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1 Descriptive Set Theory (preliminaries)

Definition 1.1 (The Baire space B). The Baire space is the set ωω endowed with the following topology. For
every η ∈ ωn for some n, define the following basic open set

Nη = {f ∈ ωω | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

This topology is metrizable, let d(f, g) = 1
n+1 where n is the least natural number that satisfies f(n) ̸= g(n),

in case it does not exist then f = g and d(f, g) = 0.

Definition 1.2 (The Cantor space C). The cantor space is the set 2ω with the relative subspace topology.

Definition 1.3 (Borel class). Let S ∈ {B,C}. The class Borel(S) of all Borel sets in S is the least collection
of subsets of S which contains all open sets and is closed under complements, countable unions and countable
intersections.

Definition 1.4 (Borel hierarchy). Let S ∈ {B,C}. Define the classes Σα(S) and Πα(S), α < ω1, as follows.

1. Σ1(S) is the class of open sets.

2. Π1(S) is the class of closed sets.

3. For all α > 1, Σα(S) is the class of of all countable unions of sets from
⋃

β<α Πβ(S).

4. For all α > 1, Πα(S) is the class of of all countable unions of sets from
⋃

β<α Σβ(S).

Exercise 1.1. 1. For all n < ω and all η ∈ ωn the set Nη is closed.

2. For all β < α < ω1, Σβ(B) ⊆ ΣαB.

3. Borel(B) =
⋃

0<α<ω1
Σα(B).

4. | Borel(B) |= 2ω.

5. There are subsets of B that are not Borel.

Definition 1.5. Let S ∈ {B,C}. We say that A ⊆ S is co-meager, if it contains a countable intersection of
open and dense subsetes of S. A subset of S is meager, if the cmplement of it is co-meager.

Definition 1.6. Let S ∈ {B,C}. We say that X ⊆ S has the property of Baire (PB) if there is an open set
U ⊆ S such that X∆U is meager.

Lemma 1.7. Every Borel subset of B has the property of Baire.

Exercise 1.2. Prove Lemma 1.7. (Hint: prove that X has the PB if and only if B\X has the PB.)

Definition 1.8 (Borel∗-code). Let X be a non-emprty set.

1. A subset T ⊂ X<ω is a tree if for all f ∈ T with n = dom(f) > 0 and for all m < n, f ↾ m ∈ T .

2. A non-empty tree T ⊂ X<ω is called an ω-tree if the following holds:

(a) If f : n→ X is in T and n > 0, then for all x ∈ X, f ↾ (n− 1) ∪ {(n− 1, x)} ∈ T .

(b) There is no f : ω → X such that for all n < ω, f ↾ n ∈ T .

3. We order T by ⊆. The maximal elements of T are called leaves and the set of leaves is denoted by L(T ).
The least element of T is called root (∅). For every f ∈ T that is not the root, we denote by f− the
immediate predecessor of f in T . We call node every element that is not a leaf.

4. A Borel∗-code is a pair (T, π), where T ⊆ (ω × ω)<ω is an ω-tree and π is a function from L(T ) to the
basic open sets of B.

5. Given a Borel∗-code (T, π) and η ∈ B, we define the game GB∗(η, (T, π)) as follows. The game GB∗(η, (T, π))
is played by two players, I and II. In each move 0 ≤ n < ω the function fn : n + 1 → (ω × ω) from T
is chosen as follows: Suppose fn−1 ∈ T is chosen, in case n = 0, f−1 = ∅. If fn−1 is not a leaf, then I
choose some i < ω and then II choose some j < ω. This determines fn = fn−1 ∪ {(n, (i, j))}. If fn−1 is
a leaf, then the game ends and II wins if η ∈ π(fn−1).
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6. A functionW : ω<ω → ω is a winning strategy of II in GB∗(η, (T, π)), if II wins by choosingW (i0, . . . , in)
on the move n, where i0, . . . , in are the moves that I made on the moves 0, . . . , n.

7. A Borel∗-code (T, π) is a Borel∗-code for X ⊆ B if for all η ∈ B, η ∈ X if and only if II has a winning
strategy in GB∗(η, (T, π)). We say that X ⊆ B is a Borel∗ set if it has a Borel∗-code. We denote by
Borel∗(B) the class of Borel∗ sets.

Theorem 1.9. Borel(B) = Borel∗(B).

Proof. Let us start by showing that Borel(B) ⊆ Borel∗(B). We will prove this by showing that every open set
is a Borel∗ set and if {Xi}i<ω is a countable collection of Borel∗ sets, then

⋃
i<ωXi and

⋂
i<ωXi are Borel

∗

sets.
Suppose that X is an open set. Let {ξi}i<ω be a collection of elements of ω<ω such that X =

⋃
i<ω Nξi .

Let T = (ω × ω)≤1 and π the fuction given by π((0, (i, j))) = Nξj . It is clear that for every η ∈ X, II has a
winning strategy in GB∗(η, (T, π)). Therefore (T, π) is a Borel∗-code for X.

Suppose that {Xi}i<ω is a countable collection of Borel∗ sets. Let (Ti, πi) be a Borel∗-code of Xi. Let T
be the set of all functions f : n → (ω × ω), for some n < ω, such that if f(0) = (i, j), then there is g ∈ Ti,
g : n − 1 → (ω × ω) with dom(f) = dom(g) + 1, and f(m) = g(m − 1), for all 0 < m < dom(f). For every
leaf f of T if f(0) = (i, j), then there is g ∈ L(Ti) such that f(m) = g(m− 1), for all 0 < m < dom(f); define
π(f) = πi(g).

Claim 1.10. (T, π) is a Borel∗-code of
⋂

i<ωXi, and
⋂

i<ωXi is a Borel∗ set.

Proof. Let η ∈
⋂

i<ωXi. Then for all i < ω, there is a winning strategy Wi of II in GB∗(η, (Ti, πi)). Define
W : ω<ω → ω by W (i0) = 0 and W (i0, . . . , in) =Wi0(i1, . . . , in) for all 0 < n < ω. It is easy to see that W is a
winning strategy of II in GB∗(η, (T, π)).

Let η ∈ B be such that II has a winning strategy, W , in GB∗(η, (T, π)). Define Wi : ω<ω → ω by
Wi(i0, . . . , in) =W (i, i0, . . . , in). It is easy to see that Wi is a winning strategy of II in GB∗(η, (Ti, πi)). Since
this holds for all i < ω, we conclude that η ∈ Xi, for all i < ω.

Let (Ti, πi) be a Borel∗-code of Xi. Let T be the set of all functions f : n→ (ω × ω), for some n < ω, such
that if f(0) = (i, j), then there is g ∈ Tj , g : n− 1 → (ω× ω) with dom(f) = dom(g) + 1 and f(m) = g(m− 1),
for all 0 < m < dom(f). For every leaf f of T if f(0) = (i, j), then there is g ∈ L(Tj) such that f(m) = g(m−1),
for all 0 < m < dom(f); define π(f) = πj(g).

Claim 1.11. (T, π) is a Borel∗-code of
⋃

i<ωXi, and
⋃

i<ωXi is a Borel∗ set.

Proof. Let η ∈
⋃

i<ωXi. Then there is j < ω, such that there is a winning strategyWj of II in GB
∗(η, (Tj , πj)).

Define W : ω<ω → ω by W (i0) = j and W (i0, . . . , in) = Wj(i1, . . . , in) for all 0 < n < ω. It is easy to see that
W is a winning strategy of II in GB∗(η, (T, π)).

Let η ∈ B be such that II has a winning strategy, W , in GB∗(η, (T, π)). Define W ′ : ω<ω → ω by
W ′(i1, . . . , in) = W (0, . . . , in). It is easy to see that W ′ is a winning strategy of II in GB∗(η, (TW (0), πW (0))).
Therefore η ∈ XW (0).

To show that Borel∗(B) ⊆ Borel(B) we will define the rank of an ω-tree and the rank of the elements of
an ω-tree.

Given an ω-tree T , we define the rank function, rk, as follows:

• If η ∈ L(T ), then rk(η) = 0.

• If η /∈ L(T ), then rk(η) =
⋃
{rk(f) + 1 | f− = η}.

The rank of a tree T is defined by rk(T ) = rk(∅).

Exercise 1.3. 1. Show that the rank of an ω-tree is smaller than ω1.

2. Find an ω-tree with infinite rank.

Let X be a Borel∗ set, and (T, π) a Borel∗-code of X. We will prove by induction on rk(T ) that X is a
Borel set.

Case rk(T ) = 0. It is clear that T = {∅} and X = π(∅), therefore X is a Borel set.
Suppose rk(T ) = α and if Y is Borel∗ set with Borel∗-code (T ′, π′) with rk(T ) < α, then Y is a Borel set.
Let Tij be the set of all functions f : n → ω such that there is a function g ∈ T with g(0) = (i, j),

dom(g) = dom(f) + 1 and f(m) = g(m + 1) for all m ∈ dom(f). Define πij by πij(f) = π(g), where g ∈ T is
such that g(0) = (i, j), dom(g) = dom(f) + 1 and f(m) = g(m + 1) for all m ∈ dom(f). Notice that for all
i, j < ω, rk(Tij) < α. By the induction hypothesis, for all i, j < ω, (Tij , πij) is a Borel∗-code of a Borel set.
Denote by Bij the Borel set with Borel∗-code (Tij , πij).

3



Claim 1.12. X =
⋂

i<ω

⋃
j<ω Bij

Proof. Let η ∈ X, then II has a winning strategy, W , in GB∗(η, (T, π)). Define WiW (i) : ω<ω → ω by
WiW (i)(i0, . . . , in) =W (i, i0, . . . , in), it is clear thatW−iW (i) is a winning strategy of II inGB∗(η, (TiW (i), πiW (i))),
so η ∈ BiW (i). Therefore, for all i < ω there is j < ω such that η ∈ Bij , we conclude that η ∈

⋂
i<ω

⋃
j<ω Bij .

Let η ∈
⋂

i<ω

⋃
j<ω Bij . Then for all i < ω there is j < ω such that η ∈ Bij , denote by h(i) this j. So

there is Wih(i) a winning strategy of II in GB∗(η, (Tih(i), πih(i))). Define W : ω<ω → ω by W (i0) = h(i0) and
W (i0, . . . , in) =Wh(i0)(i1, . . . , in). It is clear that W is a winning strategy of II in GB∗(η, (TiW (i), πiW (i))) and
η ∈ X.

At the beginning the Borel∗-codes look very artificial and complicated, but this codes will be very helpful
in the future. In order to give a better understanding of the motivation behind the Borel∗-codes we will define
the Borel∗∗-codes. This codes use intersections and unions as part of the coding of sets, this gives a better
understanding on what is going on in the coding.

Definition 1.13. 1. A pair (T, π) is a Borel∗∗-code if T ⊆ ω<ω is an ω-tree and π is a function with
domain T such that if f ∈ T is a leaf, then π(f) is an open set, and in case f is a node, π(f) = ∩ if
| dom(f) | is an even number and π(f) = ∪ if | dom(f) | is an odd number.

2. For an element η ∈ B and a Borel∗∗-code (T, π), the game B∗(η, (T, π)) is played as follows. There are
two players, I and II. The game starts from the root of T . At each move, if the game is at node f ∈ T and
π(f) = ∩, then I chooses an immediate successor g of f and the game continues from this g. If π(f) = ∪,
then II makes the choice. Finally, if π(f) is an open set, then the game ends, and II wins if and only if
η ∈ π(x).

3. A set X ⊆ ωω is a Borel∗∗-set if there is a Borel∗∗-code (T, π) such that for all η ∈ ωω, η ∈ X if and
only if II has a winning strategy in the game B∗(η, (T, π)). We denote by Borel∗∗(B) the set of Borel∗∗

sets.

Exercise 1.4. Borel∗(B) = Borel∗∗(B).

Notice that the rank was defined for ω-trees in general. For every Borel∗∗ set, X, as the least ordinal α
such that there is a Borel∗∗-code of X.

Exercise 1.5. What is the relation between the rank of a Borel∗∗ set and the Borel hierarchy?

Definition 1.14. • X ⊆ B is Σ1
1(B) if there is Y ⊆ B×B a Borel set such that pr(Y ) = X.

• X ⊆ B is Π1
1(B) if B\X is Σ1

1(B).

• X ⊆ B is ∆1
1(B) if it is Σ1

1(B) and Π1
1(B).

Lemma 1.15. The following are equivalent:

• X is Σ1
1(B).

• X = pr(Y ) for some closed y ⊆ B×B.

Lemma 1.16. If X ⊆ B is Borel, then X is ∆1
1(B).

Proof. Let X ⊆ B be a Borel set and (T, π) a Borel∗-code for X. Let h : ω<ω → ω be one-to-on and onto.
For all f ∈ ωω define Wf : ω<ω → ω by Wf (i0, . . . , in) = f(h(i0, . . . , in)). Let P be the set of all the tuples
(η, f) ∈ ωω×ωω such thatWf is a winning strategy for II in the game GB∗(η, (T, π)). It is clear that pr(P ) = X.

Claim 1.17. P is closed

Proof. Let (η, f) /∈ P then there are n < ω and {j0, . . . , jn} such that if I choose jm in the m-move and II
choose Wf (j0 . . . , jm) in the m-move, then after n moves the game stops in a leaf g and η /∈ π(g). Therefore,
there is r < ω, such that Nη↾r ∩ π(g) = ∅, so (Nη↾r ×Nf↾m) ∩ P = ∅.

We conclude that X is Σ1
1(B) and since Borel(B) is closed under complements, we conclude that B\X is

Borel, therefore it is Σ1
1(B). We conclude that X is ∆1

1(B).

Exercise 1.6. Prove the claims of the following proof.

Theorem 1.18 (Separation). If X,Y ⊆ B are Σ1
1(B) disjoint sets, then there is a Borel set Z ⊆ B that satisfies

X ⊆ Z ⊆ B\Y .
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Proof. Choose X∗, Y ∗ ⊆ B×B such that pr(X∗) = X and pr(Y ∗) = Y . For all η ∈ B, let Xη be the set of all
ξ ∈ ωω that satisfy the following: If dom(ξ) = n, then there are η′ξ′ ∈ B, (η′, ξ′) ∈ X∗, and η′ ↾ n = η ↾ n and
ξ ⊆ ξ′. Define Yη in the same way. We denote by Xη↾n the set of functions ξ ∈ ωn such that there is η′ ∈ B,
and ξ ∈ Xξ′ and η ↾ n ⊆ η′. It is clear that Xη =

⋃
n<ωXη↾n.

