ be a Dl∗S(Π
1
2)-sequence. Appeal to Lemma 3.23 with the Π1

2-sentence ψ
1
Q to obtain a

corresponding transversal ⟨ηα | α ∈ S⟩ ∈
∏

α∈S Nα. Note that we may assume that, for all α ∈ S, ηα ∈ αα, as
this does not harm the key feature of the chosen transversal.

For each η ∈ κκ, let
Zη := {α ∈ S | A ∩ α5 and η ↾ α are in Nα}.

Claim 3.26. Suppose η ∈ κκ. Then S \ Zη is nonstationary.

Proof. Fix primitive-recursive bijections c : κ2 ↔ κ and d : κ5 ↔ κ. Given η ∈ κκ, consider the club D0 of all
α < κ such that:

• η[α] ⊆ α;

• c[α× α] = α;

• d[α× α× α× α× α] = α.

Now, as c[η] is a subset of κ, by the choice N⃗ , we may find a club D1 ⊆ κ such that, for all α ∈ D1 ∩ S,
c[η] ∩ α ∈ Nα. Likewise, we may find a club D2 ⊆ κ such that, for all α ∈ D2 ∩ S, d[A] ∩ α ∈ Nα.

For all α ∈ S ∩D0 ∩D1 ∩D2, we have

• c[η ↾ α] = c[η ∩ (α× α)] = c[η] ∩ c[α× α] = c[η] ∩ α ∈ Nα, and

• d[A ∩ α5] = d[A] ∩ d[α5] = d[A] ∩ α ∈ Nα.

As Nα is p.r.-closed, it then follows that η ↾ α and A∩α5 are in Nα. Thus, we have shown that S \Zη is disjoint
from the club D0 ∩D1 ∩D2.

For all η ∈ κκ and α ∈ Zη, let:

Pη,α := {p ∈ αα ∩Nα | ⟨α,∈, A ∩ α5, p, η ↾ α⟩ |=Nα
ψ0
Q}.

Finally, define a function f : κκ → 2κ by letting, for all η ∈ κκ and α < κ,

f(η)(α) :=

{
1, if α ∈ Zη and ηα ∈ Pη,α;

0, otherwise.

Exercise 3.14. f is Borel.

Claim 3.27. Suppose (η, ξ) ∈ Q. Then f(η) ⊆S f(ξ).

Proof. As (η, ξ) ∈ Q, let us fix ζ ∈ κκ such that, for all τ < κ, (η ↾ τ, ξ ↾ τ, ζ ↾ τ) ∈ T . Define a function
g : κ→ κ by letting, for all τ < κ,

g(τ) := min{δ < κ | ℓδ = (η ↾ τ, ξ ↾ τ, ζ ↾ τ)}.

As (S \ Zη), (S \ Zξ) and (S \ Zζ) are nonstationary, let us fix a club C ⊆ κ such that C ∩ S ⊆ Zη ∩ Zξ ∩ Zζ .
Consider the club D := {α ∈ C | g[α] ⊆ α}. We shall show that, for every α ∈ D ∩ S, if f(η)(α) = 1 then
f(ξ)(α) = 1.

Fix an arbitrary α ∈ D ∩ S satisfying f(η)(α) = 1. In effect, the following three conditions are satisfied:

1. ⟨α,∈, A ∩ α5⟩ |=Nα ψReflexive,

2. ⟨α,∈, A ∩ α5⟩ |=Nα ψTransitive, and

3. ⟨α,∈, A ∩ α5, ηα, η ↾ α⟩ |=Nα ϕQ.

In addition, since α is a closure point of g, by definition of φQ, we have

⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α, ζ ↾ α⟩ |= φQ.

As α ∈ S and φQ is first-order,

⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α, ζ ↾ α⟩ |=Nα
φQ,

so that, by definition of ϕQ,
⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α⟩ |=Nα ϕQ.

By combining the preceding with clauses (2) and (3) above, we infer that the following holds, as well:
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(4) ⟨α,∈, A ∩ α5, ηα, ξ ↾ α⟩ |=Nα ϕQ.

Altogether, f(ξ)(α) = 1, as sought.

