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This notes are based on a series of talks given at the Set Theory seminar of Bar-Ilan University. This notes
are intended to be as close as possible to the transcripts of those seminar session. Due to the nature of the
seminar and the questions from the audience, some proofs were split into different sessions in order to give
examples and clear answers to the questions from the audience.

1 An introduction to generalized descriptive set theory

Generalized descriptive set theory is the generalization of descriptive set theory to uncountable cardinals. For a
background on classical descriptive set theory see [7] or [8]. During this notes, κ will be an uncountable cardinal
that satisfies κ<κ = κ, unless otherwise is stated.

First Session

The aim of this first section is to introduce the notions of κ-Borel class, ∆1
1(κ) class, κ-Borel∗ class, and show

the relation between these classes.

Definition 1.1 (The Generalized Baire space B(κ)). Let κ be an uncountable cardinal. The generalized Baire
space is the set κκ endowed with the following topology. For every η ∈ κ<κ, define the following basic open set

Nη = {f ∈ κκ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Definition 1.2 (The Generalized Cantor space C(κ)). Let κ be an uncountable cardinal. The generalized
Cantor space is the set 2κ endowed with the following topology. For every η ∈ 2<κ, define the following basic
open set

Nη = {f ∈ 2κ | η ⊆ f}

the open sets are of the form
⋃
X where X is a collection of basic open sets.

Definition 1.3 (κ-Borel class). Let S ∈ {B(κ),C(κ)}. The class κ-Borel(S) of all κ-Borel sets in S is the least
collection of subsets of S which contains all open sets and is closed under complements, unions and intersections
both of length at most κ.

Definition 1.4. Let S ∈ {B(κ),C(κ)}.

• X ⊂ S is a Σ1
1(κ) set if there is a set Y ⊂ S × S a closed set such that pr(Y ) = {x ∈ S | ∃y ∈ S (x, y) ∈

Y } = X.

• X ⊂ S is a Π1
1(κ) set if S\X is a Σ1

1(κ) set.

• X ⊂ S is a ∆1
1(κ) set if X is a Σ1

1(κ) set and a Π1
1(κ) set.

Definition 1.5 (κ-Borel∗-set in B(κ),C(κ)). Let S ∈ {2κ, κκ}.

1. A subset T ⊂ κ<κ is a tree if for all f ∈ T with α = dom(f) > 0 and for all β < α, f � β ∈ T and
f � β < f .

2. A tree T is a κ+, λ-tree if does not contain chains of length λ and its cardinality is less than κ+. It is
closed if every chain has a unique supremum in T .

3. A pair (T, h) is a κ-Borel∗-code if T is a closed κ+, λ-tree, λ ≤ κ, and h is a function with domain T
such that if x ∈ T is a leaf, then h(x) is a basic open set and otherwise h(x) ∈ {∪,∩}.
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4. For an element η ∈ S and a κ-Borel∗-code (T, h), the κ-Borel∗-game B∗(T, h, η) is played as follows.
There are two players, I and II. The game starts from the root of T . At each move, if the game is at
node x ∈ T and h(x) = ∩, then I chooses an immediate successor y of x and the game continues from
this y. If h(x) = ∪, then II makes the choice. At limits the game continues from the (unique) supremum
of the previous moves. Finally, if h(x) is a basic open set, then the game ends, and II wins if and only if
η ∈ h(x).

5. A set X ⊆ S is a κ-Borel∗-set if there is a κ-Borel∗-code (T, h) such that for all η ∈ S, η ∈ X if and
only if II has a winning strategy in the game B∗(T, h, η).

We will write II ↑ B∗(T, h, η) when II has a winning strategy in the game B∗(T, h, η).

Example 1.1. Let µ < κ be a regular cardinal, we say that X ⊆ κ is a µ-club if X is an unbounded set and it
is closed under µ-limits.

Let µ < κ be a regular cardinal. For all η, ξ ∈ 2κ we say that η and ξ are E2
µ-club equivalent if the set

{α < κ | η(α) = ξ(α)} contains a µ-club.
The relation E2

ω-club is a κ-Borel∗ set. Let us define the following κ-Borel∗-code (T, h):

• T = {f ∈ κ<ω+2 | f is strictly incresing}.

• For f not a leave, h(f) = ∪ if dom(f) is even and h(f) = ∩ if dom(f) is odd.

• To define h(f) for a leave f , first define the set L(g) = {f ∈ κω+1 | g ⊆ f} for all g ∈ T with domain
ω, and γg = supn<ω(g(n)). Let h � L(g) be a bijection between L(g) and the set {Np × Nq | p, q ∈
κγg+1, p(γg) = q(γg)}.

Let us show that (T, h) codes E2
ω-club. Suppose (η, ξ) ∈ E2

ω-club, so there is an ω-club C such that ∀α ∈ C
η(α) = ξ(α). The following is a winning strategy for II in the game B∗(T, h, (η, ξ)). For every even n < ω,
if the game is at f with dom(f) = n, II chooses an immediate successor f ′ of f , such that f ⊂ f ′ and
f ′(n) ∈ C. Since C is closed under ω limits, after ω moves the game continues at g ∈ κω strictly increasing
with γ = supn<ω(g(n)) ∈ C. So there is G an immediate successor of g, such that h(G) = Nη�γ ×Nξ�γ . Finally
if II chooses G in the ω move, then II wins.

For the other direction, suppose (η, ξ) 6∈ E2
ω-club, so there is A ⊂ Sκω stationary (Sκω is the set of ω-cofinal

ordinals below κ) such that for all α ∈ S, η(α) 6= ξ(α).
We will show that for every σ strategy of II, σ is not a winning strategy. Let σ be an strategy for II, this

mean that σ is a function from κ<ω+1 → κ. Notice that if II follows σ as a strategy, then when the game is
at f , dom(f) = n even, II chooses f ′ such that f ⊂ f ′ and f ′(n) = σ((f(0), f(1), . . . , f(n− 1))). Let C be the
set of closed points of σ, C = {α < κ | σ(α<ω) ⊆ α}, C is unbounded and closed under ω-limits. Therefore
C ∩ A 6= ∅. Let γ be the least element of C ∩ A that is an ω-limit of elements of C, and let {γn}n<ω be a
sequence of elements of C cofinal to γ. The following is a winning strategy for I in the game B∗(T, h, (η, ξ)), if
II uses σ as an strategy.

When the game is at f with dom(f) = n, n odd, then I chooses an immediate successor f ′ of f , such that
f ⊂ f ′ and f ′(n) is the least element of {γn}n<ω that is bigger than f(n−1). This element always exists because
{γn}n<ω is cofinal to γ and γ ∈ C, γ is a closed point of σ. Since I is following σ as a strategy and γ is a closed
point of σ, after ω moves the game continues at g ∈ κω strictly increasing with γ = supn<ω(g(n)) ∈ C ∩ A.
Since η(γ) 6= ξ(γ), there is no G immediate successor of g, such that (η, ξ) ∈ h(G). So it does not matter what
II chooses in the ω move, I will win.

The previous definitions are the generalization of the notions of Borel, ∆1
1, and Borel∗ from descriptive set

theory, the spaces ωω and 2ω. A classical result in descriptive set theory states that the Borel class, the ∆1
1

class, and the Borel∗ class are the same. This doesn’t hold in generalized descriptive set theory as we will see.