Given two trees T, T ′ ⊆ ω<ω, we say that T ≤ T ′ if there is a function f : T → T ′ that satisfies the following:
for all η, ξ ∈ T , if η ⊊ ξ, then f(η) ⊊ f(ξ). Let Z be the set of η ∈ B that satisfy Yη ≤ Xη.

Claim 1.19. • If η ∈ X, then Yη ≤ Xη.

• If Yη ≤ Xη, then η /∈ Y .

• X ⊆ Z ⊆ B\Y .

for all T, T ′ ⊆ ω<ω we define the game GC(T, T ′) as follows: in the n-th movement, I chooses tn ∈ T such
that tm ⊆ tn holds for all m < n, and II chooses t′n ∈ T ′ such that t′m ⊆ t′n holds for all m < n. The game ends
when a player cannot make a choice, the player that cannot make a choice looses.

Claim 1.20. T ≤ T ′ si y solo si II has a winning strategy for the game GC(T, T ′).

Let T be the set of all functions with finite domain, f : n→
⋃

m<ω(ω
m)3 such that for all i < n the following

holds:

• f(i) ∈ (ωi)3.

• If j + 1 < n and f(j) = (ξk)k<3, then ξ1 ∈ Xξ0 and ξ2 ∈ Xξ0 .

• If j < l < n, f(j) = (ξk)k<3, and f(l) = (ξ′k)k<3, then for all k < 3, ξk ⊆ ξ′k.

Define π with domain L(T ) as π(f) = Nξ0 if dom(f) = n + 1, f(n) = (ξk)k<3, and ξ2 /∈ Yξ0 . And π(f) = ∅ in
other case.

Claim 1.21. There is a Borel∗-code (T ′, π′) such that there is a tree isomorphism h : T ′ → T that satisfies
π′(f) = π(h(f)).

Claim 1.22. II has a winning strategy in GB∗(η, (T ′, π′)) if and only if GC(Yη, Xη).

The following is a standard way to code structures with domain ω with elements of 2ω. Fix a countable
relational vocabulary L = {Pn | n < ω}.

Definition 1.23. Fix a bijection π : ω<ω → ω. For every η ∈ 2ω define the L-structure Aη with domain ω as
follows: For every relation Pm with arity n, every tuple (a1, a2, . . . , an) in ω

n satisfies

(a1, a2, . . . , an) ∈ PAη
m ⇐⇒ η(π(m, a1, a2, . . . , an)) = 1.

Definition 1.24 (The isomorphism relation). Assume T is a complete first order theory in a countable vocab-
ulary. We define ∼=ω

T as the relation

{(η, ξ) ∈ 2ω × 2ω | (Aη |= T,Aξ |= T,Aη
∼= Aξ) or (Aη ̸|= T,Aξ ̸|= T )}.

A function f : 2ω → 2ω is Borel, if for every open set A ⊆ 2ω the inverse image f−1[A] is a Borel subset of
2ω. Let E1 and E2 be equivalence relations on 2ω. We say that E1 is Borel reducible to E2, if there is a Borel
function f : 2ω → 2ω that satisfies (x, y) ∈ E1 ⇔ (f(x), f(y)) ∈ E2, we denote it by E1 ≤B E2.

Exercise 1.7. A function f is Borel if and only if for all Borel set X, f−1[X] is Borel.

Example 1.1. Let T1 be the theory of the order of the rational numbers, ∼=ω
T1

has only two equivalent classes.
Let T2 be the theory of a vector space over the field of rational numbers. ∼=ω

T1
≤B

∼=ω
T2
.

This can be use to compare the complexity of two theories, from Example 1.1 we conclude that T1 is less
complex than T2, in the Borel reducibility sense.

Question 1.25. Is there an equivalence relation E on 2ω such that for every complete first order theory in a
countable vocabulary T , either E ̸≤B

∼=ω
T1

or ∼=ω
T1
̸≤B E.

Let T be a complete countable theory, we will denote by I(λ, T ) the amount of non-isomorphic models of T
of size λ. The following is the main theorem of [19].

Theorem 1.26 (The Main Gap Theorem, [19]). Let T be a complete countable theory.
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• If T is not superstable, or deep, or with DOP or OTOP then for every uncountable cardinal λ, I(λ, T ) = 2λ.

• If T is shallow superstable without DOP and without OTOP, then for every α > 0, I(ℵα, T ) ≤ ℶω1
(|α|).

Let T be a complete countable theory, we say that T is a classifiable theory if T is superstable without DOP
and without OTOP. T1 in Example 1.1 is not classifiable and T2 is classifiable. The Main Gap Theorem tells
us that classifiable theories are less complex than non-classifiable ones, in the stability sense.

2 Generalized Baire spaces

Generalized descriptive set theory is the generalization of descriptive set theory to uncountable cardinals. For
a background on classical descriptive set theory see [11] or [12]. During this notes, κ will be an uncountable
cardinal that satisfies κ<κ = κ, unless otherwise is stated.

The aim of this first section is to introduce the notions of κ-Borel class, ∆1
1(κ) class, κ-Borel∗ class, and

show the relation between these classes.

Definition 2.1 (The Generalized Baire space B(κ)). Let κ be an uncountable cardinal. The generalized Baire
space is the set κκ endowed with the following topology. For every η ∈ κ<κ, define the following basic open set

Nη = {f ∈ κκ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Definition 2.2 (The Generalized Cantor space C(κ)). Let κ be an uncountable cardinal. The generalized
Cantor space is the set 2κ endowed with the following topology. For every η ∈ 2<κ, define the following basic
open set

Nη = {f ∈ 2κ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Definition 2.3 (κ-Borel class). Let S ∈ {B(κ),C(κ)}. The class κ-Borel(S) of all κ-Borel sets in S is the least
collection of subsets of S which contains all open sets and is closed under complements, unions and intersections
both of length at most κ.

Definition 2.4. Let S ∈ {B(κ),C(κ)}.

• X ⊂ S is a Σ1
1(κ) set if there is a set Y ⊂ S × S a closed set such that pr(Y ) = {x ∈ S | ∃y ∈ S (x, y) ∈

Y } = X.

• X ⊂ S is a Π1
1(κ) set if S\X is a Σ1

1(κ) set.

• X ⊂ S is a ∆1
1(κ) set if X is a Σ1

1(κ) set and a Π1
1(κ) set.

Definition 2.5 (κ-Borel∗-set in B(κ),C(κ)). Let S ∈ {2κ, κκ}.

1. A subset T ⊂ κ<κ is a tree if for all f ∈ T with α = dom(f) > 0 and for all β < α, f ↾ β ∈ T and
f ↾ β < f .

2. A tree T is a κ+, λ-tree if does not contain chains of length λ and its cardinality is less than κ+. It is
closed if every chain has a unique supremum in T .

3. A pair (T, h) is a κ-Borel∗-code if T is a closed κ+, λ-tree, λ ≤ κ, and h is a function with domain T
such that if x ∈ T is a leaf, then h(x) is a basic open set and otherwise h(x) ∈ {∪,∩}.

4. For an element η ∈ S and a κ-Borel∗-code (T, h), the κ-Borel∗-game B∗(T, h, η) is played as follows.
There are two players, I and II. The game starts from the root of T . At each move, if the game is at
node x ∈ T and h(x) = ∩, then I chooses an immediate successor y of x and the game continues from
this y. If h(x) = ∪, then II makes the choice. At limits the game continues from the (unique) supremum
of the previous moves. Finally, if h(x) is a basic open set, then the game ends, and II wins if and only if
η ∈ h(x).

5. A set X ⊆ S is a κ-Borel∗-set if there is a κ-Borel∗-code (T, h) such that for all η ∈ S, η ∈ X if and
only if II has a winning strategy in the game B∗(T, h, η).

We will write II ↑ B∗(T, h, η) when II has a winning strategy in the game B∗(T, h, η).
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Example 2.1. Let µ < κ be a regular cardinal, we say that X ⊆ κ is a µ-club if X is an unbounded set and it
is closed under µ-limits.

Let µ < κ be a regular cardinal. For all η, ξ ∈ 2κ we say that η and ξ are =2
µ equivalent if the set

{α < κ | η(α) = ξ(α)} contains a µ-club.
The relation =2

ω is a κ-Borel∗ set. Let us define the following κ-Borel∗-code (T, h):

• T = {f ∈ κ<ω+2 | f is strictly incresing}.

• For f not a leave, h(f) = ∪ if dom(f) is even and h(f) = ∩ if dom(f) is odd.

• To define h(f) for a leave f , first define the set L(g) = {f ∈ κω+1 | g ⊆ f} for all g ∈ T with domain
ω, and γg = supn<ω(g(n)). Let h ↾ L(g) be a bijection between L(g) and the set {Np × Nq | p, q ∈
κγg+1, p(γg) = q(γg)}.

Let us show that (T, h) codes =2
ω. Suppose η =2

ω ξ, so there is an ω-club C such that ∀α ∈ C η(α) = ξ(α). The
following is a winning strategy for II in the game B∗(T, h, (η, ξ)). For every even n < ω, if the game is at f
with dom(f) = n, II chooses an immediate successor f ′ of f , such that f ⊂ f ′ and f ′(n) ∈ C. Since C is closed
under ω limits, after ω moves the game continues at g ∈ κω strictly increasing with γ = supn<ω(g(n)) ∈ C. So
there is G an immediate successor of g, such that h(G) = Nη↾γ ×Nξ↾γ . Finally if II chooses G in the ω move,
then II wins.

For the other direction, suppose η ̸=2
ω ξ, so there is A ⊂ Sκ

ω stationary (Sκ
ω is the set of ω-cofinal ordinals

below κ) such that for all α ∈ S, η(α) ̸= ξ(α).
We will show that for every σ strategy of II, σ is not a winning strategy. Let σ be an strategy for II, this

mean that σ is a function from κ<ω+1 → κ. Notice that if II follows σ as a strategy, then when the game is
at f , dom(f) = n even, II chooses f ′ such that f ⊂ f ′ and f ′(n) = σ((f(0), f(1), . . . , f(n− 1))). Let C be the
set of closed points of σ, C = {α < κ | σ(α<ω) ⊆ α}, C is unbounded and closed under ω-limits. Therefore
C ∩ A ̸= ∅. Let γ be the least element of C ∩ A that is an ω-limit of elements of C, and let {γn}n<ω be a
sequence of elements of C cofinal to γ. The following is a winning strategy for I in the game B∗(T, h, (η, ξ)), if
II uses σ as an strategy.

When the game is at f with dom(f) = n, n odd, then I chooses an immediate successor f ′ of f , such that
f ⊂ f ′ and f ′(n) is the least element of {γn}n<ω that is bigger than f(n−1). This element always exists because
{γn}n<ω is cofinal to γ and γ ∈ C, γ is a closed point of σ. Since I is following σ as a strategy and γ is a closed
point of σ, after ω moves the game continues at g ∈ κω strictly increasing with γ = supn<ω(g(n)) ∈ C ∩ A.
Since η(γ) ̸= ξ(γ), there is no G immediate successor of g, such that (η, ξ) ∈ h(G). So it does not matter what
II chooses in the ω move, I will win.

The previous definitions are the generalization of the notions of Borel, ∆1
1, and Borel∗ from descriptive set

theory, the spaces ωω and 2ω. A classical result in descriptive set theory states that the Borel class, the ∆1
1

class, and the Borel∗ class are the same. This doesn’t hold in generalized descriptive set theory as we will see.

Theorem 2.6 ([2], Thm 17). κ-Borel⊆ κ-Borel∗

Proof. Let us prove something even stronger. X is a κ-Borel set if and only if there is a κ-Borel∗-code (T, h)
such that (T, h) codes X and T is a κ+, ω-tree.

Let us define the sets (Bi)i≤κ+ by:

• B0 = {Np | p ∈ 2<κ}, the set of basic open sets.

• If α = β + n for n an odd natural number and β a limit ordinal or 0, then Bα = Bβ+n−1 ∪ {
⋂
B | B ⊆

Bβ+n−1, | B |≤ κ}.

• If α = β+n for n an even positive natural number and β a limit ordinal or 0, then Bα = Bβ+n−1∪{
⋃
B |

B ⊆ Bβ+n−1, | B |≤ κ}.

• If α is a limit ordinal, then Bα =
⋃

β<αBβ .

We will show by induction over α that for every X ∈ Bα, there is a κ-Borel∗-code (T, h) such that (T, h) codes
X and T is a κ+, ω-tree.

For α = 0. If X ∈ B0, then T = {∅} and h(∅) = X is a κ-Borel∗-code that codes X.
Suppose α = β + n for n an even natural number and β a limit ordinal or 0 is such that for all X ∈ Bα,

there is a κ-Borel∗-code (T, h) such that (T, h) codes X and T is a κ+, ω-tree. Suppose X ∈ Bα+n+1, so either
X ∈ Bα + n or X =

⋂
B for some B ⊆ Bβ+n with | B |= γ ≤ κ. Let B = {Xi}i<γ , by the induction hypothesis

we know that there are κ-Borel∗-code {(Ti, hi)}i<γ such that (Ti, hi) codes Xi and Ti is a κ+, ω-tree, for all
i < γ. Let T = {r} ∪

⋃
i<γ Ti × {i} be the tree ordered by r < (x, j) for all (x, j) ∈

⋃
i<γ Ti × {i}, and

(x, i) < (y, j) if and only if i = j and x < y in Ti. Let T ⊆ κ<ω be a tree isomorphic to T and let G : T → T
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be a tree isomorphism. If G(x) ̸= r, then denote G(x) by (G1(x),G2(x)). Define h by h(x) = ∩ if G(x) = r, and
h(x) = hG2(x)(G1(x)).

Let us show that (T, h) codes X. Let η ∈ X, so η ∈ Xi for all i < γ. If at the beginning I chooses x, then
II follows the winning strategy from the game B∗(TG2(x), hG2(x), η), choosing the element given by G−1. We
conclude that II ↑ B∗(T, h, η). Let η ̸∈ X, so there is i < γ such that η ̸∈ Xi, so II has no winning strategy for
the game B∗(Ti, hi, η). Since at the beginning I can choose x such that G2(x) = i, II cannot have a winning
strategy for the game B∗(T, h, η). Otherwise II would have a winning strategy the game B∗(Ti, hi, η).