Claim 3.28. Suppose (η, ξ) ∈ κκ × κκ \Q. Then f(η) ̸⊆S f(ξ).

Proof. As (S \ Zη) and (S \ Zξ) are nonstationary, let us fix a club C ⊆ κ such that C ∩ S ⊆ Zη ∩ Zξ. As Q is
a quasi-order and (η, ξ) /∈ Q, we have:

1. ⟨κ,∈, A⟩ |= ψReflexive,

2. ⟨κ,∈, A⟩ |= ψTransitive, and

3. ⟨κ,∈, A, η, ξ⟩ |= ¬(ϕQ).

so that, altogether,
⟨κ,∈, A, η, ξ⟩ |= ψ1

Q.

Then, by the choice of the transversal ⟨ηα | α ∈ S⟩, there is a stationary subset S′ ⊆ S ∩C such that, for all
α ∈ S′:

1. ⟨α,∈, A ∩ α5⟩ |=Nα
ψReflexive,

2. ⟨α,∈, A ∩ α5⟩ |=Nα ψTransitive,

3. ⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α⟩ |=Nα
¬(ϕQ), and

4. ηα = η ↾ α.

By Clauses (3’) and (4’), we have that ηα /∈ Pξ,α, so that f(ξ)(α) = 0.
By Clauses (1’), (2’) and (4’), we have that ηα ∈ Pη,α, so that f(η)(α) = 1.
Altogether, {α ∈ S | f(η)(α) > f(ξ)(α)} covers the stationary set S′, so that f(η) ̸⊆S f(ξ).

This completes the proof of Theorem 3.25

Corollary 3.29. Suppose Dl∗S(Π
1
2) holds for a given stationary S ⊆ κ.

For every analytic equivalence relation E over κκ, E ↪→B=
2
S.

As we have seen, the equivalence relations =κ
µ and =2

µ play a crucial role. It is clear that Dl∗µ(Π
1
2) implies

=κ
µ ↪→B =2

µ.

Question 3.30. Is =κ
µ ↪→B =2

µ a theorem of ZFC?

4 The Isomorphism relation

Denote by Sm(A) the set of all consistent types over A in m variables (modulo change of variables), and
S(A) = ∪m<ωS

m(A).

• We say that T is ξ-stable if for any set A, |A| ≤ ξ, |S(A)| ≤ ξ.

• We say that T is stable if there is an infinite ξ, such that T is ξ-stable.

• We say that T is unstable if there is no infinite ξ, such that T is ξ-stable.

• We say that T is superstable is there is an infinite ξ such that for all ξ′ > ξ, T is ξ′-stable.

Definition 4.1 (OTOP). A theory T has the omitting type order property (OTOP) if there is a sequence
(φm)m<ω of first order formulas such that for every linear order l there is a model M and n-tuples at (t ∈ l)
of members of M, n < ω, such that s < t if and only if there is a k-tuple c of members of M, k < ω, such that
for every m < ω,

M |= φm(c, as, at).

The non-forking notion ↓ and the isolation notion F a
ω (Chapter 4 [19]) are needed to define the DOP.

Definition 4.2 (DOP). A theory T has the dimensional order property (DOP) if there are F a
ω -saturated models

(Mi)i<3, M0 ⊆M1∩M2, M1 ↓M0
M2, and the F a

ω -prime model over M1∪M2 is not F a
ω -minimal over M1∪M2.

Definition 4.3.
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• We say that T is classifiable if T is superstable without DOP and without OTOP. These theories are
diveded into:

– shallow;

– non-shallow (deep).

• We say that T is non-classifiable if it satisfies one of the following:

1. T is stable unsuperstable;

2. T is superstable and has DOP;

3. T is superstable and has OTOP;

4. T is unstable.

Theorem 4.4 (Main Gap, Shelah [19, XII, Theorem 6.1]). Let T be a first order countable complete theory and
denote by I(λ, T ) the number of non-isomorphic models of T of size λ.

1. If T is not superstable or (is superstable) deep or has the DOP or has the OTOP, then for every uncountable
λ, I(λ, T ) = 2λ.

2. If T is shallow superstable without the DOP and without the OTOP (i.e. classifiable and shallow), then
for every α > 0, I(ℵα, T ) < ℶω1

(|α|).