Theorem 1.6 ([2], Thm 17). κ-Borel⊆ κ-Borel∗

Proof. Let us prove something even stronger. X is a κ-Borel set if and only if there is a κ-Borel∗-code (T, h)
such that (T, h) codes X and T is a κ+, ω-tree.

Let us define the sets (Bi)i≤κ+ by:

• B0 = {Np | p ∈ 2<κ}, the set of basic open sets.

• If α = β + n for n an odd natural number and β a limit ordinal or 0, then Bα = Bβ+n−1 ∪ {
⋂
B | B ⊆

Bβ+n−1, | B |≤ κ}.

• If α = β+n for n an even positive natural number and β a limit ordinal or 0, then Bα = Bβ+n−1∪{
⋃
B |

B ⊆ Bβ+n−1, | B |≤ κ}.
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• If α is a limit ordinal, then Bα =
⋃
β<αBβ .

We will show by induction over α that for every X ∈ Bα, there is a κ-Borel∗-code (T, h) such that (T, h) codes
X and T is a κ+, ω-tree.

For α = 0. If X ∈ B0, then T = {∅} and h(∅) = X is a κ-Borel∗-code that codes X.
Suppose α = β + n for n an even natural number and β a limit ordinal or 0 is such that for all X ∈ Bα,

there is a κ-Borel∗-code (T, h) such that (T, h) codes X and T is a κ+, ω-tree. Suppose X ∈ Bα+n+1, so either
X ∈ Bα + n or X =

⋂
B for some B ⊆ Bβ+n with | B |= γ ≤ κ. Let B = {Xi}i<γ , by the induction hypothesis

we know that there are κ-Borel∗-code {(Ti, hi)}i<γ such that (Ti, hi) codes Xi and Ti is a κ+, ω-tree, for all
i < γ. Let T = {r} ∪

⋃
i<γ Ti × {i} be the tree ordered by r < (x, j) for all (x, j) ∈

⋃
i<γ Ti × {i}, and

(x, i) < (y, j) if and only if i = j and x < y in Ti. Let T ⊆ κ<ω be a tree isomorphic to T and let G : T → T
be a tree isomorphism. If G(x) 6= r, then denote G(x) by (G1(x),G2(x)). Define h by h(x) = ∩ if G(x) = r, and
h(x) = hG2(x)(G1(x)).

Let us show that (T, h) codes X. Let η ∈ X, so η ∈ Xi for all i < γ. If at the beginning I chooses x, then
II follows the winning strategy from the game B∗(TG2(x), hG2(x), η), choosing the element given by G−1. We
conclude that II ↑ B∗(T, h, η). Let η 6∈ X, so there is i < γ such that η 6∈ Xi, so II has no winning strategy for
the game B∗(Ti, hi, η). Since at the beginning I can choose x such that G2(x) = i, II cannot have a winning
strategy for the game B∗(T, h, η). Otherwise II would have a winning strategy the game B∗(Ti, hi, η).

The case α = β + n for n an odd natural number and β a limit ordinal or 0 is similar, just make h(x) = ∪
if G(x) = r when constructing (T, h).

Suppose α is a limit ordinal such that for all β < α, for all X ∈ Bβ , there is a κ-Borel∗-code (T, h) such that
(T, h) codes X and T is a κ+, ω-tree. Let X ∈ Bα, since Bα =

⋃
β<αBβ there is β < α such that X ∈ Bβ . By

the induction hypothesis, there is a κ-Borel∗-code (T, h) such that (T, h) codes X and T is a κ+, ω-tree.

Second Session

Theorem 1.7 ([2], Thm 17). 1. κ-Borel∗ ⊆ Σ1
1(κ).

2. κ-Borel⊆ Σ1
1(κ).

3. κ-Borel⊆ ∆1
1(κ).

Proof. 1. Let X be a κ-Borel∗ set, there is a κ-Borel∗ code (T, h) such that X is coded by (T, h).

Since κ<κ = κ, we can code the strategies σ : T → T by elements of κκ.

Claim 1.8. The set Y = {(η, ξ) | ξ is a code of a winning strategy for II in B∗(T, h, η)} is closed.

Proof. Let (η, ξ) be an element not in Y . So ξ is not a winning strategy for II in B∗(T, h, η)}, there is
α < κ such that for every ζ ∈ Nξ�α, ζ is not a winning strategy for II in B∗(T, h, η)}. Otherwise T would
have a branch of length κ. Because of the same reason, there is β < κ such that for every f ∈ Nη�β ,
ζ ∈ Nξ�α, ζ is not a winning strategy for II in B∗(T, h, f)}. So Nη�β×Nξ�α is a subset of the complement
of Y .

Since pr(Y ) = X, we are done.

2. It follows from Theorem 1.6 and (1).

3. It follows from (2) and the fact that κ-Borel sets are closed under complement.

It has been proved, under the assumption V = L, that κ-Borel∗ = Σ1
1(κ). It was first proved in [2] Theorem

18, the idea of this proof is to show that the filter of ω-clubs is Σ1
1(κ)-complete and κ-Borel∗. This result was

later improve in [3] Theorem 7 to show that the relations Eκµ-club is Σ1
1(κ)-complete and κ-Borel∗, where η, ξ ∈ κκ

are Eκµ-club related if the set {α < κ | η(α) = ξ(α)} contains an µ-club. Recently in [5] Theorem 3.1 these results

were improve to show that the inclusion modulo the non-stationary ideal (below) is Σ1
1(κ)-complete, which

implies that the relations E2
µ-club are Σ1

1(κ)-complete. Because of its applications for future sessions, we will

prove (under the assumption (V = L)) that the inclusion modulo the non-stationary ideal is Σ1
1(κ)-complete,

this will implies the consistency of κ-Borel∗ = Σ1
1(κ).

Definition 1.9 (Inclusion modulo non-stationaries). For η, ξ ∈ 2κ and a stationary S ⊂ κ, we write η vS ξ if
(η−1{1}\ξ−1{1}) ∩ S is non-stationary. If S = Sκµ, we denoted vS by vµ.
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If Q1 and Q2 are quasi-orders respectively on 2κ, then we say that Q1 is Borel-reducible to Q2 if there exists
a κ-Borel map f : 2κ → 2κ such that for all η, ξ ∈ 2κ we have ηQ1ξ ⇐⇒ f(η)Q2f(ξ) and this is also denoted
by Q1 ≤B Q2.

A quasi-order is Σ1
1-complete, if it is Σ1

1(κ) and every Σ1
1(κ) quasi-order is Borel-reducible to it.

Theorem 1.10 ([5], Thm 3.1). (V = L) The quasi-order vµ is Σ1
1–complete, for every regular µ < κ.

To prove Theorem 1.10 we need to make some preparations before we start with the proof.

Definition 1.11. • Let us define a class function F3 : On→ L. For all α, F3(α) is a pair (Xα, Cα) where
Xα, Cα ⊆ α, if α is a limit ordinal, then Cα is either a club or the empty set, and Cα = ∅ when α is not
a limit ordinal. We let F3(α) = (Xα, Cα) be the <L-least pair such that for all β ∈ Cα, Xβ 6= Xα ∩ β if
α is a limit ordinal and such pair exists and otherwise we let F3(α) = (∅, ∅).

• We let C3 ⊆ On be the class of all limit ordinals α such that for all β < α, F3 � β ∈ Lα. Notice that for
every regular cardinal α, C3 ∩ α is a club.