The case α = β + n for n an odd natural number and β a limit ordinal or 0 is similar, just make h(x) = ∪
if G(x) = r when constructing (T, h).

Suppose α is a limit ordinal such that for all β < α, for all X ∈ Bβ , there is a κ-Borel
∗-code (T, h) such that

(T, h) codes X and T is a κ+, ω-tree. Let X ∈ Bα, since Bα =
⋃

β<αBβ there is β < α such that X ∈ Bβ . By

the induction hypothesis, there is a κ-Borel∗-code (T, h) such that (T, h) codes X and T is a κ+, ω-tree.

Theorem 2.7 ([2], Thm 17). 1. κ-Borel∗ ⊆ Σ1
1(κ).

2. κ-Borel⊆ Σ1
1(κ).

3. κ-Borel⊆ ∆1
1(κ).

Proof. 1. Let X be a κ-Borel∗ set, there is a κ-Borel∗ code (T, h) such that X is coded by (T, h).

Since κ<κ = κ, we can code the strategies σ : T → T by elements of κκ.

Claim 2.8. The set Y = {(η, ξ) | ξ is a code of a winning strategy for II in B∗(T, h, η)} is closed.

Proof. Let (η, ξ) be an element not in Y . So ξ is not a winning strategy for II in B∗(T, h, η)}, there is
α < κ such that for every ζ ∈ Nξ↾α, ζ is not a winning strategy for II in B∗(T, h, η)}. Otherwise T would
have a branch of length κ. Because of the same reason, there is β < κ such that for every f ∈ Nη↾β ,
ζ ∈ Nξ↾α, ζ is not a winning strategy for II in B∗(T, h, f)}. So Nη↾β ×Nξ↾α is a subset of the complement
of Y .

Since pr(Y ) = X, we are done.

2. It follows from Theorem 2.6 and (1).

3. It follows from (2) and the fact that κ-Borel sets are closed under complement.

The following theorem is the separation theorem and the proof can be found in [14].

Theorem 2.9 ([14], Corollary 34). Suppose A and B are disjoint Σ1
1(κ) sets. There are κ-Borel∗ sets C0 and

C1 such that A ⊆ C0, B ⊆ C1, and C0 and C1 are duals.

Theorem 2.10 ([2], Theorem 17). ∆1
1(κ) ⊆ κ-Borel∗

Proof. Let A be a ∆1
1(κ) set. Let B = B(κ)\A, by 2.9, there are κ-Borel∗ sets C0 and C1 such that A ⊆ C0,

B ⊆ C1, and C0 and C1 are duals. Since C0 and C1 are duals, C0 and C1 are disjoint. So A = C0, B = C1.

Corollary 2.11 ([14], Corollary 35). X is ∆1
1(κ) if there is a κ-Borel∗-code (T, h) that codes X and

II ↑ B∗(T, h, η) ⇔ I ̸↑ B∗(T, h, η)

for all η ∈ κκ the game is determined.

Exercise 2.1. Prove the claims of the following proof.

Theorem 2.12 ([2], Theorem 18). 1. κ-Borel⊊ ∆1
1(κ)

2. ∆1
1(κ) ⊊ Σ1

1(κ)

Proof. 1. Let ξ 7→ (Tξ, hξ) be a continuous coding of the κ-Borel∗-codes with T a κ+ω-tree, such that for all
κ+ω-tree, T , and h, there is ξ such that Tξ, hξ = (T, h).

Claim 2.13. The set B = {(η, ξ) | η is in the set coded by (Tξ, hξ)} is ∆1
1(κ) and is not κ-Borel, otherwise

D = {η | (η, η) /∈ B} would be Borel.

(Hint: use the set C = {(η, ξ, σ) | σ is a winning strategy for II in B∗(Tξ, hξ, η)}).

2.
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Claim 2.14. There is A ⊆ 2κ × 2κ such that if B ⊆ 2κ is a Σ1
1(κ) set, then there is η ∈ 2κ such that

B = {ξ | (ξ, η) ∈ A}.
(Hint: the construction used in the classical case works too).

The set D = {η | (η, η) ∈ A} is Σ1
1(κ) but not Π

1
1(κ).

From the previous results, we can see that

κ-Borel ⊊ ∆1
1(κ) ⊊ Σ1

1(κ)

and
∆1

1(κ) ⊆ κ-Borel∗ ⊆ Σ1
1(κ).

Therefore we are missing to determine whether one of the following holds:

• ∆1
1(κ) ⊊ κ-Borel∗ ⊊ Σ1

1(κ);

• ∆1
1(κ) ⊊ κ-Borel∗ = Σ1

1(κ);

• ∆1
1(κ) = κ-Borel∗ ⊊ Σ1

1(κ).

As we will see, only case has not been answered.

Question 2.15. Is the following consistent ∆1
1(κ) = κ-Borel∗ ⊊ Σ1

1(κ)?

3 Reflection of Π1
2-sentences

In this session we will focus on proving the consistency ofκ-Borel∗ = Σ1
1(κ). This was initially proved by

Friedman-Hyttinen-Weisnstein in [2] under the assumption V = L.

Theorem 3.1 ([2], Theorem 18). If V = L, then κ-Borel∗ = Σ1
1(κ).

We will show another proof which shows that κ-Borel∗ = Σ1
1(κ) holds in L but it can also be forced.

A function f : κκ → κκ is κ-Borel, if for every open set A ⊆ κκ the inverse image f−1[A] is a κ-Borel subset
of X. If Q1 and Q2 are quasi-orders on B1,B2 ∈ {2κ, κκ}, respectively, then we say that Q1 is Borel-reducible
to Q2 if there exists a κ-Borel map f : 2κ → 2κ such that for all η, ξ ∈ 2κ we have ηQ1ξ ⇐⇒ f(η)Q2f(ξ) and
this is also denoted by Q1 ↪→B Q2.

Fact 3.2. Assume f : 2κ → 2κ is a κ-Borel function and B ⊂ 2κ is κ-Borel∗. Then f−1[B] is κ-Borel∗.

Proof. Let (TB , HB) be a κ-Borel∗-code for B. Define the κ-Borel∗-code (TA, HA) by letting TB = TA and
HA(b) = f−1[HB(b)] for every branch b of TB . Let A be the κ-Borel∗-set coded by (TA, HA). Clearly, II ↑
B∗(TB , HB , η) if and only if II ↑ B∗(TA, HA, f

−1(η)), so f−1[B] = A.

The idea: Find a κ-Borel∗ equivalence relation R such that for all Σ1
1(κ) equivalence, Q, Q ↪→B R.

A quasi-order is Σ1
1-complete, if it is Σ1

1(κ) and every Σ1
1(κ) quasi-order is Borel-reducible to it. We will find

a Σ1
1-complete R that is κ-Borel∗. Before we prove the result, let us take a look to the weakly compact cardinal

to understand the motivation behind the definition of the diamond principle Dl∗S(Π
1
2).

Let us suppose κ is a Π1
2-indescernible cardinal. We know that Reg(κ) the set of regular cardinals below κ

is stationary. Therefore, we can define the equivalence relation =κ
Reg by

η =κ
Reg ξ ⇔ {α ∈ Reg | η(α) ̸= ξ(α)} is non-stationary

Let us show that =κ
Reg is a Σ1

1-complete equivalence relation.

Theorem 3.3 ([1] Thm 3.7). If κ is a Π1
2–indescribable cardinal, then =κ

Reg is Σ1
1(κ)–complete.

Proof. Let E be a Σ1
1(κ) equivalence relation on κκ. Then there is a closed set C on κκ×κκ×κκ such that η E ξ

if and only if there exists ζ ∈ κκ such that (η, ξ, ζ) ∈ C. Let us define U = {(η ↾ α, ξ ↾ α, ζ ↾ α) | (η, ξ, ζ) ∈
C & α < κ}, and for every γ < κ define Cγ = {(η, ξ, ζ) ∈ γγ × γγ × γγ | ∀α < γ (η ↾ α, ξ ↾ α, ζ ↾ α) ∈ U}. Let
Eγ ⊂ γγ × γγ be the relation defined by (η, ξ) ∈ Eγ if and only if there exists ζ ∈ γγ such that (η, ξ, ζ) ∈ Cγ .
Since E is an equivalence relation, it follows that Eγ is reflexive and symmetric, but not necessary transitive.
Let us define the reduction by

F (η)(α) =

{
fα(η) if Eα is an equivalence relation and η ↾ α ∈ αα

0 otherwise.
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where fα(η) is a code in κ\{0} for the Eα–equivalence class of η.
Let us prove that if (η, ξ) ∈ E, then (F (η), F (ξ)) ∈=κ

reg. Suppose (η, ξ) ∈ E. Then there is ζ ∈ κκ such that
(η, ξ, ζ) ∈ C and for all α < κ we have that (η ↾ α, ξ ↾ α, ζ ↾ α) ∈ U . On the other hand, we know that there is
a club D such that for all α ∈ D ∩ Reg(κ), η ↾ α, ξ ↾ α, ζ ↾ α ∈ αα. We conclude that for all α ∈ D ∩ Reg(κ),
if Eα is an equivalence relation, then (η, ξ) ∈ Eα. Therefore, for all α ∈ D ∩ Reg(κ), F (η)(α) = F (ξ)(α), so
F (η) =κ

Reg F (ξ). Let us prove that if (η, ξ) /∈ E, then F (η) ̸=κ
Reg F (ξ). Suppose η, ξ ∈ κκ are such that

(η, ξ) /∈ E. We know that there is a club D such that for all α ∈ D ∩Reg(κ), η ↾ α, ξ ↾ α ∈ αα.
Notice that because C is closed (η, ξ) /∈ E is equivalent to

∀ζ ∈ κκ (∃α < κ (η ↾ α, ξ ↾ α, ζ ↾ α) /∈ U),

so the sentence (η, ξ) /∈ E is a Π1
1 property of the structure (Vκ,∈, U, η, ξ). On the other hand, the sentence

∀ζ1, ζ2, ζ3 ∈ κκ[((ζ1, ζ2) ∈ E ∧ (ζ2, ζ3) ∈ E) → (ζ1, ζ3) ∈ E] is equivalent to the sentence ∀ζ1, ζ2, ζ3, θ1, θ2 ∈
κκ[∃θ3 ∈ κκ(ψ1 ∨ ψ2 ∨ ψ3)], where ψ1, ψ2 and ψ3 are, respectively, the formulas ∃α1 < κ (ζ1 ↾ α1, ζ2 ↾ α1, θ1 ↾
α1) /∈ U , ∃α2 < κ (ζ2 ↾ α2, ζ3 ↾ α2, θ2 ↾ α2) /∈ U , and ∀α3 < κ (ζ1 ↾ α3, ζ3 ↾ α3, θ3 ↾ α3) ∈ U . Therefore, the
sentence ∀ζ1, ζ2, ζ3 ∈ κκ[((ζ1, ζ2) ∈ E ∧ (ζ2, ζ3) ∈ E) → (ζ1, ζ3) ∈ E] is a Π1

2 property of the structure (Vκ,∈, U).
It follows that the sentence

(D is unbounded in κ) ∧ ((η, ξ) /∈ E) ∧ (E is an equivalence relation) ∧ (κ is regular)

is a Π1
2 property of the structure (Vκ,∈, U, η, ξ). By Π1

2 reflection, we know that there are stationary many
γ ∈ Reg(κ) such that γ is a limit point of D, Eγ is an equivalence relation, and (η ↾ γ, ξ ↾ γ) /∈ Eγ . We conclude
that there are stationary many γ ∈ Reg(κ) such that fγ(η) ̸= fγ(ξ), and hence F (η) ̸=κ

reg F (η)

As we can see from the previous theorem, Π1
2 reflection implies that =κ

Reg is Σ1
1(κ)-complete. Unfortunately

=κ
Reg is not necessarily κ-Borel∗. As we saw in the first session, =κ

ω is a κ-Borel∗ equivalence relation. Therefore,

if there is a Π1
2 reflection notion on the set {α < κ | cf(α) = ω}, then we conclude that κ-Borel∗ = Σ1

1(κ). Let
us define a notion of reflection on ordinals of cofinality ω.

Exercise 3.1. A set Q is Σ1
1(κ) if and only if there is a tree T on κ<κ × κ<κ × κ<κ such that Q = pr([T ]),

that is,
(η, ξ) ∈ Q ⇐⇒ ∃ζ ∈ κκ ∀τ < κ (η ↾ τ, ξ ↾ τ, ζ ↾ τ) ∈ T.

A Π1
2-sentence ϕ is a formula of the form ∀X∃Y φ where φ is a first-order sentence over a relational language

L as follows:

• L has a predicate symbol ϵ of arity 2;

• L has a predicate symbol X of arity m(X);

• L has a predicate symbol Y of arity m(Y);

• L has infinitely many predicate symbols (An)n∈ω, each An is of arity m(An).

Definition 3.4. For sets N and x, we say that N sees x iff N is transitive, p.r.-closed, and x ∪ {x} ⊆ N .

Suppose that a set N sees an ordinal α, and that ϕ = ∀X∃Y φ is a Π1
2-sentence, where φ is a first-order

sentence in the above-mentioned language L. For every sequence (An)n∈ω such that, for all n ∈ ω, An ⊆ αm(An),
we write

⟨α,∈, (An)n∈ω⟩ |=N ϕ

to express that the two hold:

1. (An)n∈ω ∈ N ;

2. ⟨N,∈⟩ |= (∀X ⊆ αm(X))(∃Y ⊆ αm(Y))[⟨α,∈, X, Y, (An)n∈ω⟩ |= φ], where:

• ∈ is the interpretation of ϵ;

• X is the interpretation of X;
• Y is the interpretation of Y, and
• for all n ∈ ω, An is the interpretation of An.