Theorem 4.5 (Morley’s Conjecture, Shelah [19, XIII, Theorem 3.7]). Let T be a countable complete first-order
theory. Then for λ > µ ≥ ℵ0, I(λ, T ) ≥ I(µ, T ) except when λ > µ = ℵ0, T is complete, ℵ1-categorical not
ℵ0-categorical.

4.1 Coding structures

We can code structures of any size (not bigger than κ) with elements of κκ.

Definition 4.6. Let ω ≤ µ ≤ κ be a cardinal and L = {Qm | m ∈ ω} be a countable relational language. Fix
a bijection πµ between µ<ω and µ. For every η ∈ κκ define the structure Aη↾µ with domain µ as follows: For
every tuple (a1, a2, . . . , an) in µ

n

(a1, a2, . . . , an) ∈ QAη↾µ
m ⇔ Qm has arity n and η(πµ(m, a1, a2, . . . , an)) > 0.

Notice that the structure Aη ↾ α is not necessary coded by the function η ↾ α.

Exercise 4.1. There is a club Cπ such that for all α ∈ Cπ, Aη ↾ α = Aη↾α

For every first-order theory in a relational countable language (not necessarily complete), we have coded the
models of T of size µ ≤ κ in the GBS, κκ. In the same way we can define these structures in the GCS, 2κ.

Definition 4.7. Let ω ≤ µ ≤ κ be a cardinal and T a first-order theory in a relational countable language. We
define the isomorphism relation of models of size µ, ∼=µ

T ⊆ κκ × κκ, as the relation

{(η, ξ)|(Aη↾µ |= T,Aξ↾µ |= T,Aη↾µ
∼= Aξ↾µ) or (Aη↾µ ̸|= T,Aξ↾µ ̸|= T )}

Let us denote by ∼=T the isomorphism relation of models of size κ of T (i.e. ∼=κ
T ). To simplify notation we

will refer to ∼=T as the isomorphism relation of T . We will also denote by Aη the structure Aη↾κ, for obvious
reasons.

Exercise 4.2. Let T be a first-order theory in a relational countable language. Show that the isomorphism
relation of T , ∼=T , in the space κκ is continuous reducible to the isomorphism relation of T in 2κ.

Exercise 4.3. Prove Proposition 4.8.

Proposition 4.8 (Moreno, [16] Proposition 5.28). Let ω < µ < δ ≤ κ be cardinals. For all first-order countably
theory in a relational countable language T , not necessarily complete,

∼=µ
T ↪→c

∼=δ
T .

(Hint: Use Theorem 4.5 and κ<κ = κ.

Exercise 4.4. Prove 4.9.

Proposition 4.9 (Moreno, [16] Proposition 5.30). Let κ = ℵγ be such that ℶω1
(| γ |) ≤ κ and κ = λ+ = 2λ.

Suppose T1 is classifiable shallow, T2 classifiable non-shallow, and T3 non-classifiable. Then

∼=T1 ↪→B 0κ ↪→L
∼=λ

T3
↪→c

∼=T2 .

(Hint: Use Theorem 4.4).
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4.2 The Ehrenfeucht-Fräıssé game

Let su denote by Pκ(κ) the set of subsets of κ of size less than κ.

Definition 4.10 (The Ehrenfeucht-Fräıssé game). Fix an enumeration {Xγ}γ<κ of the elements of Pκ(κ) and
an enumeration {fγ}γ<κ of all the functions with both the domain and range in Pκ(κ). For every pair of
structures A and B with domain κ, the EFα

ω(A,B) is a game played by players I and II as follows.
In the n-th move, first I chooses an ordinal βn < κ such that Xβn−1

⊆ Xβn
. Then II chooses an ordinal

θn < κ such that Xβn
⊆ dom(fθn) ∩ ran(fθn) and fθn−1

⊆ fθn (if n = 0 then Xβn−1
= ∅ and fθn−1

= ∅). The
game finishes after ω moves. The player II wins if

⋃
i<ω fθi : A → B is a partial isomorphism. Otherwise the

player I wins.