Definition 1.12. For a given regular cardinal α and a subset A ⊂ α, we define the sequence (Xγ , Cγ)γ∈A to be
(F3(γ))γ∈A, and the sequence (Xγ)γ∈A to be the sequence of sets Xγ such that F3(γ) = (Xγ , Cγ) for some Cγ .

By ZF− we mean ZFC+(V = L) without the power set axiom. By ZF� we mean ZF− with the following
axiom:

“For all regular cardinals µ < α if (Sγ , Dγ)γ∈α is such that for all γ < α, F3(γ) = (Sγ , Dγ), then
(Sγ)γ∈Sαµ is a diamond sequence.”

Lemma 1.13 ([5], Lemma 3.4). (V = L) For any Σ1-formula ϕ(η, x) with parameter x ∈ 2κ, a regular cardinal
µ < κ, the following are equivalent for all η ∈ 2κ:

• ϕ(η, x)

• S\A is non-stationary, where S = {α ∈ Sκµ | Xα = η−1{1} ∩ α} and

A = {α ∈ C3 ∩ κ | ∃β > α(Lβ |= ZF� ∧ ϕ(η � α, x � α) ∧ r(α))}

where r(α) is the formula “α is a regular cardinal”.

Now we sketch the proof of 1.10.

Proof of Theorem 1.10 (sketch). Suppose Q is a Σ1
1 quasi-order on 2κ.

There is a Σ1-formula of set theory ψ(η, ξ) = ψ(η, ξ, x) = ∃kϕ(k, η, ξ, x) ∨ η = ξ with x ∈ 2κ, such that for
all η, ξ ∈ 2κ,

(η, ξ) ∈ Q⇔ ψ(η, ξ),

we added η = ξ to ψ(η, ξ), to ensure that when we reflect ψ(η � α, ξ � α) we get a reflexive relation. Let r(α)
be the formula “α is a regular cardinal” and ψQ(κ) be the sentence with parameter κ that asserts that ψ(η, ξ)
defines a quasi-order on 2κ. For all η ∈ 2κ and α < κ, let

Tη,α = {p ∈ 2α | ∃β > α(Lβ |= ZF� ∧ψ(p, η � α, x � α) ∧ r(α) ∧ ψQ(α))}.

Let (Xα)α∈Sκµ be the diamond sequence of Definition 1.12, and for all α ∈ Sκµ , let Xα be the characteristic
function of Xα. Define F : 2κ → 2κ by

F(η)(α) =

{
1 if Xα ∈ Tη,α and α ∈ Sκµ
0 otherwise

Claim 1.14. F is a reduction of Q into vµ.
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Third Session

As it was sketch above, the combinatorial properties of L are essential for the reduction shown on Theorem
1.10. There are three different variations of Lemma 1.13, each variation is used to define a Borel reduction.

Lemma 1.15 ([2]). (V = L) For any Σ1-formula ϕ(η, x) with parameter x ∈ 2κ, the following are equivalent
for all η ∈ 2κ:

• ϕ(η, x)

• A = {α < κ | ∃β > α(Lβ |= ZF− ∧ϕ(η � α, x � α) ∧ r(α))} contains a club, where r(α) is the formula “α
is a regular cardinal”.

This variation was the one used in [2] to prove Theorem 1.15.

Lemma 1.16 ([3]). (V = L) For any Σ1-formula ϕ(η, x) with parameter x ∈ 2κ, a regular cardinal µ < κ, and
a stationary set S ⊂ Sκµ, the following are equivalent for all η ∈ 2κ:

• ϕ(η, x)

• S\A is non-stationary, where

A = {α ∈ S | ∃β > α(Lβ |= ϕ(η � α, x � α) ∧ r(α) ∧ s(α))}

where r(α) is the formula “α is a regular cardinal”, and s(α) states that S∩α is stationary and S∩α ⊂ Sαµ
in the sense that we required β to be large enough to witness that every element of S ∩ α has cofinality µ.

This Lemma was the one used in [3] to show that the relations Eκµ-club is Σ1
1(κ)-complete under the assumption

V = L. This is different from Lemma 1.15 because of the stationary set S. At the same time, in Lemma 1.16 is
different from 1.13. In Lemma 1.16 S is fixed from the beginning and it is independent from η and in Lemma
1.13 S depends on η and the diamond sequence. This is the reason why Lemma 1.16 cannot be used to prove
Theorem 1.10, and the reason to use ZF� and C� to fix a diamond sequence (Xγ)γ∈Sκµ .

Proof of Theorem 1.13. Let µ < κ be a regular cardinal. Suppose that η ∈ 2κ is such that ϕ(η, x) holds. Let θ
be a cardinal large enough such that

Lθ |= ZF� ∧ϕ(η, x) ∧ r(κ).

For each α < κ, let
H(α) = Sk(α ∪ {κ, η, x})Lθ

and H̄(α) the Mostowski collapse of H(α). Let

D = {α < κ | H(α) ∩ κ = α}.

Then D is a club set and D ∩ C3 is a club. Since H(α) is an elementary submodel of Lθ and the Mostowski
collapse H̄(α) is equal to Lβ for some β > α, we have D ∩ C3 ⊆ A.

Suppose η ∈ 2κ is such that ϕ(η, x) does not hold. Let µ < κ be a regular cardinal. Let θ be a large enough
cardinal such that

Lθ |= ZF� ∧¬ϕ(η, x) ∧ r(κ).

Let C be an unbounded set which is closed under µ-limits (a µ-club). Let

H(α) = Sk(α ∪ {κ,C, η, x, (Xγ , Cγ)γ∈Sκµ})
Lθ .

Let
D = {α ∈ Sκµ | H(α) ∩ κ = α}

Notice that since H(α) is an elementary substructure of Lθ, then H(α) calculates all cofinalities correctly below
α. Then D is an unbounded set, closed under µ-limits. Let S = {α ∈ Sκµ | Xα = η−1{1} ∩ α} and α0 be the
least ordinal in (limµD)∩S (where limµD is the set of ordinals of D that are µ-cofinal limits of elements of D).
Since α0 ∈ limµD, α0 > µ. By the elementarity of each H(α) we conclude that α0 ∈ C.

Let β̄ be such that Lβ̄ is equal to the Mostowski collapse of H(α0). We will show that α0 /∈ A. Suppose,
towards a contradiction, that α0 ∈ A, thus α0 ∈ C3 ∩ κ. There exists β > α0 such that

Lβ |= ZF� ∧ϕ(η � α0, x � α0) ∧ r(α0).

Since ϕ(η, x) is a Σ1-formula, β is a limit ordinal greater than β̄.

Claim 1.17. Lβ satisfies the following:
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1. For all γ ∈ S ∩ α0, γ has cofinality µ.

2. S ∩ α0 is a stationary subset of α0.

3. D ∩ α0 is a µ-club subset of a0.

Proof. 1. H(α0) calculates all cofinalities correctly below α0. Thus Lβ̄ calculates all cofinalities correctly

below α0. Since β is greater than β̄, Lβ calculates all cofinalities correctly below α0. Since S ∩ α0 ⊆ Sκµ
in L, then S ∩ α0 ⊆ Sκµ holds in Lβ .