We write α+ for |α|+, and write ⟨α,∈, (An)n∈ω⟩ |= ϕ for

⟨α,∈, (An)n∈ω⟩ |=Hα+ ϕ.
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Definition 3.5. Let κ be a regular and uncountable cardinal, and S ⊆ κ stationary.
Dl∗S(Π

1
2) asserts the existence of a sequence N⃗ = ⟨Nα | α ∈ S⟩ satisfying the following:

1. for every α ∈ S, Nα is a set of cardinality < κ that sees α;

2. for every X ⊆ κ, there exists a club C ⊆ κ such that, for all α ∈ C ∩ S, X ∩ α ∈ Nα;

3. whenever ⟨κ,∈, (An)n∈ω⟩ |= ϕ, with ϕ a Π1
2-sentence, there are stationarily many α ∈ S such that |Nα| =

|α| and ⟨α,∈, (An ∩ (αm(An)))n∈ω⟩ |=Nα
ϕ.

The principle Dl∗S(Π
1
2) provide us the reflection principle that we need, let us show that there is a Σ1

1-complete
quasi-order of 2κ.

Definition 3.6. Given a stationary subset S ⊆ κ, we define a quasi-order ⊆S over 2κ by letting, for any two
elements η : 2 → κ and ξ : 2 → κ,

η ⊆S ξ iff {α ∈ S | η(α) > ξ(α)} is nonstationary.

Lemma 3.7 (Transversal lemma, [4], Prop 3.1). Suppose that ⟨Nα | α ∈ S⟩ is a Dl∗S(Π
1
2)-sequence, for a given

stationary S ⊆ κ. For every Π1
2-sentence ϕ, there exists a transversal ⟨ηα | α ∈ S⟩ ∈

∏
α∈S Nα satisfying the

following.
For every η ∈ κκ, whenever ⟨κ,∈, (An)n∈ω⟩ |= ϕ, there are stationarily many α ∈ S such that

1. ηα = η ↾ α, and

2. ⟨α,∈, (An ∩ (αm(An)))n∈ω⟩ |=Nα
ϕ.

Exercise 3.2. There is a first-order sentence ψfnc in the language with binary predicate symbols ϵ and X such
that, for every ordinal α and every X ⊆ α× α,

(X is a function from α to α) iff (⟨α,∈, X⟩ |= ψfnc).

Exercise 3.3. Let α be an ordinal. Suppose that ϕ is a Σ1
1-sentence involving a predicate symbol A and two

binary predicate symbols X0,X1. Denote Rϕ := {(X0, X1) | ⟨α,∈, A,X0, X1⟩ |= ϕ}. Then there are Π1
2-sentences

ψReflexive and ψTransitive such that:

1. (Rϕ ⊇ {(η, η) | η ∈ αα}) iff (⟨α,∈, A⟩ |= ψReflexive);

2. (Rϕ is transitive) iff (⟨α,∈, A⟩ |= ψTransitive).

Definition 3.8. Denote by Lev3(κ) the set of level sequences in κ<κ of length 3:

Lev3(κ) :=
⋃
τ<κ

κτ × κτ × κτ .

Fix an injective enumeration {ℓδ | δ < κ} of Lev3(κ). For each δ < κ, we denote ℓδ = (ℓ0δ , ℓ
1
δ , ℓ

2
δ). We then

encode each T ⊆ Lev3(κ) as a subset of κ5 via:

Tℓ := {(δ, β, ℓ0δ(β), ℓ1δ(β), ℓ2δ(β)) | δ < κ, ℓδ ∈ T, β ∈ dom(ℓ0δ)}.

Theorem 3.9 ([4], Thm 3.5). Suppose Dl∗S(Π
1
2) holds for a given stationary S ⊆ κ.

For every analytic quasi-order Q over κκ, Q ↪→B⊆S.

Proof. Let Q be an analytic quasi-order over κκ. Fix a tree T on κ<κ × κ<κ × κ<κ such that Q = pr([T ]), that
is,

(η, ξ) ∈ Q ⇐⇒ ∃ζ ∈ κκ ∀τ < κ (η ↾ τ, ξ ↾ τ, ζ ↾ τ) ∈ T.

We shall be working with a first-order language having a 5-ary predicate symbol A and binary predicate
symbols X0,X1,X2 and ϵ. By Exercise 3.2, for each i < 3, let us fix a sentence ψi

fnc concerning the binary
predicate symbol Xi instead of X, so that

(Xi ∈ κκ) iff (⟨κ,∈, A,X0, X1, X2⟩ |= ψi
fnc).

Define a sentence φQ to be the conjunction of four sentences: ψ0
fnc, ψ

1
fnc, ψ

2
fnc, and

∀τ∃δ∀β[ϵ(β, τ) → ∃γ0∃γ1∃γ2(X0(β, γ0) ∧ X1(β, γ1) ∧ X2(β, γ2) ∧ A(δ, β, γ0, γ1, γ2))].

Set A := Tℓ as in Definition 3.8. Evidently, for all η, ξ, ζ ∈ P(κ× κ), we get that

⟨κ,∈, A, η, ξ, ζ⟩ |= φQ

iff the two hold:
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1. η, ξ, ζ ∈ κκ, and

2. for every τ < κ, there exists δ < κ, such that ℓδ = (η ↾ τ, ξ ↾ τ, ζ ↾ τ) is in T .

Let ϕQ := ∃X2(φQ). Then ϕQ is a Σ1
1-sentence involving predicate symbols A,X0,X1 and ϵ for which the

induced binary relation
RϕQ

:= {(η, ξ) ∈ (P(κ× κ))2 | ⟨κ,∈, A, η, ξ⟩ |= ϕQ}

coincides with the quasi-order Q. Now, appeal to Exercise 3.3 with ϕQ to receive the corresponding Π1
2-sentences

ψReflexive and ψTransitive. Then, consider the following two Π1
2-sentences:

• ψ0
Q := ψReflexive ∧ ψTransitive ∧ ϕQ, and

• ψ1
Q := ψReflexive ∧ ψTransitive ∧ ¬(ϕQ).

Let N⃗ = ⟨Nα | α ∈ S⟩ be a Dl∗S(Π
1
2)-sequence. Appeal to Lemma 3.7 with the Π1

2-sentence ψ
1
Q to obtain a

corresponding transversal ⟨ηα | α ∈ S⟩ ∈
∏

α∈S Nα. Note that we may assume that, for all α ∈ S, ηα ∈ αα, as
this does not harm the key feature of the chosen transversal.

For each η ∈ κκ, let
Zη := {α ∈ S | A ∩ α5 and η ↾ α are in Nα}.

Claim 3.10. Suppose η ∈ κκ. Then S \ Zη is nonstationary.

Proof. Fix primitive-recursive bijections c : κ2 ↔ κ and d : κ5 ↔ κ. Given η ∈ κκ, consider the club D0 of all
α < κ such that:

• η[α] ⊆ α;

• c[α× α] = α;

• d[α× α× α× α× α] = α.

Now, as c[η] is a subset of κ, by the choice N⃗ , we may find a club D1 ⊆ κ such that, for all α ∈ D1 ∩ S,
c[η] ∩ α ∈ Nα. Likewise, we may find a club D2 ⊆ κ such that, for all α ∈ D2 ∩ S, d[A] ∩ α ∈ Nα.

For all α ∈ S ∩D0 ∩D1 ∩D2, we have

• c[η ↾ α] = c[η ∩ (α× α)] = c[η] ∩ c[α× α] = c[η] ∩ α ∈ Nα, and

• d[A ∩ α5] = d[A] ∩ d[α5] = d[A] ∩ α ∈ Nα.

As Nα is p.r.-closed, it then follows that η ↾ α and A∩α5 are in Nα. Thus, we have shown that S \Zη is disjoint
from the club D0 ∩D1 ∩D2.

For all η ∈ κκ and α ∈ Zη, let:

Pη,α := {p ∈ αα ∩Nα | ⟨α,∈, A ∩ α5, p, η ↾ α⟩ |=Nα
ψ0
Q}.

Finally, define a function f : κκ → 2κ by letting, for all η ∈ κκ and α < κ,

f(η)(α) :=

{
1, if α ∈ Zη and ηα ∈ Pη,α;

0, otherwise.

Exercise 3.4. f is Borel.

Claim 3.11. Suppose (η, ξ) ∈ Q. Then f(η) ⊆S f(ξ).

Proof. As (η, ξ) ∈ Q, let us fix ζ ∈ κκ such that, for all τ < κ, (η ↾ τ, ξ ↾ τ, ζ ↾ τ) ∈ T . Define a function
g : κ→ κ by letting, for all τ < κ,

g(τ) := min{δ < κ | ℓδ = (η ↾ τ, ξ ↾ τ, ζ ↾ τ)}.

As (S \ Zη), (S \ Zξ) and (S \ Zζ) are nonstationary, let us fix a club C ⊆ κ such that C ∩ S ⊆ Zη ∩ Zξ ∩ Zζ .
Consider the club D := {α ∈ C | g[α] ⊆ α}. We shall show that, for every α ∈ D ∩ S, if f(η)(α) = 1 then
f(ξ)(α) = 1.

Fix an arbitrary α ∈ D ∩ S satisfying f(η)(α) = 1. In effect, the following three conditions are satisfied:

1. ⟨α,∈, A ∩ α5⟩ |=Nα ψReflexive,

2. ⟨α,∈, A ∩ α5⟩ |=Nα
ψTransitive, and
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3. ⟨α,∈, A ∩ α5, ηα, η ↾ α⟩ |=Nα ϕQ.

In addition, since α is a closure point of g, by definition of φQ, we have

⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α, ζ ↾ α⟩ |= φQ.

As α ∈ S and φQ is first-order,

⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α, ζ ↾ α⟩ |=Nα
φQ,

so that, by definition of ϕQ,
⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α⟩ |=Nα

ϕQ.

By combining the preceding with clauses (2) and (3) above, we infer that the following holds, as well:

(4) ⟨α,∈, A ∩ α5, ηα, ξ ↾ α⟩ |=Nα ϕQ.

Altogether, f(ξ)(α) = 1, as sought.

Claim 3.12. Suppose (η, ξ) ∈ κκ × κκ \Q. Then f(η) ̸⊆S f(ξ).

Proof. As (S \ Zη) and (S \ Zξ) are nonstationary, let us fix a club C ⊆ κ such that C ∩ S ⊆ Zη ∩ Zξ. As Q is
a quasi-order and (η, ξ) /∈ Q, we have:

1. ⟨κ,∈, A⟩ |= ψReflexive,

2. ⟨κ,∈, A⟩ |= ψTransitive, and

3. ⟨κ,∈, A, η, ξ⟩ |= ¬(ϕQ).

so that, altogether,
⟨κ,∈, A, η, ξ⟩ |= ψ1

Q.

Then, by the choice of the transversal ⟨ηα | α ∈ S⟩, there is a stationary subset S′ ⊆ S ∩C such that, for all
α ∈ S′:

1. ⟨α,∈, A ∩ α5⟩ |=Nα
ψReflexive,

2. ⟨α,∈, A ∩ α5⟩ |=Nα ψTransitive,

3. ⟨α,∈, A ∩ α5, η ↾ α, ξ ↾ α⟩ |=Nα
¬(ϕQ), and

4. ηα = η ↾ α.

By Clauses (3’) and (4’), we have that ηα /∈ Pξ,α, so that f(ξ)(α) = 0.
By Clauses (1’), (2’) and (4’), we have that ηα ∈ Pη,α, so that f(η)(α) = 1.
Altogether, {α ∈ S | f(η)(α) > f(ξ)(α)} covers the stationary set S′, so that f(η) ̸⊆S f(ξ).

This completes the proof of Theorem 3.9

Definition 3.13. For a stationary S ⊆ κ, ♢++
S asserts the existence of a sequence ⟨Kα | α ∈ S⟩ satisfying the

following:

1. for every infinite α ∈ S, Kα is a set of size |α|;

2. for every X ⊆ κ, there exists a club C ⊆ κ such that, for all α ∈ C ∩ S, C ∩ α,X ∩ α ∈ Kα;

3. the following set is stationary in [Hκ+ ]<κ:

{M ∈ [Hκ+ ]<κ |M ∩ κ ∈ S & clps(M,∈) = (KM∩κ,∈)}.

Theorem 3.14 ([18], Prop 1.4). ♢++
S holds in L.

Lemma 3.15 ([3], Thm 4.10). For every stationary S ⊆ κ, ♢++
S implies Dl∗S(Π

1
2).

Definition 3.16. Let S be the poset of all pairs (k,B) with the following properties:

1. k is a function such that dom(k) < κ;

2. for each α ∈ dom(k), k(α) is a transitive model of ZF− of size ≤ max{ℵ0, |α|}, with k ↾ α ∈ k(α);

3. B is a subset of P(κ) of size ≤ dom(k);
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(k′,B′) ≤ (k,B) in S if the following holds:

(i) k′ ⊇ k, and B′ ⊇ B;

(ii) for any B ∈ B and any α ∈ dom(k′) \ dom(k), B ∩ α ∈ k′(α).

Lemma 3.17 ([18], Prop 1.5). For every stationary S ⊆ κ, V S |= ♢++
S .

Let us denote by Dl∗ω(Π
1
2) the principle Dl∗S(Π

1
2) when S = {α < κ | cf(α) = ω}. Since ♢++

S holds in L, in
L we have κ-Borel∗ = Σ1

1(κ). Also there is a < κ-closed κ+-cc forcing which forces κ-Borel∗ = Σ1
1(κ).

Theorem 3.18 ([6], Corollary 3.2). It is consistent that ∆1
1(κ) ⊊ κ-Borel∗ ⊊ Σ1

1(κ).

As we have seen, the equivalence relations =κ
µ and =2

µ play a crucial role. It is clear that Dl∗µ(Π
1
2) implies

=κ
µ ↪→B =2

µ.

Question 3.19. Is =κ
µ ↪→B =2

µ a theorem of ZFC?

4 A generalized Borel-reducibility counterpart of Shelah’s main gap

Shelah’s Main Gap Theorem states the following.

Theorem 4.1 ([19] Main Gap Theorem). For every T first order complete theory over a countable vocabulary.
Let I(T, α) denote the number of non-isomorphic models of T with cardinality α. One of the following holds:

1. If T is shallow superstable without DOP and without OTOP, then ∀α > 0 I(T,ℵα) ≤ ℶω1(| α |).

2. If T is not superstable, or superstable and deep or with DOP or with OTOP, then for every uncountable
cardinal α, I(T, α) = 2α.