Definition 4.11 (Restricted game). For every α ≤ κ the game EFα
ω(A ↾α,B ↾α) on the restrictions A ↾ α and

B ↾ α of the structures A and B with domain κ is defined as follows:
In the n-th move, first I chooses an ordinal βn < α such that Xβn

⊂ α and Xβn−1
⊆ Xβn

. Then II chooses
an ordinal θn < α such that dom(fθn), ran(fθn) ⊂ α, Xβn

⊆ dom(fθn) ∩ ran(fθn) and fθn−1
⊆ fθn (if n = 0

then Xβn−1 = ∅ and fθn−1 = ∅). The game ends after ω moves. Player II wins if
⋃

i<ω fθi : A ↾α→ B ↾α is a
partial isomorphism. Otherwise player I wins. If α = κ then this is the same as the standard EF-game which
is usually denoted by EFκ

ω.
We will write I ↑ EFα

ω(A ↾α,B ↾α) when I has a winning strategy in the game EFα
ω(A ↾α,B ↾α). Similarly

for II.

Lemma 4.12 (Hyttinen-Moreno, [9] Lemma 2.4). If A and B are structures with domain κ, then the following
hold:

• II ↑ EFκ
ω(A,B) ⇐⇒ ∃C ⊆ κ a club, such that II ↑ EFα

ω(A ↾α,B ↾α) for all α ∈ C.

• I ↑ EFκ
ω(A,B) ⇐⇒ ∃C ⊆ κ a club, such that I ↑ EFα

ω(A ↾α,B ↾α) for all α ∈ C.

Proof. It is easy to see that if σ : κ<ω → κ is a winning strategy for II in the game EFκ
ω(A ↾ κ,B ↾ κ), then

σ ↾ α<α is a winning strategy for II in the game EFκ
ω(A ↾α,B ↾α) if σ[α<α] ⊆ α. So II ↑ EFκ

ω(A ↾α,B ↾α) for α
a closed point of σ.

We conclude that if II ↑ EFκ
ω(A ↾ κ,B ↾ κ), then II ↑ EFκ

ω(A ↾α,B ↾α) for club-many α. The same holds
for I. To show the other direction, notice that EFκ

ω(A ↾ κ,B ↾ κ) is a determined game, so if II doesn’t have
a winning strategy, then I has a winning strategy. Therefore, if II doesn’t have a winning strategy in the
game EFκ

ω(A ↾ κ,B ↾ κ), then I ↑ EFκ
ω(A ↾α,B ↾α) for club-many α, and II cannot have a winning strategy in

EFκ
ω(A ↾α,B ↾α) for club-many α.

Definition 4.13. Assume T is a complete first order theory in a countable vocabulary. For every α < κ and
η, ξ ∈ κκ, we write η Rα

EF ξ if one of the following holds, Aη ↾α ̸|= T and Aξ ↾α ̸|= T , or Aη ↾α|= T , Aξ ↾α|= T
and II ↑ EFκ

ω(Aη ↾α,Aξ ↾α).

Lemma 4.14 (Hyttinen-Moreno, [9] Lemma 2.7). For every complete first order theory T in a countable
vocabulary, there are club many α such that Rα

EF is an equivalence relation.

Proof. Define the following functions:

• h1 : κ→ κ, h1(α) = γ where fγ is the identity function of Xα.

• h2 : κ→ κ, h2(α) = γ where f−1
α = fγ .

• h3 : κ2 → κ, h3(α, β) = Xα ∪Xβ = Xγ .

• h4 : κ→ κ, h4(α) = rang(fα) = Xγ .

• h5 : κ→ κ, h5(α) = dom(fα) = Xγ .

• h6 : κ2 → κ, h6(α, β) = γ where fα ◦ fβ = fγ , fα ◦ fβ is defined on the set f−1
β [rang(fβ) ∩ dom(fα)].

Each of these functions defines a club,

• Ci = {γ < κ|∀α < γ(hi(α) < γ)} for i ∈ {1, 2, 4, 5}.

• Ci = {γ < κ|∀β, α < γ(hi(α, β) < γ)} for i ∈ {3, 6}.
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Denote by C the club ∩6
i=1Ci. We will show that for every α ∈ C, Rα

EF is an equivalence relation.