2. Since α0 ∈ C3 ∩ κ and Lβ satisfies ZF� and r(α0), Lβ satisfies that S ∩ α0 is a stationary subset of α0.

3. Let α < α0 be such that Lβ |= cf(α) = µ ∧
⋃

(D ∩ α) = α, we will show that Lβ |= α ∈ D ∩ α0. Since
Lβ calculates all cofinalities correctly below α0, L |= cf(α) = µ∧

⋃
(D∩α) = α. D is a µ-club in L, thus

L |= α ∈ D. Since α < α0, L |= α ∈ D ∩ α0. We will finish the proof by showing that L |= α ∈ D ∩ α0

implies Lβ |= α ∈ D ∩ α0.

Notice that H(α0) is a definable subset of Lθ and D is a definable subset of Lθ. By elementarity, D ∩ α0

is a definable subset of H(α0), we conclude that D ∩ α0 is a definable subset of Lβ̄ and D ∩ α0 ∈ Lβ .
Therefore Lβ |= α ∈ D ∩ α0.

Fourth Session

Let us continue with the proof of Theorem 1.10.

Proof.

Claim 1.18. If η Q ξ, then Tη,α ⊆ Tξ,α for club-many α’s.

Proof. Suppose ψ(η, ξ, x) = ∃kϕ(k, η, ξ, x) holds and let k witnesses that. Let θ be a cardinal large enough such
that Lθ |= ZF� ∧ϕ(k, η, ξ, x) ∧ r(α). For all α < κ let H(α) = Sk(α ∪ {κ, k, η, ξ, x})Lθ . The set D = {α < κ |
H(α) ∩ κ = α ∧H(α) |= ψQ(α)} is a club. Using the Mostowski collapse we have that

D′ = {α < κ | ∃β > α(Lβ |= ZF� ∧ϕ(k � α, η � α, ξ � α, x � α) ∧ r(α) ∧ ψQ(α))}

contains a club. For all α ∈ D′ and p ∈ Tη,α we have that

∃β1 > α(Lβ1 |= ZF� ∧ψ(p, η � α, x � α) ∧ r(α) ∧ ψQ(α))

and
∃β2 > α(Lβ2 |= ZF� ∧ψ(η � α, ξ � α, x � α) ∧ r(α) ∧ ψQ(α)).

Therefore, for β = max{β1, β2} we have that

Lβ |= ZF� ∧ψ(p, η � α, x � α) ∧ ψ(η � α, ξ � α, x � α) ∧ r(α) ∧ ψQ(α).

Since ψQ(α) holds and so transitivity holds for ψ(η, ξ) in Lβ , we conclude that

Lβ |= ZF� ∧ψ(p, ξ � α, x � α) ∧ r(α) ∧ ψQ(α)

so p ∈ Tξ,α and Tη,α ⊆ Tξ,α. This holds for all α ∈ D′.

By the previous claim, we conclude that if η Q ξ, then there is a µ-club C such that for every α ∈ C it holds
that Xα ∈ Tη,α ⇒ Xα ∈ Tξ,α. Therefore (F(η)−1{1}\F(ξ)−1{1}) ∩ C = ∅, and F(η) vµ F(ξ).

For the other direction, suppose ¬ψ(η, ξ, x) holds. Let S = {α ∈ Sκµ | Xα = η−1{1} ∩ α}. Since (Xγ)γ∈Sκµ is
a diamond sequence, S is a stationary set. By Lemma 1.13 we know that S\A is stationary, where

A = {α ∈ C3 ∩ κ | ∃β > α(Lβ |= ZF� ∧ψ(η � α, ξ � α, x � α) ∧ r(α))}.

Since for all α ∈ S\A we have that Xα = η−1{1} ∩ α, so Xα ∈ Tη,α. We conclude that for all α ∈ S\A,
F(η)(α) = 1. On the other hand, for all α ∈ S\A it holds that

∀β > α(Lβ 6|= ZF� ∧ψ(η � α, ξ � α, x � α) ∧ r(α))
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so
∀β > α(Lβ 6|= ZF� ∧ψ(Xα, ξ � α, x � α) ∧ r(α)).

Therefore
∀β > α(Lβ 6|= ZF� ∧ψ(Xα, ξ � α, x � α) ∧ r(α) ∧ ψQ(α))

we conclude that Xα 6∈ Tξ,α, and F(ξ)(α) = 0. Hence, for all α ∈ S\A, F(η)(α) = 1 and F(ξ)(α) = 0. Since
S\A is stationary, we conclude that F(η)−1{1}\F(ξ)−1{1} is stationary and F(η) 6vµ F(ξ).

Theorem 1.19 ([2], Thm 18). (V = L) κ-Borel∗ = Σ1
1(κ).

Proof. Because of Example 1.1 and the previous Lemma, it is enough to prove the following Claim.

Claim 1.20. Assume f : 2κ → 2κ is a κ-Borel function and B ⊂ 2κ is κ-Borel∗. Then f−1[B] is κ-Borel∗.

Let (TB , HB) be a κ-Borel∗-code for B. Define the κ-Borel∗-code (TA, HA) by letting TB = TA and HA(b) =
f−1[HB(b)] for every branch b of TB . Let A be the κ-Borel∗-set coded by (TA, HA). Clearly, II ↑ B∗(TB , HB , η)
if and only if II ↑ B∗(TA, HA, f

−1(η)), so f−1[B] = A.

Theorem 1.21 ([10], Corollary 34). Suppose A and B are disjoint Σ1
1(κ) sets. There are κ-Borel∗ sets C0 and

C1 such that A ⊆ C0, B ⊆ C1, and C0 and C1 are duals.

Theorem 1.22 ([2], Theorem 17). ∆1
1(κ) ⊆ κ-Borel∗

Lemma 1.23 ([4], Corollary 3.2). It is consistently that ∆1
1(κ) ( κ-Borel∗ ( Σ1

1(κ).

Definition 1.24. Fix a bijection π : κ<ω → κ. For every η ∈ κκ define the L-structure Aη with domain κ as
follows: For every relation Pm with arity n, every tuple (a1, a2, . . . , an) in κn satisfies

(a1, a2, . . . , an) ∈ PAηm ⇐⇒ η(π(m, a1, a2, . . . , an)) ≥ 0.

Theorem 1.25 ([2], Theorem 18). 1. κ-Borel( ∆1
1(κ)

2. ∆1
1(κ) ( Σ1

1(κ)

Proof. 1. Let ξ 7→ (Tξ, hξ) be a continuous coding of the κ-Borel∗-codes with T a κ+ω-tree, such that for all
κ+ω-tree, T , and h, there is ξ such that Tξ, hξ = (T, h).

Claim 1.26. The set B = {(η, ξ) | η is in the set coded by (Tξ, hξ)} is Σ1
1(κ) and is not κ-Borel, otherwise

D = {η | (η, η) /∈ B} would be κ-Borel (Hint: use the set C = {(η, ξ, σ) | σ is a winning strategy for II in B∗(Tξ, hξ, η)}).

2.

Claim 1.27. There is A ⊆ 2κ × 2κ such that if B ⊆ 2κ is a Σ1
1(κ) set, then there is η ∈ 2κ such that

B = {ξ | (ξ, η) ∈ A} (Hint: the construction used in the classical case works too).

The set D = {η | (η, η) ∈ A} is Σ1
1(κ) but not Π1

1(κ).

Question 1.28. Is it consistent that ∆1
1(κ) = κ-Borel∗?