This gives us a notion of complexity, a theory is more complex if it has more models. Unfortunately, the main
gap also tells us that with this notion of complexity a theory T is either too complex, for every uncountable
cardinal α I(T, α) = 2α, or it is not so complex, i.e. ∀α > 0 I(T,ℵα) < ℶω1

(| α |). The aim of study the
Main Gap in the generalized Borel reducibility hierarchy is to obtain a more refined complexity notion in which
different theories have different complexities, and satisfies a counterpart of the Main Gap theorem:

If T1 and T2 are first order complete theories over a countable vocabulary such that T1 satisfies the first item
of the Main Gap and T2 satisfies the second item of the Main Gap theorem, then T1 is less complex than T2.

With the notions explained in the previous session, we can define the desire complexity notion:
T1 is as much as complex as T2 if and only ∼=T1

↪→B
∼=T2

.
To study this notion of complexity for first order complete theories over countable vocabularies, we will

divide the theories in two classes (as the Main Gap suggested), classifiable and non-classifiable theories. The
only difference is that we will not require a theory to be shallow in order to be classifiable. Some authors require
shallow for classifiable theories, we will see why in our case it make sense to not require it.

Definition 4.2. • A first order complete theory over a countable vocabulary, T , is classifiable if it is super-
stable without DOP and without OTOP.

• A first order complete theory over a countable vocabulary, T , is non-classifiable if it satisfies one of the
following:

1. T is stable unsuperstable;

2. T is superstable with DOP;

3. T is superstable with OTOP;

4. T is unstable.

Let us fix a bijection π : κ<ω → κ.

Definition 4.3. For every η ∈ κκ define the structure Aη with domain κ as follows.
For every tuple (a1, a2, . . . , an) in κ

n

(a1, a2, . . . , an) ∈ PAη
m ⇔ the arity of Pm is n and η(π(m, a1, a2, . . . , an)) > 0.

Definition 4.4. For every η ∈ 2κ define the structure Aη with domain κ as follows.
For every tuple (a1, a2, . . . , an) in κ

n

(a1, a2, . . . , an) ∈ PAη
m ⇔ the arity of Pm is n and η(π(m, a1, a2, . . . , an)) = 1.
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Notice that the structure Aη ↾ α is not necessary coded by the function η ↾ α.

Exercise 4.1. There is a club Cπ such that for all α ∈ Cπ, Aη ↾ α = Aη↾α

With the structures coded by the elements of 2κ and κκ, it is easy to define the isomorphism relation of
structures of size κ in both spaces.

Definition 4.5 (The isomorphism relation). Assume T is a complete first order theory in a countable vocabulary.
We define ∼=κ

T as the relation

{(η, ξ) ∈ κκ × κκ | (Aη |= T,Aξ |= T,Aη
∼= Aξ) or (Aη ̸|= T,Aξ ̸|= T )}.

Definition 4.6. Assume T is a complete first order theory in a countable vocabulary. We define ∼=2
T as the

relation
{(η, ξ) ∈ 2κ × 2κ | (Aη |= T,Aξ |= T,Aη

∼= Aξ) or (Aη ̸|= T,Aξ ̸|= T )}.

Notice that ∼=κ
T ↪→c

∼=2
T holds for every theory T . From now on let us denote by ∼=t both notions ∼=κ

T and
∼=2

T .
Let us start with the case of classifiable theories. The following is the usual Ehrenfeucht-Fräıssé game but

coded in a particular way for our purposes.

Definition 4.7. (Ehrenfeucht-Fräıssé game) Fix {Xγ}γ<κ an enumeration of the elements of Pκ(κ) and
{fγ}γ<κ an enumeration of all the functions with domain in Pκ(κ) and range in Pκ(κ). For every pair of
structures A and B with domain κ and α < κ, the EFκ

ω(A ↾α,B ↾α) is a game played by the players I and II as
follows.
In the n-th move, first I choose an ordinal βn < α such that Xβn

⊂ α, Xβn−1
⊆ Xβn

, and then II an ordinal
θn < α such that dom(fθn), rang(fθn) ⊂ α, Xβn ⊆ dom(fθn) ∩ rang(fθn) and fθn−1 ⊆ fθn (if n = 0 then
Xβn−1 = ∅ and fθn−1 = ∅). The game finishes after ω moves. The player II wins if ∪i<ωfθi : A ↾α→ B ↾α is a
partial isomorphism, otherwise the player I wins.

We write I ↑ EFκ
ω(A ↾α,B ↾α) if I has a winning strategy in the game EFκ

ω(A ↾α,B ↾α). We write II ↑
EFκ

ω(A ↾α,B ↾α) if II has a winning strategy.

Lemma 4.8 ([9], Lemma 2.4). If A and B are structures with domain κ, then the following hold:

• II ↑ EFκ
ω(A ↾ κ,B ↾ κ) ⇐⇒ II ↑ EFκ

ω(A ↾α,B ↾α) for club-many α.

• I ↑ EFκ
ω(A ↾ κ,B ↾ κ) ⇐⇒ I ↑ EFκ

ω(A ↾α,B ↾α) for club-many α.

Proof. It is easy to see that if σ : κ<ω → κ is a winning strategy for II in the game EFκ
ω(A ↾ κ,B ↾ κ), then

σ ↾ α<α is a winning strategy for II in the game EFκ
ω(A ↾α,B ↾α) if σ[α<α] ⊆ α. So II ↑ EFκ

ω(A ↾α,B ↾α) for α
a closed point of σ.

We conclude that if II ↑ EFκ
ω(A ↾ κ,B ↾ κ), then II ↑ EFκ

ω(A ↾α,B ↾α) for club-many α. The same holds
for I. To show the other direction, notice that EFκ

ω(A ↾ κ,B ↾ κ) is a determined game, so if II doesn’t have
a winning strategy, then I has a winning strategy. Therefore, if II doesn’t have a winning strategy in the
game EFκ

ω(A ↾ κ,B ↾ κ), then I ↑ EFκ
ω(A ↾α,B ↾α) for club-many α, and II cannot have a winning strategy in

EFκ
ω(A ↾α,B ↾α) for club-many α.

The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 4.9 ([19], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T that are
L∞,κ-equivalent are isomorphic.

Theorem 4.10 ([2], Theorem 10). L∞,κ-equivalence is equivalent to EFκ
ω-equivalence.

From these two theorems we know that if T is a classifiable theory, then for any A and B models of T with
domain κ,

II ↑ EFκ
ω(A,B) ⇐⇒ A ∼= B

I ↑ EFκ
ω(A,B) ⇐⇒ A ≇ B.

From the previous Lemma we know the following two hold for any A and B models of a classifiable theory (with
domain κ):

• A ∼= B ⇐⇒ II ↑ EFκ
ω(A ↾α,B ↾α) for club-many α.

• A ≇ B ⇐⇒ I ↑ EFκ
ω(A ↾α,B ↾α) for club-many α.

Theorem 4.11 ([2], Theorem 70). If T is a classifiable theory, then ∼=T is ∆1
1(κ).
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Proof. Notice that the EFκ
ω game can be coded as a κ-Borel∗ game taking at the leaves the open sets given by

partial isomorphisms.

Theorem 4.12 ([2], Theorem 69). Suppose κ > 2ω. If T is a classifiable shallow theory, then ∼=T is κ-Borel.

Theorem 4.13 ([2], Theorem 71). If T is unstable, or superstable with OTOP, or superstable with DOP and
κ > ω1, then ∼=T is not a ∆1

1(κ) equivalence relation.

Definition 4.14. Let us define the following hierarchy.

• Σ0
1 = {X ⊆ 2κ | X is open}

• Π0
1 = {X ⊆ 2κ | X is closed}

• Σ0
α = {

⋃
γ<κAγ | Aγ ∈

⋃
1≤β<α Π0

β}

• Πα
0 = {2κ\X | X ∈ Σ0

α}

Notice that κ-Borel=
⋃

α<κ+ Σ0
α. The smallest ordinal α such that A ∈ Σ0

α ∪Π0
α is called the Borel rank of

A and denoted by rkB(A). Given a theory T , let us denote by B(κ, T ) the rank rkB(∼=T ).

Theorem 4.15 ([13], Theorem 1.9 Descriptive Main Gap ). Let κ > 2ω. If T is classifiable shallow of depth
α, then B(κ, T ) ≤ 4α.

Notice that under GCH, for all γ, δ ≥ ω1 such that |γ| > |δ|, κ = ℵγ+δ satisfies

I(T,ℵγ+δ) ≤ ℶω1(| γ + δ |) < ℵγ+δ

Theorem 4.16 ([13], Proposition 6.7). Let κ = ℵγ be such that ℶω1
(| γ |) ≤ κ. Suppose T1 is a classifiable

shallow and T2 not. Then ∼=T1 ↪→c
∼=T2 .

Lemma 4.17 ([7], Lemma 2). Let µ < κ is a regular cardinal and Sκ
µ = {α < κ | cf(α) = µ}. Assume T is a

classifiable theory and µ < κ is a regular cardinal. If ♢κ(S
κ
µ) holds then ∼=T is continuously reducible to =2

µ.

Proof. Let {Dα | α ∈ X} be a sequence testifying ♢κ(S
κ
µ) and define the function F : 2κ → 2κ by

F(η)(α) =

{
1 if α ∈ Sκ

µ ∩ Cπ ∩ CEF , II ↑ EFκ
ω(Aη ↾α,ASα

) and Aη ↾α|= T

0 otherwise.

Exercise 4.2. η ∼=T ξ if and only F(η) =2
µ F(ξ).

Theorem 4.18 ([2], Theorem 87). Suppose that for all γ < κ, γω < κ and T is a stable unsuperstable countable
theory. Then =2

ω↪→c
∼=T .

Theorem 4.19 ([2], Theorem 79). Suppose that κ = λ+ = 2λ and λ<λ = λ.

1. If T is unstable or superstable with OTOP, then =2
λ↪→c

∼=T .

2. If λ ≥ 2ω and T is superstable with DOP, then =2
λ↪→c

∼=T .

Theorem 4.20 ([7], Theorem 7). Suppose κ = λ+, 2λ > 2ω and λ<λ = λ. The following is consistent. If T1
is classifiable and T2 is not. Then there is an embedding of (P(κ),⊆) to (B∗(T1, T2), ↪→B), where B

∗(T1, T2) is
the set of all κ-Borel∗ equivalence relations strictly between ∼=T1 and ∼=T2 .

From the results of the previous section in L, we obtain the following dichotomy.

Theorem 4.21 ([8], Theorem 4.11). (V = L) Suppose that κ is the successor of a regular uncountable cardinal
λ. If T is a countable first-order theory in a countable vocabulary, not necessarily complete, then one of the
following holds:

• ∼=T is ∆1
1;

• ∼=T is Σ1
1-complete.

Theorem 4.22 (Friedman-Hyttinen-Kulikov, [2] Theorem 77). If a first order countable complete theory over
a countable vocabulary T is classifiable, then =2

ω ̸↪→c
∼=T .
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Colored Ordered Trees

To study the non-classifiable theories we need to introduce the coloured trees. Coloured trees are very useful
to reduce =κ

µ or =2
µ to ∼=T , for certain µ and nonclassifiable theory T (see [2], [5], [9], [17]). In [2] and [5] the

coloured trees used had height ω + 2 and were used to study the case when κ is a successor cardinal. In [9]
the coloured trees had height ω + 2 and were used to study the case when κ is an inaccessible cardinal. In
these lectures we will use the coloured trees of [17], i.e. trees of uncountable height and κ inaccessible. Given
a tree t, for every x ∈ t we denote the order type of {y ∈ t|y < x}. Let us define tα = {x ∈ t|ht(x) = α}
and t<α = ∪β<αtβ , and denote by x ↾ α the unique y ∈ t such that y ∈ tα and y ≤ x. If x, y ∈ t and
{z ∈ t|z < x} = {z ∈ t|z < y}, then we say that x and y are ∼-related, x ∼ y, and we denote by [x] the
equivalence class of x for ∼. An α, β-tree is a tree t with the following properties:

• |[x]| < α for every x ∈ t.

• All the branches have order type less than β in t.

• t has a unique root.

• If x, y ∈ t, x and y has no immediate predecessors and x ∼ y, then x = y.

Definition 4.23. Let λ be an uncountable cardinal. A coloured tree is a pair (t, c), where t is a κ+, (λ+2)-tree
and c is a map c : tλ → κ\{0}.

Definition 4.24. Let (t, c) be a coloured tree, suppose (Iα)α<κ is a collection of subsets of t that satisfies:

• for each α < κ, Iα is a downward closed subset of t.

•
⋃

α<κ Iα = t.

• if α < β < κ, then Iα ⊂ Iβ.

• if γ is a limit ordinal, then Iγ =
⋃

α<γ Iα.

• for each α < κ the cardinality of Iα is less than κ.

We call (Iα)α<κ a filtration of t.

Definition 4.25. Let t be a coloured tree and I = (Iα)α<κ a filtration of t. Define HI,t ∈ κκ as follows.
Fix α < κ. Let Bα be the set of all x ∈ tλ that are not in Iα, but x ↾ θ ∈ Iα for all θ < λ.

• If Bα is non-empty and there is β such that for all x ∈ Bα, c(x) = β, then let HI,t(α) = β

• Otherwise let HI,t(α) = 0

We will call a filtration good if for every α, Bα ̸= ∅ implies that c is constant on Bα.