By definition η Rα
EF ξ implies that either both Aη and Aξ are models of T or non of them is a model of

T . Thus Rα
EF = R− ∪ R+, where R− is the restriction of Rα

EF to the set A = {η ∈ κ|Aη ̸|= T} and R+ is the
restriction of Rα

EF to the complement of A. Since R− ∩ R+ = ∅, it is enough to prove that R− and R+ are
equivalence relations.
By definition it is easy to see that R− = A × A, therefore R− is an equivalence relation. Now we will prove
that R+ is an equivalence relation.

Reflexivity
By the way C1 was defined, for every β < α, h1(β) < α and fh1(β) is the identity function of Xβ . Therefore,
the function σ((β0, β1, . . . , βn)) = h1(βn) is a winning strategy for II in the game EFκ

ω(Aη ↾α,Aη ↾α).

Symmetry
Let σ be a winning strategy for II in the game EFκ

ω(Aη ↾α,Aξ ↾α). Since α ∈ C2 and σ((β0, β1, . . . , βn)) < α,
we know that h2(σ((β0, β1, . . . , βn))) < α. Notice that if ∪i<ωfθi : α → α is a partial isomorphism from Aη ↾α
to Aξ ↾α, then ∪i<ωfh2(θi) = ∪i<ωf

−1
θi

is a partial isomorphism from Aξ ↾α to Aη ↾α. Therefore, the function
σ′((β0, β1, . . . , βn)) = h2(σ((β0, β1, . . . , βn))) is a winning strategy for II in the game EFκ

ω(Aξ ↾α,Aη ↾α).

Transitivity
Let σ1 and σ2 be two winning strategies for II on the games EFκ

ω(Aη ↾α,Aξ ↾α) and EFκ
ω(Aξ ↾α,Aζ ↾α),

respectively.
For a given tuple (β0, β1, . . . , βn) let us construct by induction the tuples (γ0, γ1, . . . , γn), (β

′
0, β

′
1, . . . , β

′
2n, β

′
2n+1),

and the functions f(1,n), gn and f(2,n):

1. Let β′
0 = β0 and for i > 0, let β′

2i be the least ordinal such that Xβ′
2i−1

∪Xβi = Xβ′
2i
.

2. f(1,i) := fσ1((β′
0,β

′
1,...,β

′
2i−1,β

′
2i))

.

3. γi is the ordinal such that Xγi
= rang(f(1,i)).

4. gi := fσ2((γ0,γ1,...,γi)).

5. β′
2i+1 is the ordinal such that Xβ′

2i+1
= dom(gi).

6. f(2,i) := fσ1((β′
0,β

′
1,...,β

′
2i,β

′
2i+1))

.

Define the function σ : α<ω → α by σ((β0, β1, . . . , βn)) = θn, where θn is the ordinal such that fθn = gn ◦
(f(2,n) ↾f−1

(2,n)
[dom(gn)]

). It is easy to check that for every n, the tuples (γ0, γ1, . . . , γn) and (β′
0, β

′
1, . . . , β

′
2n+1)

are elements of α<ω, and the functions f(1,n), gn, f(2,n) and fθn are well defined; it is also easy to check that
σ((β0, β1, . . . , βn)) is a valid move.
Let us show that ∪n<ωfθn is a partial isomorphism. It is clear that rang(f(2,n)) ⊆ rang(f(1,n+1)). By 3 and
4 in the induction, we can conclude that rang(f(2,n)) is a subset of dom(gn+1). Then rang(∪n<ω(f(2,n))) ⊆
dom(∪n<ω(gn)), so

∪n<ω(gn ◦ (f(2,n) ↾f−1
(2,n)

[dom(gn)]
)) = ∪n<ω(gn) ◦ ∪n<ω(f(2,n)).

Since σ1 and σ2 are winning strategies, we know that ∪n<ω(gn) and ∪n<ω(f(2,n)) are partial isomorphism.
Therefore ∪n<ωfθn is a partial isomorphism and σ is a winning strategy for II on the game EFκ

ω(Aη ↾α,Aζ ↾α
).