Definition 1.29 (The isomorphism relation). Assume T is a complete first order theory in a countable vocab-
ulary. We define ∼=T as the relation

{(η, ξ) ∈ κκ × κκ | (Aη |= T,Aξ |= T,Aη ∼= Aξ) or (Aη 6|= T,Aξ 6|= T )}.

Theorem 1.30 ([2], Theorem 70). If T is a classifiable theory, then ∼=T is ∆1
1(κ).

Theorem 1.31 ([2], Theorem 87). Suppose that for all γ < κ, γω < κ and T is a stable unsuperstable countable
theory. Then E2

ω-club ≤c ∼=κ
T .

Theorem 1.32 ([2], Theorem 79). Suppose that κ = λ+ = 2λ and λ<λ = λ.

1. If T is unstable or superstable with OTOP, then E2
λ-club ≤c ∼=κ

T .

2. If λ ≥ 2ω and T is superstable with DOP, then E2
λ-club ≤c ∼=κ

T .

Corollary 1.33. (V = L) Suppose that κ is the successor of a regular uncountable cardinal. If T is a non-
classifiable countable theory, then ∼=T is a Σ1

1-complete relation.
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2 The Main Gap in the generalized Borel-reducibility hierarchy

Fifth Session

Shelah’s Main Gap Theorem states the following.

Theorem 2.1 ([11] Main Gap Theorem). For every T first order complete theory over a countable vocabulary.
Let I(T, α) denote the number of non-isomorphic models of T with cardinality α. One of the following holds:

1. If T is shallow superstable without DOP and without OTOP, then ∀α > 0 I(T,ℵα) < iω1
(| α |).

2. If T is not superstable, or superstable and deep or with DOP or with OTOP, then for every uncountable
cardinal α, I(T, α) = 2α.

This gives us a notion of complexity, a theory is more complex if it has more models. Unfortunately, the main
gap also tells us that with this notion of complexity a theory T is either too complex, for every uncountable
cardinal α I(T, α) = 2α, or it is not so complex, i.e. ∀α > 0 I(T,ℵα) < iω1

(| α |). The aim of study the
Main Gap in the generalized Borel reducibility hierarchy is to obtain a more refined complexity notion in which
different theories have different complexities, and satisfies a counterpart of the Main Gap theorem:

If T1 and T2 are first order complete theories over a countable vocabulary such that T1 satisfies the first item
of the Main Gap and T2 satisfies the second item of the Main Gap theorem, then T1 is less complex than T2.

With the notions explained in the previous session, we can define the desire complexity notion:
T1 is as much as complex as T2 if and only ∼=T1

≤B∼=T2
.

To study this notion of complexity for first order complete theories over countable vocabularies, we will
divide the theories in two classes (as the Main Gap suggested), classifiable and non-classifiable theories. The
only difference is that we will not require a theory to be shallow in order to be classifiable. Some authors require
shallow for classifiable theories, we will see why in our case it make sense to not require it.

Definition 2.2. • A first order complete theory over a countable vocabulary, T , is classifiable if it is super-
stable without DOP and without OTOP.

• A first order complete theory over a countable vocabulary, T , is non-classifiable if it satisfies one of the
following:

1. T is stable unsuperstable;

2. T is superstable with DOP;

3. T is superstable with OTOP;

4. T is unstable.

In previous sessions we saw that it is consistently true that if T1 is classifiable and T2 is not classifiable then
∼=T1
≤B∼=T2

, this is a consequence of the diamond principle. In particular in L all non-classifiable theories are
Σ1

1-complete [5]. During the following lectures we will focus on the results of ZFC.

Classifiable Theories

Let us start with the case of classifiable theories. The following is the usual Ehrenfeucht-Fräıssé game but coded
in a particular way for our purposes.

Definition 2.3. (Ehrenfeucht-Fräıssé game) Fix {Xγ}γ<κ an enumeration of the elements of Pκ(κ) and
{fγ}γ<κ an enumeration of all the functions with domain in Pκ(κ) and range in Pκ(κ). For every pair of
structures A and B with domain κ and α < κ, the EFκω(A �α,B �α) is a game played by the players I and II as
follows.
In the n-th move, first I choose an ordinal βn < α such that Xβn ⊂ α, Xβn−1

⊆ Xβn , and then II an ordinal
θn < α such that dom(fθn), rang(fθn) ⊂ α, Xβn ⊆ dom(fθn) ∩ rang(fθn) and fθn−1

⊆ fθn (if n = 0 then
Xβn−1 = ∅ and fθn−1 = ∅). The game finishes after ω moves. The player II wins if ∪i<ωfθi : A �α→ B �α is a
partial isomorphism, otherwise the player I wins.

We write I ↑ EFκω(A �α,B �α) if I has a winning strategy in the game EFκω(A �α,B �α). We write II ↑
EFκω(A �α,B �α) if II has a winning strategy.

Lemma 2.4 ([6], Lemma 2.4). If A and B are structures with domain κ, then the following hold:

• II ↑ EFκω(A � κ,B � κ)⇐⇒ II ↑ EFκω(A �α,B �α) for club-many α.
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• I ↑ EFκω(A � κ,B � κ)⇐⇒ I ↑ EFκω(A �α,B �α) for club-many α.

Proof. It is easy to see that if σ : κ<ω → κ is a winning strategy for II in the game EFκω(A � κ,B � κ), then
σ � α<α is a winning strategy for II in the game EFκω(A �α,B �α) if σ[α<α] ⊆ α. So II ↑ EFκω(A �α,B �α) for α
a closed point of σ.

We conclude that if II ↑ EFκω(A � κ,B � κ), then II ↑ EFκω(A �α,B �α) for club-many α. The same holds
for I. To show the other direction, notice that EFκω(A � κ,B � κ) is a determined game, so if II doesn’t have
a winning strategy, then I has a winning strategy. Therefore, if II doesn’t have a winning strategy in the
game EFκω(A � κ,B � κ), then I ↑ EFκω(A �α,B �α) for club-many α, and II cannot have a winning strategy in
EFκω(A �α,B �α) for club-many α.

The reason to introduce these games is that we can characterize classifiable theories with these games.

Theorem 2.5 ([11], XIII Theorem 1.4). If T is a classifiable theory, then every two models of T that are
L∞,κ-equivalent are isomorphic.

Theorem 2.6 ([2], Theorem 10). L∞,κ-equivalence is equivalent to EFκω-equivalence.

From these two theorems we know that if T is a classifiable theory, then for any A and B models of T with
domain κ,

II ↑ EFκω(A,B)⇐⇒ A ∼= B

I ↑ EFκω(A,B)⇐⇒ A � B.

From the previous Lemma we know the following two hold for any A and B models of a classifiable theory (with
domain κ):

• A ∼= B ⇐⇒ II ↑ EFκω(A �α,B �α) for club-many α.

• A � B ⇐⇒ I ↑ EFκω(A �α,B �α) for club-many α.

Theorem 2.7 ([6], Theorem 2.8). Assume T is a classifiable theory and µ < κ a regular cardinal, then

∼=T ≤c Eκµ-club.

Proof. Define the relation Fα ⊆ κκ×κκ by (η, ξ) ∈ Fα if II ↑ EFκω(A �α,B �α). Define the reduction F : κκ → κκ

as follows,

F(η)(α) =

{
fη(α) if cf(α) = µ,Aη �α|= T and Fα is an equivalence relation

0 in other case

where fη(α) is a code in κ\{0} for the Fα equivalence class of Aη �α.