Lemma 4.26 ([17]). Suppose (t0, c0) and (t1, c1) are isomorphic coloured trees, and I = (Iα)α<κ and J =
(Jα)α<κ are good filtrations of (t0, c0) and (t1, c1) respectively. Then HI,t0 =κ

λ HJ ,t1

Proof. Let F : (t0, c0) → (t1, c1) be a coloured tree isomorphism. Define FI = (F [Iα])α<κ. It is easy to see
that F [Iα] is a downward closed subset of t1. Clearly F [Iα] ⊂ F [Iβ ] when α < β and for γ a limit ordinal,
∪α<γF [Iα] = F [Iγ ]. If x ∈ t1 then there exists y ∈ t0 and α < κ such that F (y) = x and y ∈ Iα, therefore
x ∈ F [Iα] and ∪α<κF [Iα] = t1. Since F is an isomorphism, |F [Iα]| = |Iα| < κ for every α < κ. So FI is a
filtration of t1.
For every α, BI

α ̸= ∅ implies that BFI
α ̸= ∅. On the other hand, I is a good filtration, then when BI

α ̸= ∅, c0 is
constant on BI

α. Since F is colour preserving, c1 is constant on BFI
α , we conclude that FI is a good filtration

and HI,t0(α) = HFI,t1(α).
Notice that F [Iα] = Jα implies HI,t0(α) = HJ ,t1(α). Therefore it is enough to show that C = {α|F [Iα] = Jα}
is an λ-club. By the definition of a filtration, for every sequence (αi)i<θ in C, cofinal to γ, Jγ =

⋃
i<θ Jαi

=⋃
i<θ F [Iαi

] = F [Iγ ], so C is closed. To show that C is unbounded, choose α < κ. Define the succession (αi)i<λ

by induction. For i = 0, α0 = α. For every limit ordinal γ, when n is odd let αγ+n+1 be the least ordinal
bigger than αγ+n such that F [Iαγ+n

] ⊂ Jαγ+n+1
(such ordinal exists because κ is regular, and J and FI are

filtrations, specially |F [Iαγ+n ]| < κ). For every limit ordinal γ, when n is even let αγ+n+1 be the least ordinal
bigger than αγ+n such that Jαγ+n ⊂ F [Iαγ+n+1 ] (such ordinal exists because κ is regular, and J and FI are
filtrations, specially |Jαn

| < κ). Define αγ =
⋃

i<γ αi, then Jαγ
=

⋃
i<γ Jαi

=
⋃

i<γ F [Iαi
] = F [Iαγ

]. Clearly⋃
i<λ Jαi

=
⋃

i<λ F [Iαi
] and ∪i<λαi ∈ C.
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Order the set λ×κ×κ×κ×κ lexicographically, (α1, α2, α3, α4, α5) > (β1, β2, β3, β4, β5) if for some 1 ≤ k ≤ 5,
αk > βk and for every i < k, αi = βi. Order the set (λ× κ× κ× κ× κ)≤λ as a tree by inclusion.
Define the tree (If , df ) as, If the set of all strictly increasing functions from some θ ≤ λ to κ and for each η
with domain λ, df (η) = f(sup(rang(η))).
For every pair of ordinals α and β, α < β < κ and i < λ define

R(α, β, i) =
⋃

i<j≤λ

{η : [i, j) → [α, β)|η strictly increasing}.

Definition 4.27. Assume κ is an inaccessible cardinal. If α < β < κ and α, β, γ ̸= 0, let {Pα,β
γ |γ < κ} be an

enumeration of all downward closed subtrees of R(α, β, i) for all i, in such a way that each possible coloured tree
appears cofinally often in the enumeration. And the tree P 0,0

0 is (If , df ).

This enumeration is possible because κ is inaccessible; there are at most
|
⋃

i<λ P(R(α, β, i))| ≤ λ× κ = κ downward closed coloured subtrees, and at most κ× κ<κ = κ coloured trees.

Denote by Q(Pα,β
γ ) the unique ordinal number i such that Pα,β

γ ⊂ R(α, β, i).

Definition 4.28. Assume κ is an inaccessible cardinal. Define for each f ∈ κκ the coloured tree (Jf , cf ) by the
following construction.
For every f ∈ κκ define Jf = (Jf , cf ) as the tree of all η : s → λ× κ4, where s ≤ λ, ordered by extension, and
such that the following conditions hold for all i, j < s:
Denote by ηi, 1 ≤ i ≤ 5, the functions from s to κ that satisfies, η(n) = (η1(n), η2(n), η3(n), η4(n), η5(n)).

1. η ↾ n ∈ Jf for all n < s.

2. η is strictly increasing with respect to the lexicographical order on λ× κ4.

3. η1(i) ≤ η1(i+ 1) ≤ η1(i) + 1.

4. η1(i) = 0 implies η2(i) = η3(i) = η4(i) = 0.

5. η2(i) ≥ η3(i) implies η2(i) = 0.

6. η1(i) < η1(i+ 1) implies η2(i+ 1) ≥ η3(i) + η4(i).

7. For every limit ordinal α, ηk(α) = supβ<α{ηk(β)} for k ∈ {1, 2}.

8. η1(i) = η1(j) implies ηk(i) = ηk(j) for k ∈ {2, 3, 4}.

9. If for some k < λ, [i, j) = η−1
1 {k}, then

η5 ↾ [i, j) ∈ P
η2(i),η3(i)
η4(i)

.

Note that 7 implies Q(P
η2(i),η3(i)
η4(i)

) = i.

10. If s = λ, then either

(a) there exists an ordinal number m such that for every k < m η1(k) < η1(m), for every k′ ≥ m

η1(k) = η1(m), and the color of η is determined by P
η2(m),η3(m)
η4(m) :

cf (η) = c(η5 ↾ [m,λ))

where c is the colouring function of P
η2(m),η3(m)
η4(m) .

or

(b) there is no such ordinal m and then cf (η) = f(sup(rang(η5))).

Lemma 4.29 ([17]). Assume κ is an inaccessible cardinal, then for every f, g ∈ κκ the following holds

f =κ
λ g ⇔ Jf ∼= Jg

Proof. By Lemma 2.4, it is enough to prove the following properties of Jf

1. There is a good filtration I of Jf , such that HI,Jf
=κ

λ f .
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2. If f =κ
λ g, then Jf ∼= Jg.

Notice that for any k ∈ rang(η1) if η5 ↾ [i, j) ∈ P
η2(i),η3(i)
η4(i)

, when [i, j) = η−1
1 (k) and if i+ 1 < j, then η5 ↾ [i, j)

is strictly increasing. If η1(i) < η1(i+ 1), by Definition 2.6 item 6, η2(i+ 1) ≥ η3(i) + η4(i), so η5(i) < η3(i) ≤
η2(i+1) ≤ η5(i+1). If α is a limit ordinal, by Definition 2.6 items 7 and 8, η5(β) < η2(β +1) < η2(α) ≤ η5(α)
it holds for every β < α. Thus η5 is strictly increasing. If η ↾ n ∈ Jf for every n, then η ∈ Jf . Clearly every
maximal branch has order type λ+1, every chain η ↾ 1 ⊂ η ↾ 2 ⊂ η ↾ 3 ⊆ · · · of any length, has a unique limit in
the tree, and every element in tθ, θ < λ, has an infinite number of successors (at most κ), therefore Jf ∈ CTλ

∗ .
For each α < κ define Jα

f as

Jα
f = {η ∈ Jf |rang(η) ⊂ λ× (β)4 for some β < α}.

Suppose rang(η1) = λ. As it was mentioned before, η5 is increasing and sup(rang(η3)) ≥ sup(rang(η5)) ≥
sup(rang(η2)). By Definition 2.6 item 6 sup(rang(η2)) ≥ sup(rang(η3)) and sup(rang(η2)) ≥ sup(rang(η4)),
this lead us to

sup(rang(η4)) ≤ sup(rang(η3)) = sup(rang(η5)) = sup(rang(η2)). (1)

When η ↾ k ∈ Jα
f holds for every k ∈ λ, it can be concluded that sup(rang(η5)) ≤ α, if in addition η /∈ Jα

f , then

sup(rang(η5)) = α. (2)

Claim 4.30. Suppose ξ ∈ Jα
f and η ∈ Jf . If dom(ξ) a successor ordinal smaller than λ, ξ ⊊ η and for every k

in dom(η)\dom(ξ), η1(k) = ξ1(max(dom(ξ))) and η1(k) > 0, then η ∈ Jα
f .

Proof. Assume ξ, η ∈ Jf are as in the assumption. Let βi = ξi(max(dom(ξ))), for i ∈ {2, 3, 4}. Since ξ ∈ Jα
f ,

then there exists β < α such that β2, β3, β4 < β. By Definition 2.6 item 8 for every k ∈ dom(η)\dom(ξ),

ηi(k) = βi for i ∈ {2, 3, 4}. Therefore, by Definition 2.6 item 9 and the definition of P β2,β3

β4
, we conclude

η5(k) < β3 < β, so η ∈ Jα
f .

Claim 4.31. |Jf | = κ, J = (Jα
f )α<κ is a good filtration of Jf and HJ ,Jf

=κ
λ f

Proof. Clearly Jf = ∪α<κJ
α
f , J

α
f is a downward closed subset of Jf , and Jα

f ⊂ Jβ
f when α < β. Since κ is

inaccessible, we conclude |Jα
f | < κ and |Jf | = κ. Finally, when γ is a limit ordinal

Jγ
f = {η ∈ Jf |∃β < γ(rang(η) ⊂ ω × (β)4)}

= {η ∈ Jf |∃α < γ,∃β < α(rang(η) ⊂ ω × (β)4)}
=

⋃
α<γ J

α
f

Suppose α has cofinality λ, and η ∈ Jf\Jα
f satisfies η ↾ k ∈ Jα

f for every k < λ. By the previous claim, η
satisfies Definition 2.6 item 10 (a) only if η1(n) = 0 for every n ∈ λ. So η1, η2, η3 and η4 are constant zero, and
cf (η) = df (η5), where df is the colouring function of P 0,0

0 = If , cf (η) = f(sup(rang(η5))). When η satisfies
Definition 2.6 item 10 (b), cf (η) = f(sup(rang(η5))).
In both cases, cf (η) = f(α). Therefore, if Bα ̸= ∅ then cf is constant on Bα and J is a good filtration.
By Definition 2.3 and since J is a good filtration, HJ ,Jf

(α) = f(α).

Claim 4.32. If f =κ
λ g, then Jf ∼= Jg.

Proof. Let C ′ ⊆ {α < κ|f(α) = g(α)} be an λ-club testifying f =κ
λ g, and let C ⊃ C ′ be the closure of C ′

under limits. By induction we are going to construct an isomorphism between Jf and Jg.
We define continuous increasing sequences (αi)i<κ of ordinals and (Fαi)i<κ of partial color-preserving isomor-
phism from Jf to Jg such that:

a) If i is a successor, then αi is a successor ordinal and there exists β ∈ C such that αi−1 < β < αi and thus
if i is a limit, αi ∈ C.

b) Suppose that i = γ + n, where γ is a limit ordinal or 0, and n < ω is even. Then dom(Fαi
) = Jαi

f .

c) Suppose that i = γ + n, where γ is a limit ordinal or 0, and n < ω is odd. Then rang(Fαi) = Jαi
g .

d) If dom(ξ) < λ, ξ ∈ dom(Fαi), η ↾ dom(ξ) = ξ and for every k ≥ dom(ξ)

η1(k) = ξ1(sup(dom(ξ))) and η1(k) > 0

then η ∈ dom(Fαi
). Similar for rang(Fαi

).

e) If ξ ∈ dom(Fαi
) and k < dom(ξ), then ξ ↾ k ∈ dom(Fαi

).
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f) For all η ∈ dom(Fαi), dom(η) = dom(Fαi(η)).

For every ordinal α denote by M(α) the ordinal that is order isomorphic to the lexicographic order of λ× α4.

First step (i=0).
Let α0 = β + 1 for some β ∈ C. Let γ be an ordinal such that there is a coloured tree isomorphism

h : P
0,M(β)
γ → Jα0

f and Q(P
0,M(β)
γ ) = 0. It is easy to see that such γ exists, by the way our enumeration

was chosen.
Since P

0,M(β)
γ and Jα0

f are closed under initial segments, then |dom(h−1(η))| = |dom(η)|. Also both domains

are intervals containing zero, therefore dom(h−1(η)) = dom(η).
Define Fα0(η) for η ∈ Jα0

f as follows, let Fα0(η) be the function ξ with dom(ξ) = dom(η), and for all κ < dom(ξ)

• ξ1(k) = 1

• ξ2(k) = 0

• ξ3(k) =M(β)

• ξ4(k) = γ

• ξ5(k) = h−1(η)(k)

To check that ξ ∈ Jg, we will check every item of Definition 2.6. Since rang(Fα0
) = {1}×{0}×{M(β)}×{γ}×

P
0,M(β)
γ , ξ satisfies 1. Also ξ5 = h−1(η) ∈ P

0,M(β)
γ , by definition of Pα,β

γ , we now that ξ5 is strictly increasing
with respect to the lexicographic order, then ξ satisfies item 2. Notice that ξ is constant in every component
except for ξ5, therefore ξ satisfies the items 3, 6, 7, 8, 10 (a). Clearly ξ1(i) ̸= 0, so ξ satisfies item 4. Since

ξ2(k) = 0 for every k, then ξ satisfies 5. Notice that [0, λ) = ξ−1
1 (1) but P

ξ2(k),ξ3(k)
ξ4(k)

= P
0,M(β)
γ for every k,

therefore ξ5 ∈ P
ξ2(0),ξ3(0)
ξ4(0)

and ξ satisfies 7.

Let us show that the conditions a)-f) are satisfied, the conditions a) and c) are clearly satisfied. By the way
Fα0

was defined, dom(Fα0
) = Jα0

f and dom(η) = dom(Fα0
(η)), these are the conditions b), e) and f). Since

dom(Fα0
) = Jα0

f , the Claim 2.7.1 implies d) for dom(Fα0). For d) with rang(Fα0), suppose ξ ∈ rang(Fα0)
and η ∈ Jg are as in the assumption. Then η1(k) = ξ1(k) = 1 for every k < dom(η), by 8 in Jg we have that

η2(k) = ξ2(k) = 0, η3(k) = ξ3(k) =M(β) and η4(k) = ξ4(k) = γ for every k < dom(η). By 9 in Jg, η5 ∈ P
0,M(β)
γ

and since rang(Fα0
) = {1} × {0} × {M(β)} × {γ} × P

0,M(β)
γ , we can conclude that η ∈ rang(Fα0

).

Odd successor step.
Suppose that j < k is a successor ordinal such that j = βj + nj for some limit ordinal (or 0) βj and an odd
integer nj . Assume αl and Fαl

are defined for every l < j satisfying the conditions a)-f).
Let αj = β + 1 where β ∈ C is such that β > αj−1 and rang(Fαj−1) ⊂ Jβ

g , such a β exists because

|rang(Fαj−1)| ≤ 2|αj−1| and κ is strongly inaccessible.
When η ∈ rang(Fαj−1

) has domain m < λ, define

W (η) = {ζ|dom(ζ) = [m, s),m < s ≤ λ, η⌢⟨m, ζ(m)⟩ /∈ rang(Fαj−1) and η
⌢ζ ∈ Jαj

g }

with the color function cW (η)(ζ) = cg(η
⌢ζ) for every ζ ∈ W (η) with s = λ. Denote ξ′ = F−1

αj−1
(η), α =

ξ′3(m − 1) + ξ′4(m − 1) (if m is a limit ordinal, then α = supθ<mξ2(θ)) and θ = α +M(αj). Now choose an
ordinal γη such that Q(Pα,θ

γη
) = m and there is an isomorphism hη : Pα,θ

γη
→ W (η). We will define Fαj by

defining its inverse such that rang(Fαj ) = J
αj
g .