Corollary 4.15. Suppose η, ξ ∈ κκ. Then the following hold:

• η Rκ
EF ξ ⇐⇒ ∃C ⊆ κ a club, such that η Rα

EF ξ for all α ∈ C.

• ¬(η Rα
EF ξ) ⇐⇒ ∃C ⊆ κ a club, such that ¬(η Rα

EF ξ) for all α ∈ C.

4.3 Classifiable theories

The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 4.16 (Shelah, [19], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T that
are L∞,κ-equivalent are isomorphic.

Theorem 4.17 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 10). L∞,κ-equivalence is equivalent to
EFκ

ω-equivalence.
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From these two theorems we know that if T is a classifiable theory, then for any A and B models of T with
domain κ,

II ↑ EFκ
ω(A,B) ⇐⇒ A ∼= B

I ↑ EFκ
ω(A,B) ⇐⇒ A ≇ B.

Theorem 4.18 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 70). If T is a classifiable theory, then
∼=T is ∆1

1(κ).

Proof. Notice that the EFκ
ω game can be coded as a κ-Borel∗ game taking at the leaves the open sets given by

partial isomorphisms.

From Lemma 4.12, we know the following two hold for any A and B models of a classifiable theory (with
domain κ):

• A ∼= B ⇐⇒ II ↑ EFκ
ω(A ↾α,B ↾α) for club-many α.

• A ≇ B ⇐⇒ I ↑ EFκ
ω(A ↾α,B ↾α) for club-many α.

Clearly Rκ
EF coincide with ∼=T when T is classifiable. So

• η ∼=κ
T ξ ⇐⇒ ∃C ⊆ κ a club, such that η Rα

EF ξ for all α ∈ C.

• ¬(η ∼=α
T ξ) ⇐⇒ ∃C ⊆ κ a club, such that ¬(η Rα

EF ξ) for all α ∈ C.

Theorem 4.19 (Hyttinen-Moreno, [9] Theorem 2.8). Assume T is a countable complete classifiable theory over
a countable vocabulary, S ⊆ κ a stationary set, and µ a regular cardinal. Then ∼=κ

T ↪→L =κ
S.

Proof. It follows from the approximation lemma (Lemma 2.19), Lemma 4.14, and Lemma 4.12.

Exercise 4.5. Prove Theorem 4.20.

Theorem 4.20 (Hyttinen-Weisnstein(Kulikov)-Moreno, [7] Lemma 2). Assume T is a countable complete
classifiable theory over a countable vocabulary. Let S ⊆ κ a stationary set. If ♢S holds, then ∼=κ

T ↪→L =2
S.

5 Further results

5.1 Borel sets, ∆1
1 sets, Borel∗ sets and Σ1

1 sets

Theorem 5.1 (Hyttinen-Weisnstein(Kulikov), [6], Corollary 3.2). It is consistent that ∆1
1(κ) ⊊ κ-Borel∗ ⊊

Σ1
1(κ).

Lemma 5.2 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Corollary 14). The set {(η, ξ) ∈ κκ × κκ | Aη
∼= Aξ}

is Σ1
1(κ).

Theorem 5.3 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 24). A set B ⊆ κκ is κ-Borel and closed
under permutations if and only if there is a sentence φ in Lκ+κ such that B = {η ∈ κκ | Aη |= φ}.

Theorem 5.4 (Friedman-Hyttinen-Kulikov).

1. Let κ<κ = κ > 2ω. If T is classifiable and shallow, then ∼=T is κ-Borel. ([5], Theorem 68)

2. If T is classifiable non-shallow, then ∼=T is ∆1
1(κ) not κ-Borel. ([5], Theorem 69 and 70)

3. If T is unstable or stable with the OTOP or superstable with the DOP and κ > ω1, then ∼=T is not ∆1
1(κ).

([5], Theorem 71)

4. If T is stable unsuperstable, then ∼=T is not κ-Borel. ([5], Theorem 72)
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5.2 Non-reducible results

Theorem 5.5 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 52). Assume GCH, µ < κ a regular
cardinal such that if κ = λ+, then µ ≤ cf(λ). Then in a cofinality and GCH preserving forcing extension, there
stationary sets K(A) ⊆ Sκ

µ for each A ⊆ κ such that =κ
K(A) ̸↪→B=

κ
K(B) if and only if A ̸⊆ B.