Claim 2.8. There are club many α’s such that Fα is an equivalence relation.

Proof. It follows by intersecting the clubs generated by the closed points of winning strategies.

The previous observation finishes the proof.

We conclude this section with a couple of observations. As a corollary of Theorem 1.21, A ⊆ κκ is a ∆1
1(κ)

set if there is a κ-Borel∗-code (T, h), such that for all η ∈ κκ the game B∗(T, h, η) is determined. By Theorems
2.4 and 2.6 we conclude that if T is classifiable, then ∼=T is a ∆1

1(κ) equivalence relation (this is the prove of
Theorem 1.30). This is not the case for some non-classifiable theories.

Theorem 2.9 ([2], Theorem 71). If T is unstable, or superstable with OTOP, or superstable with DOP and
κ > ω1, then ∼=T is not a ∆1

1(κ) equivalence relation.

Friedman, Hyttinen, and Kulikov proved in [2] the consistency of “∼=T is not ∆1
1(κ) for every stable unsu-

perstable theory T”.

Question 2.10. Is it consistently true that there is a stable unsuperstable theory T such that ∼=T is not a ∆1
1(κ)

equivalence relation?

Finally, when T is classifiable and shallow the result is stronger, as the Main Gap suggest.

Theorem 2.11 ([2], Theorem 68). If κ > 2ω, and T is classifiable and shallow, then ∼=T is a κ-Borel equivalence
relation
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Coloured Trees

To study the non-classifiable theories we need to introduce the coloured trees. Coloured trees are very useful
to reduce Eκµ-club or E2

µ-club to ∼=T , for certain µ and nonclassifiable theory T (see [2], [3], [6], [9]). In [2] and
[3] the coloured trees used had height ω + 2 and were used to study the case when κ is a successor cardinal. In
[6] the coloured trees had height ω + 2 and were used to study the case when κ is an inaccessible cardinal. In
these lectures we will use the coloured trees of [9], i.e. trees of uncountable height and κ inaccessible. Given
a tree t, for every x ∈ t we denote the order type of {y ∈ t|y < x}. Let us define tα = {x ∈ t|ht(x) = α}
and t<α = ∪β<αtβ , and denote by x � α the unique y ∈ t such that y ∈ tα and y ≤ x. If x, y ∈ t and
{z ∈ t|z < x} = {z ∈ t|z < y}, then we say that x and y are ∼-related, x ∼ y, and we denote by [x] the
equivalence class of x for ∼. An α, β-tree is a tree t with the following properties:

• |[x]| < α for every x ∈ t.

• All the branches have order type less than β in t.

• t has a unique root.

• If x, y ∈ t, x and y has no immediate predecessors and x ∼ y, then x = y.

Definition 2.12. Let λ be an uncountable cardinal. A coloured tree is a pair (t, c), where t is a κ+, (λ+ 2)-tree
and c is a map c : tλ → κ\{0}.

Definition 2.13. Let (t, c) be a coloured tree, suppose (Iα)α<κ is a collection of subsets of t that satisfies:

• for each α < κ, Iα is a downward closed subset of t.

•
⋃
α<κ Iα = t.

• if α < β < κ, then Iα ⊂ Iβ.

• if γ is a limit ordinal, then Iγ =
⋃
α<γ Iα.

• for each α < κ the cardinality of Iα is less than κ.

We call (Iα)α<κ a filtration of t.

Definition 2.14. Let t be a coloured tree and I = (Iα)α<κ a filtration of t. Define HI,t ∈ κκ as follows.
Fix α < κ. Let Bα be the set of all x ∈ tλ that are not in Iα, but x � θ ∈ Iα for all θ < λ.

• If Bα is non-empty and there is β such that for all x ∈ Bα, c(x) = β, then let HI,t(α) = β

• Otherwise let HI,t(α) = 0

We will call a filtration good if for every α, Bα 6= ∅ implies that c is constant on Bα.

Lemma 2.15 ([9]). Suppose (t0, c0) and (t1, c1) are isomorphic coloured trees, and I = (Iα)α<κ and J =
(Jα)α<κ are good filtrations of (t0, c0) and (t1, c1) respectively. Then HI,t0 E

κ
λ-club HJ ,t1

Proof. Let F : (t0, c0) → (t1, c1) be a coloured tree isomorphism. Define FI = (F [Iα])α<κ. It is easy to see
that F [Iα] is a downward closed subset of t1. Clearly F [Iα] ⊂ F [Iβ ] when α < β and for γ a limit ordinal,
∪α<γF [Iα] = F [Iγ ]. If x ∈ t1 then there exists y ∈ t0 and α < κ such that F (y) = x and y ∈ Iα, therefore
x ∈ F [Iα] and ∪α<κF [Iα] = t1. Since F is an isomorphism, |F [Iα]| = |Iα| < κ for every α < κ. So FI is a
filtration of t1.
For every α, BIα 6= ∅ implies that BFIα 6= ∅. On the other hand, I is a good filtration, then when BIα 6= ∅, c0 is
constant on BIα. Since F is colour preserving, c1 is constant on BFIα , we conclude that FI is a good filtration
and HI,t0(α) = HFI,t1(α).
Notice that F [Iα] = Jα implies HI,t0(α) = HJ ,t1(α). Therefore it is enough to show that C = {α|F [Iα] = Jα}
is an λ-club. By the definition of a filtration, for every sequence (αi)i<θ in C, cofinal to γ, Jγ =

⋃
i<θ Jαi =⋃

i<θ F [Iαi ] = F [Iγ ], so C is closed. To show that C is unbounded, choose α < κ. Define the succession (αi)i<λ
by induction. For i = 0, α0 = α. For every limit ordinal γ, when n is odd let αγ+n+1 be the least ordinal
bigger than αγ+n such that F [Iαγ+n ] ⊂ Jαγ+n+1 (such ordinal exists because κ is regular, and J and FI are
filtrations, specially |F [Iαγ+n ]| < κ). For every limit ordinal γ, when n is even let αγ+n+1 be the least ordinal
bigger than αγ+n such that Jαγ+n ⊂ F [Iαγ+n+1

] (such ordinal exists because κ is regular, and J and FI are
filtrations, specially |Jαn | < κ). Define αγ =

⋃
i<γ αi, then Jαγ =

⋃
i<γ Jαi =

⋃
i<γ F [Iαi ] = F [Iαγ ]. Clearly⋃

i<λ Jαi =
⋃
i<λ F [Iαi ] and ∪i<λαi ∈ C.
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Order the set λ×κ×κ×κ×κ lexicographically, (α1, α2, α3, α4, α5) > (β1, β2, β3, β4, β5) if for some 1 ≤ k ≤ 5,
αk > βk and for every i < k, αi = βi. Order the set (λ× κ× κ× κ× κ)≤λ as a tree by inclusion.
Define the tree (If , df ) as, If the set of all strictly increasing functions from some θ ≤ λ to κ and for each η
with domain λ, df (η) = f(sup(rang(η))).
For every pair of ordinals α and β, α < β < κ and i < λ define

R(α, β, i) =
⋃

i<j≤λ

{η : [i, j)→ [α, β)|η strictly increasing}.

Definition 2.16. Assume κ is an inaccessible cardinal. If α < β < κ and α, β, γ 6= 0, let {Pα,βγ |γ < κ} be an
enumeration of all downward closed subtrees of R(α, β, i) for all i, in such a way that each possible coloured tree
appears cofinally often in the enumeration. And the tree P 0,0

0 is (If , df ).