Each η ∈ J
αj
g satisfies one of the followings:

(*) η ∈ rang(Fαj−1).

(**) ∃m < dom(η)(η ↾ m ∈ rang(Fαj−1) ∧ η ↾ (m+ 1) /∈ rang(Fαj−1)).

(***) ∀m < dom(η)(η ↾ (m+ 1) ∈ rang(Fαj−1) ∧ η /∈ rang(Fαj−1)).

We define ξ = F−1
αj

(η) as follows. There are three cases:

Case η satisfies (∗).
Define ξ(n) = F−1

αj−1
(η)(n) for all n < dom(η).

Case η satisfies (∗∗).
This case is divided in two subcases, when m is limit ordinal and when m is successor ordinal. Let m witnesses
(**) for η and suppose m is a successor ordinal. For every n < dom(ξ)
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• If n < m, then ξ(n) = F−1
αj−1

(η ↾ m)(n).

• For every n ≥ m. Let

– ξ1(n) = ξ1(m− 1) + 1

– ξ2(n) = ξ3(m− 1) + ξ4(m− 1)

– ξ3(n) = ξ2(m) +M(αj)

– ξ4(n) = γη↾m

– ξ5(n) = h−1
η↾m(η ↾ [m, dom(η)))(n)

Note that, η ↾ [m, dom(η)) is an element of W (η ↾ m), this makes possible the definition of ξ5.
Let us check the items of Definition 2.6 to see that ξ ∈ Jf . Clearly item 1 is satisfied. By induction hypothesis,
ξ ↾ m is increasing, ξ1(m) = ξ1(m− 1) + 1 so ξ(m− 1) < ξ(m), and ξk is constant on [m,λ) for k ∈ {1, 2, 3, 4},
since h−1

η↾m(η) ∈ Pα,θ
γη

, then ξ5 is increasing, and we conclude that ξ is increasing with respect to the lexicographic
order, so ξ satisfies item 2. Also we conclude ξ1(i) ≤ ξ1(i+1) ≤ ξ1(i) + 1, so ξ satisfies item 3. For every i < λ,
ξ1(i) = 0 implies i < m, so ξ(i) = F−1

αj−1
(η ↾ m)(i) and by the induction hypothesis ξ satisfies item 4. By the

induction hypothesis, ξ ↾ m ∈ Jf , since ξ2(n) = ξ3(m− 1) + ξ4(m− 1) holds for every n ≥ m, we conclude that
ξ satisfies 5. By the induction hypothesis, for every i+1 < m, ξ1(i) < ξ1(i+1) implies ξ2(i+1) ≥ ξ3(i)+ ξ4(i),
on the other hand ξ1(i) = ξ1(j) implies ξk(i) = ξk(j) for k ∈ {2, 3, 4}, clearly ξ2(m) ≥ ξ3(m − 1) + ξ4(m − 1)
and ξk(i) = ξk(i+ 1) for i ≥ m and k ∈ {2, 3, 4}, then ξ satisfies items 6 and 8.
By the induction hypothesis, ξ ↾ m ∈ Jf , since ξ1(n) = ξ1(m − 1) + 1 and ξ2(n) = ξ3(m − 1) + ξ4(m − 1)
hold for every n ≥ m, we conclude that ξ satisfies 7. Suppose [i, j) = ξ−1

1 (k) for some k in rang(ξ). Either

j < m or m = i. If j < m, by the induction hypothesis ξ5 ↾ [i, j) ∈ P
ξ2(i),ξ3(i)
ξ4(i)

, if [i, j) = [m, dom(ξ)), then

ξ5 ↾ [i, j) = h−1
η↾m(η ↾ [m, dom(ξ))) ∈ P

ξ2(m),ξ3(m)
ξ4(m) , ξ thus satisfies item 9. Since ξ is constant on [m,λ), ξ

satisfies 10 (a). Finally by item 10 (a) when dom(ζ) = λ, cf (ξ) = c(ξ5 ↾ [m,λ)), where c is the color of

P
ξ2(m),ξ3(m)
ξ4(m) . Since ξ5 ↾ [m,λ) = h−1

η↾m(η ↾ [m,λ)), cf (ξ) = c(h−1
η↾m(η ↾ [m,λ))) and since h is an isomorphism,

cf (ξ) = cW (η↾m)(η ↾ [m,λ)) = cg(η).

Let m witnesses (**) for η and suppose m is a limit ordinal. For every n < dom(ξ)

• If n < m, then ξ(n) = F−1
αj−1

(η ↾ m)(n).

• For every n ≥ m. Let

– ξ1(n) = supθ<mξ1(θ)

– ξ2(n) = supθ<mξ2(θ)

– ξ3(n) = ξ2(m) +M(αj)

– ξ4(n) = γη↾m

– ξ5(n) = h−1
η↾m(η ↾ [m, dom(η)))(n)

Note that, η ↾ [m, dom(η)) is an element of W (η ↾ m), this makes possible the definition of ξ5.
Let us check the items of Definition 2.6 to see that ξ ∈ Jf . Clearly item 1 is satisfied. By induction hypothesis,
ξ ↾ m is increasing, ξ1(m) = supθ<mξ1(θ) so ξ(θ) < ξ(m) for every θ < m, and ξk is constant on [m,λ) for
k ∈ {1, 2, 3, 4}, since h−1

η↾m(η) ∈ Pα,θ
γη

, then ξ5 is increasing, and we conclude that ξ is increasing with respect
to the lexicographic order, so ξ satisfies item 2. Also we conclude ξ1(i) ≤ ξ1(i + 1) ≤ ξ1(i) + 1, so ξ satisfies
item 3. For every i < λ, ξ1(i) = 0 implies i < m, so ξ(i) = F−1

αj−1
(η ↾ m)(i) and by the induction hypoth-

esis ξ satisfies item 4. By the induction hypothesis, ξ ↾ m ∈ Jf , since ξ2(n) = supθ<mξ2(θ) holds for every
n ≥ m, we conclude that ξ satisfies 5. By the induction hypothesis, for every i + 1 < m, ξ1(i) < ξ1(i + 1)
implies ξ2(i + 1) ≥ ξ3(i) + ξ4(i), on the other hand ξ1(i) = ξ1(j) implies ξk(i) = ξk(j) for k ∈ {2, 3, 4}, clearly
ξ2(m) ≥ supθ<mξ3(θ) and ξk(i) = ξk(j) for j, i ≥ m and k ∈ {2, 3, 4}, then ξ satisfies items 6 and 8.
By the induction hypothesis, ξ ↾ m ∈ Jf , since ξ1(n) = supθ<mξ1(θ) and ξ2(n) = supθ<mξ2(θ) hold for ev-
ery n ≥ m, we conclude that ξ satisfies 7. Suppose [i, j) = ξ−1

1 (k) for some k in rang(ξ). Either j < m
or m = i, notice that if i < m < j, then η ↾ (m+ 1) ∈ rang(Fαj−1)). If j < m, by the induction hypoth-

esis ξ5 ↾ [i, j) ∈ P
ξ2(i),ξ3(i)
ξ4(i)

, if [i, j) = [m, dom(ξ)), then ξ5 ↾ [i, j) = h−1
η↾m(η ↾ [m, dom(ξ))) ∈ P

ξ2(m),ξ3(m)
ξ4(m) ,

ξ thus satisfies item 9. Since ξ is constant on [m,λ), ξ satisfies 10 (a). Finally by item 10 (a) when

dom(ζ) = λ, cf (ξ) = c(ξ5 ↾ [m,λ)), where c is the color of P
ξ2(m),ξ3(m)
ξ4(m) . Since ξ5 ↾ [m,λ) = h−1

η↾m(η ↾ [m,λ)),

cf (ξ) = c(h−1
η↾m(η ↾ [m,λ))) and since h is an isomorphism, cf (ξ) = cW (η↾m)(η ↾ [m,λ)) = cg(η).

Case η satisfies (∗ ∗ ∗).
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Clearly dom(η) = λ, by the induction hypothesis and condition d), rang(η) = λ, otherwise η ∈ rang(Fαj−1).
Let F−1

αj
(η) = ξ = ∪n<λF

−1
αj−1

(η ↾ n), by the induction hypothesis, ξ is well defined. Since for every n < λ,

ξ ↾ n ∈ Jf , then ξ ∈ Jf . Let us check that cf (ξ) = cg(η). First note that ξ /∈ J
αj−1

f , otherwise by the induction
hypothesis f),

Fαj−1
(ξ) =

⋃
n<λ

Fαj−1
(ξ ↾ n) =

⋃
n<λ

η ↾ n = η

giving us η ∈ rang(Fαj−1
). By the equation (2), sup(rang(ξ5)) = αj−1 and ξ satisfies item 10 b) in Jf , therefore

cf (ξ) = f(αj−1). Also by the definition of Jα
f and since ξ ↾ n ∈ J

αj−1

f for every n < λ, αj−1 is a limit ordinal and

by condition a), j − 1 is a limit ordinal and αj−1 ∈ C. The conditions b) and c) ensure rang(Fαj−1
) = J

αj−1

f .

This implies, η /∈ J
αj−1

f . By the equation (2), sup(rang(η5)) = αj−1. Therefore αj−1 has cofinality λ, αj−1 ∈ C ′

and f(αj−1) = g(αj−1). By item 10 b) in Jg, cg(η) = g(αj−1) = f(αj−1) = cf (ξ).

Next we show that Fαi
is a color preserving partial isomorphism. We already showed that Fαi

preserve the
colors, so we only need to show that

η ⊊ ξ ⇔ F−1
αi

(η) ⊊ F−1
αi

(ξ). (3)

From left to right.
When η, ξ ∈ rang(Fαi−1

), the induction hypothesis implies (3) from left to right. If η ∈ rang(Fαi−1
) and

ξ /∈ rang(Fαi−1
), the construction implies (3) from left to right. Let us assume η, ξ /∈ rang(Fαi−1

), then η, ξ
satisfy (**). Letm1 andm2 be the respective ordinal numbers that witness (**) for η and ξ, respectively. Notice
that m2 < dom(η), otherwise, η ∈ rang(Fαi−1). If m1 < m2, clearly η ∈ rang(Fαi−1) what is not the case. A
similar argument shows that m2 < m1 cannot hold. We conclude that m1 = m2 and by the construction of
Fαi

, F−1
αi

(η) ⊊ F−1
αi

(ξ).
From right to left.
When η, ξ ∈ rang(Fαi−1

), the induction hypothesis implies (3) from right to left. If η ∈ rang(Fαi−1
) and

ξ /∈ rang(Fαi−1), the construction implies (3) from right to left. Let us assume η, ξ /∈ rang(Fαi−1), then η, ξ
satisfy (**). Let m1 and m2 be the respective ordinal numbers that witness (**) for η and ξ, respectively.
Notice that m2 < dom(η), otherwise, F−1

αi
(η) = F−1

αi−1
(η) and η ∈ rang(Fαi−1

). Let us denote by θ the inverse

map F−1
αi

(e.g. θ(ζ) = F−1
αi

(ζ)), and the first component by θ1 (e.g. θ1(ζ) = F−1
αi

(ζ)1).
If m1 < m2 and m2 is a successor ordinal, then

θ1(η)(m2 − 1) = (θ(ξ) ↾m2
)1(m2 − 1)

< θ1(ξ ↾m2
)(m2 − 1) + 1

= θ1(η)(m2)
= θ1(η)(m2 − 1).

If m1 < m2 and m2 is a limit ordinal, then

∀γ ∈ [m1,m2) θ1(η)(γ) = (θ(ξ) ↾m2
)1(γ)

< supn<m2
θ1(ξ ↾m2

)(n)
= θ1(η)(m2)
= θ1(η)(γ).

This cannot hold. A similar argument shows that m2 < m1 cannot hold. We conclude that m1 = m2.
By the induction hypothesis F−1

αi−1
(η ↾ m1) = F−1

αi−1
(ξ ↾ m2) implies η ↾ m1 = ξ ↾ m2 (also implies hη↾m1 =

hξ↾m2
). Since F−1

αi−1
(η ↾ m1)(n) = F−1

αi
(η)(n) for all n < m1, we only need to prove that η ↾ [m1, dom(η)) ⊊

ξ ↾ [m2, dom(ξ)). But hη↾m1 is an isomorphism and F−1
αi

(η)5(n) = F−1
αi

(ξ)5(n) for every n ≥ m1, so h
−1
η↾m1

(η ↾

[m1, dom(η)))(n) = h−1
ξ↾m2

(ξ ↾ [m2, dom(ξ)))(n). Therefore η ↾ [m1, dom(η)) ⊊ ξ ↾ [m2, dom(ξ)).

Let us check that this three constructions satisfy the conditions a)-f).
When i is a successor we have αi−1 < β < αi = β+1 for some β ∈ C, this is the condition a). Clearly the three
cases satisfy b). We defined F−1

αi
according to (*), (**), or (***); since every η ∈ J

αj
g satisfies one of these, we

conclude rang(Fαi) = J
αj
g which is the condition c).

Let us show that the Fαi satisfy condition d). Let ξ and η be as in the assumptions of condition d) for
domain. Notice that if ξ ∈ dom(Fαi−1

) then the induction hypothesis ensure that η ∈ dom(Fαi
). Suppose

ξ /∈ dom(Fαi−1
), then Fαi

(ξ) /∈ rang(Fαi−1
). Since dom(ξ) < λ, so Fαi

(ξ) satisfies (**). Let m be the number
witnessing it. If m is a limit ordinal, then dom(ξ) ≥ m + 1, therefore ξ ↾ m+ 1 ∈ Jαi

f and by Claim 2.7.1
η ∈ Jαi

f . If m is a successor ordinal, then ξ ∈ Jαi

f and by Claim 2.7.1 η ∈ Jαi

f . By item 8 in Jαi

f , ηk is

constant on [m, dom(η)) for k ∈ {2, 3, 4}, now by Definition 2.6 item 9 in Jαi

f , η5 ↾ [m, dom(η)) ∈ Pα,β
γξ↾m

. Let

ζ = hξ↾m(η[m,dom(η))), then η = F−1
αi

(Fαi
(ξ ↾ m)⌢ζ) and η ∈ dom(Fαi

).
Using the same argument, the condition d) can be proved.
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For the conditions e) and f), notice that ξ was constructed such that dom(ξ) = dom(η) and ξ ↾ k ∈ dom(Fαi)
which are these conditions.