Theorem 5.6 (Friedman-Hyttinen-Weinstein(Kulikov), [5], Theorem 56). For a cardinal κ which is a successor
of a regular cardinal or it is inaccessible, there is a cofinality-preserving forcing extension in which for all regular
λ < κ, the relations =κ

λ are ↪→B-incomparable with each other.

Theorem 5.7 (Dense non-reduction; Fernandes-Moreno-Rinot, [3] Corollary 6.19). There exists a cofinality-
preserving forcing extension in which:

• For all stationary subsets X, S of S, there exist stationary subsets X ′ ⊆ X and Y ′ ⊆ Y such that
=2

X′ ̸↪→B =κ
Y ′ .

• For all two disjoint stationary subsets X,Y of κ, =2
X ̸↪→B =κ

Y .

Theorem 5.8 (Friedman-Hyttinen-Weinstein(Kulikov), [5] Theorem 77). If a first order countable complete
theory over a countable vocabulary T is classifiable, then =2

ω ̸↪→c
∼=T .

5.3 Reflections

Theorem 5.9 (Shelah, [20] Claim 2.3). For an uncountable cardinal λ, and a stationary subset S ⊆ Sλ+

̸=cf(λ),
the following are equivalent:

• 2λ = λ+,

• ♢λ+(S).

Definition 5.10. For a stationary S ⊆ κ, ♢++
S asserts the existence of a sequence ⟨Kα | α ∈ S⟩ satisfying the

following:

1. for every infinite α ∈ S, Kα is a set of size |α|;

2. for every X ⊆ κ, there exists a club C ⊆ κ such that, for all α ∈ C ∩ S, C ∩ α,X ∩ α ∈ Kα;

3. the following set is stationary in [Hκ+ ]<κ:

{M ∈ [Hκ+ ]<κ |M ∩ κ ∈ S & clps(M,∈) = (KM∩κ,∈)}.

Theorem 5.11 (Sakai, [18] Prop 1.4). ♢++
S holds in L.

Lemma 5.12 (Fernandes-Moreno-Rinot, [3], Thm 4.10). For every stationary S ⊆ κ, ♢++
S implies Dl∗S(Π

1
2).

Definition 5.13. Let S be the poset of all pairs (k,B) with the following properties:

1. k is a function such that dom(k) < κ;

2. for each α ∈ dom(k), k(α) is a transitive model of ZF− of size ≤ max{ℵ0, |α|}, with k ↾ α ∈ k(α);

3. B is a subset of P(κ) of size ≤ dom(k);

(k′,B′) ≤ (k,B) in S if the following holds:

(i) k′ ⊇ k, and B′ ⊇ B;

(ii) for any B ∈ B and any α ∈ dom(k′) \ dom(k), B ∩ α ∈ k′(α).

Lemma 5.14 (Sakai, [18] Prop 1.5). For every stationary S ⊆ κ, V S |= ♢++
S .

Corollary 5.15 (Fernandes-Moreno-Rinot, [3] Lemma 4.10 and Proposition 4.14). There exists a < κ-closed
κ+-cc forcing extension in which Dl∗Š(Π

1
2) holds for all Š ⊆ κ stationary set (S stationary in V ).

Since ♢++
S holds in L, in L we have κ-Borel∗ = Σ1

1(κ). Also there is a < κ-closed κ+-cc forcing which forces
κ-Borel∗ = Σ1

1(κ).

Definition 5.16. For a given cardinal λ = µ+ and a stationary set S ⊆ λ, ♢+
S is the statement that there is a

sequence ⟨Aα | α ∈ S⟩ such that
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• For all α ∈ S, Aα ⊆ P(α) and |Aα| ≤ µ.

• If Z ⊆ λ, then there exists a club C ⊆ λ such that

C ∩ S ⊆ {α ∈ S | Z ∩ α ∈ Aα & C ∩ α ∈ Aα}.

Lemma 5.17 (Fernandes-Moreno-Rinot, [3] Corollary 4.12). It is consistent that ♢+
S holds, but ♢++

S fails.