This enumeration is possible because κ is inaccessible; there are at most
|
⋃
i<λ P(R(α, β, i))| ≤ λ× κ = κ downward closed coloured subtrees, and at most κ× κ<κ = κ coloured trees.

Denote by Q(Pα,βγ ) the unique ordinal number i such that Pα,βγ ⊂ R(α, β, i).

Definition 2.17. Assume κ is an inaccessible cardinal. Define for each f ∈ κκ the coloured tree (Jf , cf ) by the
following construction.
For every f ∈ κκ define Jf = (Jf , cf ) as the tree of all η : s→ λ× κ4, where s ≤ λ, ordered by extension, and
such that the following conditions hold for all i, j < s:
Denote by ηi, 1 ≤ i ≤ 5, the functions from s to κ that satisfies, η(n) = (η1(n), η2(n), η3(n), η4(n), η5(n)).

1. η � n ∈ Jf for all n < s.

2. η is strictly increasing with respect to the lexicographical order on λ× κ4.

3. η1(i) ≤ η1(i+ 1) ≤ η1(i) + 1.

4. η1(i) = 0 implies η2(i) = η3(i) = η4(i) = 0.

5. η2(i) ≥ η3(i) implies η2(i) = 0.

6. η1(i) < η1(i+ 1) implies η2(i+ 1) ≥ η3(i) + η4(i).

7. For every limit ordinal α, ηk(α) = supβ<α{ηk(β)} for k ∈ {1, 2}.

8. η1(i) = η1(j) implies ηk(i) = ηk(j) for k ∈ {2, 3, 4}.

9. If for some k < λ, [i, j) = η−1
1 {k}, then

η5 � [i, j) ∈ P η2(i),η3(i)
η4(i) .

Note that 7 implies Q(P
η2(i),η3(i)
η4(i) ) = i.

10. If s = λ, then either

(a) there exists an ordinal number m such that for every k < m η1(k) < η1(m), for every k′ ≥ m

η1(k) = η1(m), and the color of η is determined by P
η2(m),η3(m)
η4(m) :

cf (η) = c(η5 � [m,λ))

where c is the colouring function of P
η2(m),η3(m)
η4(m) .

or

(b) there is no such ordinal m and then cf (η) = f(sup(rang(η5))).

Lemma 2.18 ([9]). Assume κ is an inaccessible cardinal, then for every f, g ∈ κκ the following holds

f Eκλ-club g ⇔ Jf ∼= Jg

Proof. By Lemma 2.4, it is enough to prove the following properties of Jf

1. There is a good filtration I of Jf , such that HI,Jf E
κ
λ-club f .
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2. If f Eκλ-club g, then Jf ∼= Jg.

Notice that for any k ∈ rang(η1) if η5 � [i, j) ∈ P η2(i),η3(i)
η4(i) , when [i, j) = η−1

1 (k) and if i+ 1 < j, then η5 � [i, j)

is strictly increasing. If η1(i) < η1(i+ 1), by Definition 2.6 item 6, η2(i+ 1) ≥ η3(i) + η4(i), so η5(i) < η3(i) ≤
η2(i+ 1) ≤ η5(i+ 1). If α is a limit ordinal, by Definition 2.6 items 7 and 8, η5(β) < η2(β + 1) < η2(α) ≤ η5(α)
it holds for every β < α. Thus η5 is strictly increasing. If η � n ∈ Jf for every n, then η ∈ Jf . Clearly every
maximal branch has order type λ+1, every chain η � 1 ⊂ η � 2 ⊂ η � 3 ⊆ · · · of any length, has a unique limit in
the tree, and every element in tθ, θ < λ, has an infinite number of successors (at most κ), therefore Jf ∈ CTλ∗ .
For each α < κ define Jαf as

Jαf = {η ∈ Jf |rang(η) ⊂ λ× (β)4 for some β < α}.

Suppose rang(η1) = λ. As it was mentioned before, η5 is increasing and sup(rang(η3)) ≥ sup(rang(η5)) ≥
sup(rang(η2)). By Definition 2.6 item 6 sup(rang(η2)) ≥ sup(rang(η3)) and sup(rang(η2)) ≥ sup(rang(η4)),
this lead us to

sup(rang(η4)) ≤ sup(rang(η3)) = sup(rang(η5)) = sup(rang(η2)). (1)

When η � k ∈ Jαf holds for every k ∈ λ, it can be concluded that sup(rang(η5)) ≤ α, if in addition η /∈ Jαf , then

sup(rang(η5)) = α. (2)

Claim 2.19. Suppose ξ ∈ Jαf and η ∈ Jf . If dom(ξ) a successor ordinal smaller than λ, ξ ( η and for every k
in dom(η)\dom(ξ), η1(k) = ξ1(max(dom(ξ))) and η1(k) > 0, then η ∈ Jαf .

Proof. Assume ξ, η ∈ Jf are as in the assumption. Let βi = ξi(max(dom(ξ))), for i ∈ {2, 3, 4}. Since ξ ∈ Jαf ,
then there exists β < α such that β2, β3, β4 < β. By Definition 2.6 item 8 for every k ∈ dom(η)\dom(ξ),

ηi(k) = βi for i ∈ {2, 3, 4}. Therefore, by Definition 2.6 item 9 and the definition of P β2,β3

β4
, we conclude

η5(k) < β3 < β, so η ∈ Jαf .

Claim 2.20. |Jf | = κ, J = (Jαf )α<κ is a good filtration of Jf and HJ ,Jf E
κ
λ-club f

Proof. Clearly Jf = ∪α<κJαf , Jαf is a downward closed subset of Jf , and Jαf ⊂ Jβf when α < β. Since κ is
inaccessible, we conclude |Jαf | < κ and |Jf | = κ. Finally, when γ is a limit ordinal

Jγf = {η ∈ Jf |∃β < γ(rang(η) ⊂ ω × (β)4)}
= {η ∈ Jf |∃α < γ,∃β < α(rang(η) ⊂ ω × (β)4)}
=

⋃
α<γ J

α
f

Suppose α has cofinality λ, and η ∈ Jf\Jαf satisfies η � k ∈ Jαf for every k < λ. By the previous claim, η
satisfies Definition 2.6 item 10 (a) only if η1(n) = 0 for every n ∈ λ. So η1, η2, η3 and η4 are constant zero, and
cf (η) = df (η5), where df is the colouring function of P 0,0

0 = If , cf (η) = f(sup(rang(η5))). When η satisfies
Definition 2.6 item 10 (b), cf (η) = f(sup(rang(η5))).
In both cases, cf (η) = f(α). Therefore, if Bα 6= ∅ then cf is constant on Bα and J is a good filtration.
By Definition 2.3 and since J is a good filtration, HJ ,Jf (α) = f(α).

Claim 2.21. If f Eκλ-club g, then Jf ∼= Jg.