Even successor step.
Suppose that j < k is a successor ordinal such that j = βj + nj for some limit ordinal (or 0) βj and an even
integer nj . Assume αl and Fαl

are defined for every l < j satisfying conditions a)-f).

Let αj = β+1 where β ∈ C such that β > αj−1 and dom(Fαj−1) ⊂ Jβ
f , such a β exists because |dom(Fαj−1)| ≤

2|αj−1| and κ is strongly inaccessible. The construction of Fαj
such that dom(Fαj

) = Jαi

f follows as in the odd

successor step, with the equivalent definitions for dom(Fαj ) and J
αi

f . Notice that for every η ∈ J
αj

f , there are
only the following cases:

(*) η ∈ dom(Fαj−1).

(**) ∃m < dom(η)(η ↾ m ∈ dom(Fαj−1
) ∧ η ↾ (m+ 1) /∈ dom(Fαj−1

)).

Limit step.
Assume j is a limit ordinal. Let αj = ∪i<jαi and Fαj = ∪i<jFαi , clearly Fαj : J

αj

f → Jg and satisfies condition
c). Since for i successor, αi is the successor of an ordinal in C, then αj ∈ C and satisfies the condition a). Also
Fαj

is a partial isomorphism. Remember that ∪i<jJ
αi

f = J
αj

f , the same for Jg. By the induction hypothesis

and the conditions b) and c) for i < j, we have dom(Fαj ) = J
αj

f (this is the condition b)) and rang(Fαj ) = J
αj
g .

This and Claim 2.7.1 ensure that condition d) is satisfied. By the induction hypothesis, for every i < j, Fαi

satisfies conditions e) and f), then Fαj
satisfies conditions e) and f).

Define F = ∪i<κFαi
, clearly, it is an isomorphism between Jf and Jg.

Definition 4.33. Let Kγ
tr be the class of models (A,≺, (Pn)n≤γ , <,∧), where:

1. there is a linear order (I,<I) such that A ⊆ I≤γ ;

2. A is closed under initial segment;

3. ≺ is the initial segment relation;

4. ∧(η, ξ) is the maximal common initial segment of η and ξ;

5. let lg(η) be the length of η (i.e. the domain of η) and Pn = {η ∈ A | lg(η) = n} for n ≤ γ;

6. for every η ∈ A with lg(η) < γ, define SucA(η) as {ξ ∈ A | η ≺ ξ & lg(ξ) = lg(η) + 1}. If ξ < ζ, then
there is η ∈ A such that ξ, ζ ∈ SucA(η);

7. η < ξ if and only if either η ≺ ξ or there is ζ ∈ A and x, y such that η = ζ⌢⟨x⟩, ξ = ζ⌢⟨y⟩, and x <I y;

8. If η and ξ have no immediate predecessor and {ζ ∈ A | ζ ≺ η} = {ζ ∈ A | ζ ≺ ξ}, then η = ξ.

An ordered tree is an element of Kγ
tr. An ordered coloured tree is a tree T ∈ Kγ

tr with a color function
c : tγ → β. For any L-structure M we denote by at the set of atomic formulas of L and by bs the set of basic
formulas of L (atomic formulas and negation of atomic formulas). For all L-structure M , a ∈ M , and B ⊆ M
we define

tpbs(a,B,M) = {φ(x, b) |M |= φ(a, b), φ ∈ bs, b ∈ B}.
In the same way tpat(a,B,M) is defined.

Definition 4.34. Let I be a linear order of size κ. We say that I is κ-colorable if there is a function F : I → κ
such that for all B ⊆ I, |B| < κ, b ∈ I\B, and p = tpbs(b, B, I) such that the following hold: For all α ∈ κ,
|{a ∈ I | a |= p & F (a) = α}| = κ.

Theorem 4.35 ([15], Theorem 2.25). There is a (< κ, bs)-stable (κ, bs, bs)-nice κ-colorable linear order.

Notice that J0
f = {∅} and dom(∅) = 0. Let us denote by Acc(κ) = {α < κ | α = 0 or α is a limit ordinal}.

For all α ∈ Acc(κ) and η ∈ Jα
f with dom(η) = m < ω define

Wα
η = {ζ | dom(ζ) = [m, s),m ≤ s ≤ ω, η⌢ζ ∈ Jα+ω

f , η⌢(ζ ↾ {m}) /∈ Jα
f }.

Notice that by the way Jf was constructed, for every η ∈ Jf with finite domain and α < κ, the set

{(θ1, θ2, θ3, θ4, θ5) ∈ (ω × κ4)\(ω × α4) | η⌢(θ1, θ2, θ3, θ4, θ5) ∈ Jα+ω
f }

is either empty or has size ω. Let σα
η be an enumeration of this set, when this set is not empty.

Let us denote by T = (κ × ω × Acc(κ) × ω × κ × κ × κ × κ)≤ω. For every ξ ∈ T there are func-
tions {ξi ∈ κ≤ω | 0 < i ≤ 8} such that for all i ≤ 8, dom(ξi) = dom(ξ) and for all n ∈ dom(ξ), ξ(n) =
(ξ1(n), ξ2(n), ξ3(n), ξ4(n), ξ5(n), ξ6(n), ξ7(n), ξ8(n)). For every ξ ∈ T let us denote (ξ4, ξ5, ξ6, ξ7, ξ8) by ξ.
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Definition 4.36. For all α ∈ Acc(κ) and η ∈ T with η ∈ Jf , dom(η) = m < ω define Γα
η as follows:

If η ∈ Jα
f , then Γα

η is the set of elements of T such that:

1. ξ ↾ m = η,

2. ξ ↾ dom(ξ)\m ∈Wα
η ,

3. ξ3 is constant on dom(ξ)\m,

4. ξ3(m) = α,

5. for all n ∈ dom(ξ)\m, let ξ2(n) be the unique r < ω such that σα
ζ (r) = ξ(n), where ζ = ξ ↾ n.

If η /∈ Jα
f , then Γα

η = ∅.

For η ∈ T with η ∈ Jf , dom(η) = m < ω define

Γ(η) =
⋃

α∈Acc(κ)

Γα
η .

Finally we can define Af by induction. Let Tf (0) = {∅} and for all n < ω,

Tf (n+ 1) = Tf (n) ∪
⋃

η∈Tf (n) dom(η)=n

Γ(η),

for n = ω,

Tf (ω) =
⋃
n<ω

Tf (n).

For 0 < i ≤ 8 let us denote by si(η) = sup{ηi(n) | n < ω} and sω(η) = sup{si(η) | i ≤ 8}, finally

Af = Tf (ω) ∪ {η ∈ T | dom(η) = ω,∀m < ω(η ↾ m ∈ Tf (ω))}.

Define the color function df by df (η) = cf (η) if s1(η) < sω(η) and df (η) = f(s1(η)) otherwise.
It is clear that Af is closed under initial segments, indeed the relations ≺, (Pn)n≤ω, and ∧ of Definition 4.33

have a canonical interpretation in Af .
Let I be the κ-colorable linear order given by Fact 4.35.
Let us proceed to define <↾ SucAf (η). Let H : I → κ be a κ-coloration of I.
For any η ∈ Af with domain m, we will define the order <↾ SucAf (η) such that it is isomorphic to I. By

the construction of Af , an isomorphism between {(θ1, θ2, θ3) ∈ κ× ω ×Acc(κ) | θ3 ≥ η3(m− 1)} and I induces
an order in <↾ SucAf (η).

Definition 4.37. Recall that H is a κ-coloration of I. For all θ, α < κ fix the bijections G̃θ : {(θ2, θ3) ∈
ω×Acc(κ) | θ3 ≥ θ} → κ and H̃α : H −1[α] → κ. Notice that these functions exist because H is a κ-coloration
of I and there are κ tuples (θ2, θ3).

Let us define G̃θ : {(θ1, θ2, θ3) ∈ κ × ω × Acc(κ) | θ3 ≥ θ} → I by G̃θ((θ1, θ2, θ3)) = a where a is the unique
element that satisfies:

• G̃θ((θ2, θ3)) = α;

• H̃α(a) = θ1.

For any η ∈ Af with domain m < ω and η3(m− 1) = θ, the isomorphism G̃θ induces an order in SucAf (η).
Let us define <↾ SucAf (η) as the induced order given by G̃θ. It is clear that (A

f ,≺, (Pn)n<ω, <,∧) is isomorphic
to a subtree of I≤ω as in Definition 4.33.

Lemma 4.38 ([15], Theorem 3.11). Suppose I is a κ-colorable linear order. Then for all f, g ∈ 2κ,

f =2
ω g ⇔ Af ∼= Ag.

Define the tree Af ⊆ Af by: x ∈ Af if and only if x is not a leaf of Af or x is a leaf such that df (x) = 1.
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Successor cardinals

We will use the generalized Ehrenfeucht-Mostowski models, see [19] Chapter VII. 2 or [10] Section 8.

Definition 4.39 (Generalized Ehrenfeucht-Mostowski models). We say that a function Φ is proper for Kγ
tr, if

there is a vocabulary L1 and for each A ∈ Kγ
tr, model M1, and tuple as, s ∈ A, of elements of M1the following

two hold:

• every element of M1 is an interpretation of some µ(as), where µ is a L1-term;

• tpat(as, ∅,M1) = Φ(tpat(s, ∅, A)).

Notice that for each A, the previous conditions determine M1 up to isomorphism. We may assume M1, as,
s ∈ A, are unique for each A. We denote M1 by EM1(A,Φ). We call EM1(A,Φ) an Ehrenfeucht-Mostowski
model.

Suppose T is a countable complete theory in a countable vocabulary L, L1 a Skolemization of L, and T 1

the Skolemization of T by L1. If there is Φ a proper function for Kλ
tr, then for every A ∈ Kγ

tr, we will denote
by EM(A,Φ) the L-reduction of EM1(A,Φ). The following result ensure the existence of a proper function Φ
for unsuperstable theories T and γ = ω.

Theorem 4.40 (Shelah, [19] Theorem 1.3, proof in [19] Chapter VII 3). Suppose L ⊆ L1 are vocabularies, T
is a complete first order theory in L, T 1 is a complete theory in L1 extending T and with Skolem-functions.
Suppose T 1 is unsuperstable and {ϕn(x, yn) | n < ω} witnesses this. Then there is a function Φ proper such
that for all A ∈ Kω

tr, EM
1(A,Φ) is a model of T 1, and for s ∈ PA

n , t ∈ PA
ω , EM1(A,Φ) |= ϕn(at, as) if and

only if A |= s ≺ t.

For every f ∈ 2κ, let us denote by Af the model EM(Af ,Φ).

Lemma 4.41 ([15], Lemma 4.28). If T is a countable complete unsuperstable theory over a countable vocabulary,
then for all f, g ∈ 2κ, f =2

ω g if and only if Af and Ag are isomorphic.

Theorem 4.42 ([15], Corollary 4.12). Suppose κ = λ+ = 2λ and λω = λ. If T1 is a countable complete
classifiable theory, and T2 is a countable complete unsuperstable theory, then ∼=T1

↪→c
∼=T2

and ∼=T2
̸↪→c

∼=T1
.

In [16], this construction is extended to other non-classifiable theories.

Inaccessible cardinals

For κ an inaccessible cardinal, only two results are known in ZFC. Clearly the use of diamond principles like
Dl∗S(Π

1
2) would give us the same results for unsuperstable theories.

Definition 4.43. Let T be a stable theory. T has the orthogonal chain property (OCP), if there exist λr(T )-
saturated models of T of power λr(T ), {Ai}i<ω, a /∈ ∪i<ωAi, such that t(a,∪i<ωAi) is not algebraic for every
j < ω, t(a,∪i<ωAi) ⊥ Aj, and for every i ≤ j, Ai ⊆ Aj.

Exercise 4.3. If T has the OCP, then T is unsuperstable.

Lemma 4.44 ([9], Corollary 5.10). Let κ be an inaccessible cardinal. Assume T is stable and has the OCP,
then =κ

ω↪→c
∼=T .

Theorem 4.45 ([9], Corollary 5.11). Let κ be an inaccessible cardinal. Assume T1 is a classifiable theory and
T2 is a stable theory with the OCP, then ∼=T1

↪→c
∼=T2

.

Definition 4.46. We say that a superstable theory T has the strong dimensional order property (S-DOP) if the
following holds:
There are F a

ω -saturated models (Mi)i<3, M0 ⊂ M1 ∩M2, such that M1 ↓M0
M2, and for every M3 F

a
ω -prime

model over M1 ∪M2, there is a non-algebraic type p ∈ S(M3) orthogonal to M1 and to M2, such that it does
not fork over M1 ∪M2.

Lemma 4.47 ([17], Corollary 5.1). Let κ be an inaccessible cardinal. Assume T is a theory with S-DOP and
let λ be (2ω)+, then =κ

λ↪→c
∼=T .

Theorem 4.48 ([17], Corollary 5.2). Let κ be an inaccessible cardinal. Assume T1 is a classifiable theory and
T2 is a superstable theory with S-DOP, then ∼=T1

↪→c
∼=T2

.

Question 4.49. Let κ be an inaccessible cardinal, T1 a classifiable theory, and T2 a non-classifiable theory. Is
∼=T1

↪→c
∼=T2

a theorem of ZFC?
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5 Questions

Question 5.1. Is the following consistent ∆1
1(κ) = κ-Borel∗ ⊊ Σ1

1(κ)?

Question 5.2. Is =κ
µ ↪→B =2

µ a theorem of ZFC?

Question 5.3. Let κ be an inaccessible cardinal, T1 a classifiable theory, and T2 a non-classifiable theory. Is
∼=T1

↪→c
∼=T2

a theorem of ZFC?
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