Theorem 5.18 (Fernandes-Moreno-Rinot, [3] Corollary 5.7). If κ is strongly inaccessible, then in the forcing
extension by Add(κ, κ+), for all stationary subsets X, S of κ, the following are equivalent:

1. X f-reflects to S;

2. every stationary subset of X reflects in S.

Theorem 5.19 (Fernandes-Moreno-Rinot, [3] Corollary 5.12). There exists a cofinality-preserving forcing ex-
tension in which, for all stationary subsets X, S of κ, X does not f-reflects to S.

5.4 Model theory

The smallest ordinal α such that A ∈ Σ0
α ∪ Π0

α is called the Borel rank of A and denoted by rkB(A). Given a
theory T , let us denote by B(κ, T ) the rank rkB(∼=T ).

Theorem 5.20 (Descriptive Main Gap; Mangraviti-Motto Ros, [13] Theorem 1.9). Let κ > 2ω. If T is
classifiable shallow of depth α, then B(κ, T ) ≤ 4α.

A theory T is κ-categorical if there is only one model of T of size κ up to isomorphism. A theory T is
categorical in κ if T is κ-categorical.

Theorem 5.21 (Morley’s categoricity theorem, [17] Theorem 5.6). Let T be a first-order countable complete
theory. If T is categorical in one uncountable cardinal, then T is categorical in every uncountable cardinal.

Theorem 5.22 (Mangraviti-Motto Ros, [13] Theorem 3.3). Let T be a countable first-order theory in a countable
vocabulary (not necessarily complete). T is κ-categorical if and only if rkB(∼=T ) = 0, i.e. ∼=T is clopen.

Theorem 5.23 (Strictly stable; Hyttinen-Kulikov-Moreno, [7] Corollary 2). Suppose that κ = λ+ and λω = λ.
If T1 is a classifiable theory and T2 is a stable unsuperstable theory, then ∼=T1

↪→c
∼=T2

and ∼=T2
̸↪→B

∼=T1
.

Theorem 5.24 (Unsuperstable; Moreno, [15] Corollary 4.12). Suppose κ = λ+ = 2λ and λω = λ. If T1 is a
classifiable theory, and T2 is an unsuperstable theory, then ∼=T1

↪→c
∼=T2

and ∼=T2
̸↪→B

∼=T1
.

Theorem 5.25 (Borel reducibility Main Gap; Moreno, [16] Theorem 5.5). Let c = 2ω. Suppose κ = λ+ = 2λ

and 2c ≤ λ = λω1 . If T1 is a countable complete classifiable shallow theory, T2 is a countable complete classifiable
theory not shallow, and T3 is a countable complete non-classifiable theory, then the following hold:

1. Classifiable vs Non-classifiable. For T = T1, T2 there is γ < κ such that:

∼=T ↪→c =2
γ ↪→c

∼=T3
and ∼=T3

̸↪→B
∼=T .

2. Shallow vs Non-shallow. If κ = ℵµ is such that ℶω1(| µ |) ≤ κ, then

∼=T1 ↪→B 0κ ↪→B
∼=T2 ↪→c

∼=T3 .

In particular,
∼=T3

̸↪→B
∼=T2

̸↪→r 0κ ̸↪→r
∼=T1

.

Theorem 5.26 (L-Main Gap Dichotomy; Hyttinen-Kulikov-Moreno, [8] Theorem 4.11). (V = L). Suppose
κ = λ+ and λ is a regular uncountable cardinal. If T is a countable first-order theory in a countable vocabulary,
not necessarily complete, then one of the following holds:

• ∼=T is ∆1
1(κ).

• ∼=T is Σ1
1(κ)-complete.

Theorem 5.27 (Main Gap Dichotomy; Moreno, [16] Theorem 5.16). Let κ be inaccessible, or κ = λ+ = 2λ

and 2c ≤ λ = λ<ω1 . There exists a < κ-closed κ+-cc forcing extension in which for any countable first-order
theory in a countable vocabulary (not necessarily complete), T , one of the following holds:

• ∼=T is ∆1
1(κ).

• ∼=T is Σ1
1(κ)-complete.
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