Proof. Let C ′ ⊆ {α < κ|f(α) = g(α)} be an λ-club testifying f Eκλ-club g, and let C ⊃ C ′ be the closure of C ′

under limits. By induction we are going to construct an isomorphism between Jf and Jg.
We define continuous increasing sequences (αi)i<κ of ordinals and (Fαi)i<κ of partial color-preserving isomor-
phism from Jf to Jg such that:

a) If i is a successor, then αi is a successor ordinal and there exists β ∈ C such that αi−1 < β < αi and thus
if i is a limit, αi ∈ C.

b) Suppose that i = γ + n, where γ is a limit ordinal or 0, and n < ω is even. Then dom(Fαi) = Jαif .

c) Suppose that i = γ + n, where γ is a limit ordinal or 0, and n < ω is odd. Then rang(Fαi) = Jαig .

d) If dom(ξ) < λ, ξ ∈ dom(Fαi), η � dom(ξ) = ξ and for every k ≥ dom(ξ)

η1(k) = ξ1(sup(dom(ξ))) and η1(k) > 0

then η ∈ dom(Fαi). Similar for rang(Fαi).

e) If ξ ∈ dom(Fαi) and k < dom(ξ), then ξ � k ∈ dom(Fαi).
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f) For all η ∈ dom(Fαi), dom(η) = dom(Fαi(η)).

For every ordinal α denote by M(α) the ordinal that is order isomorphic to the lexicographic order of λ× α4.

First step (i=0).
Let α0 = β + 1 for some β ∈ C. Let γ be an ordinal such that there is a coloured tree isomorphism

h : P
0,M(β)
γ → Jα0

f and Q(P
0,M(β)
γ ) = 0. It is easy to see that such γ exists, by the way our enumeration

was chosen.
Since P

0,M(β)
γ and Jα0

f are closed under initial segments, then |dom(h−1(η))| = |dom(η)|. Also both domains

are intervals containing zero, therefore dom(h−1(η)) = dom(η).
Define Fα0(η) for η ∈ Jα0

f as follows, let Fα0(η) be the function ξ with dom(ξ) = dom(η), and for all κ < dom(ξ)

• ξ1(k) = 1

• ξ2(k) = 0

• ξ3(k) = M(β)

• ξ4(k) = γ

• ξ5(k) = h−1(η)(k)

To check that ξ ∈ Jg, we will check every item of Definition 2.6. Since rang(Fα0
) = {1}×{0}×{M(β)}×{γ}×

P
0,M(β)
γ , ξ satisfies 1. Also ξ5 = h−1(η) ∈ P 0,M(β)

γ , by definition of Pα,βγ , we now that ξ5 is strictly increasing
with respect to the lexicographic order, then ξ satisfies item 2. Notice that ξ is constant in every component
except for ξ5, therefore ξ satisfies the items 3, 6, 7, 8, 10 (a). Clearly ξ1(i) 6= 0, so ξ satisfies item 4. Since

ξ2(k) = 0 for every k, then ξ satisfies 5. Notice that [0, λ) = ξ−1
1 (1) but P

ξ2(k),ξ3(k)
ξ4(k) = P

0,M(β)
γ for every k,

therefore ξ5 ∈ P ξ2(0),ξ3(0)
ξ4(0) and ξ satisfies 7.

Let us show that the conditions a)-f) are satisfied, the conditions a) and c) are clearly satisfied. By the way
Fα0

was defined, dom(Fα0
) = Jα0

f and dom(η) = dom(Fα0
(η)), these are the conditions b), e) and f). Since

dom(Fα0
) = Jα0

f , the Claim 2.7.1 implies d) for dom(Fα0). For d) with rang(Fα0), suppose ξ ∈ rang(Fα0)
and η ∈ Jg are as in the assumption. Then η1(k) = ξ1(k) = 1 for every k < dom(η), by 8 in Jg we have that

η2(k) = ξ2(k) = 0, η3(k) = ξ3(k) = M(β) and η4(k) = ξ4(k) = γ for every k < dom(η). By 9 in Jg, η5 ∈ P 0,M(β)
γ

and since rang(Fα0
) = {1} × {0} × {M(β)} × {γ} × P 0,M(β)

γ , we can conclude that η ∈ rang(Fα0
).

Odd successor step.
Suppose that j < k is a successor ordinal such that j = βj + nj for some limit ordinal (or 0) βj and an odd
integer nj . Assume αl and Fαl are defined for every l < j satisfying the conditions a)-f).
Let αj = β + 1 where β ∈ C is such that β > αj−1 and rang(Fαj−1) ⊂ Jβg , such a β exists because

|rang(Fαj−1)| ≤ 2|αj−1| and κ is strongly inaccessible.
When η ∈ rang(Fαj−1

) has domain m < λ, define

W (η) = {ζ|dom(ζ) = [m, s),m < s ≤ λ, η_〈m, ζ(m)〉 /∈ rang(Fαj−1) and η_ζ ∈ Jαjg }

with the color function cW (η)(ζ) = cg(η
_ζ) for every ζ ∈ W (η) with s = λ. Denote ξ′ = F−1

αj−1
(η), α =

ξ′3(m − 1) + ξ′4(m − 1) (if m is a limit ordinal, then α = supθ<mξ2(θ)) and θ = α + M(αj). Now choose an
ordinal γη such that Q(Pα,θγη ) = m and there is an isomorphism hη : Pα,θγη → W (η). We will define Fαj by

defining its inverse such that rang(Fαj ) = J
αj
g .

Each η ∈ Jαjg satisfies one of the followings:

(*) η ∈ rang(Fαj−1).

(**) ∃m < dom(η)(η � m ∈ rang(Fαj−1) ∧ η � (m+ 1) /∈ rang(Fαj−1)).

(***) ∀m < dom(η)(η � (m+ 1) ∈ rang(Fαj−1) ∧ η /∈ rang(Fαj−1)).

We define ξ = F−1
αj (η) as follows. There are three cases:

Case η satisfies (∗).
Define ξ(n) = F−1

αj−1
(η)(n) for all n < dom(η).

Case η satisfies (∗∗).
This case is divided in two subcases, when m is limit ordinal and when m is successor ordinal. Let m witnesses
(**) for η and suppose m is a successor ordinal. For every n < dom(ξ)
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• If n < m, then ξ(n) = F−1
αj−1

(η � m)(n).

• For every n ≥ m. Let

– ξ1(n) = ξ1(m− 1) + 1

– ξ2(n) = ξ3(m− 1) + ξ4(m− 1)

– ξ3(n) = ξ2(m) +M(αj)

– ξ4(n) = γη�m

– ξ5(n) = h−1
η�m(η � [m, dom(η)))(n)

Note that, η � [m, dom(η)) is an element of W (η � m), this makes possible the definition of ξ5.
Let us check the items of Definition 2.6 to see that ξ ∈ Jf . Clearly item 1 is satisfied. By induction hypothesis,
ξ � m is increasing, ξ1(m) = ξ1(m− 1) + 1 so ξ(m− 1) < ξ(m), and ξk is constant on [m,λ) for k ∈ {1, 2, 3, 4},
since h−1

η�m(η) ∈ Pα,θγη , then ξ5 is increasing, and we conclude that ξ is increasing with respect to the lexicographic
order, so ξ satisfies item 2. Also we conclude ξ1(i) ≤ ξ1(i+ 1) ≤ ξ1(i) + 1, so ξ satisfies item 3. For every i < λ,
ξ1(i) = 0 implies i < m, so ξ(i) = F−1

αj−1
(η � m)(i) and by the induction hypothesis ξ satisfies item 4. By the

induction hypothesis, ξ � m ∈ Jf , since ξ2(n) = ξ3(m− 1) + ξ4(m− 1) holds for every n ≥ m, we conclude that
ξ satisfies 5. By the induction hypothesis, for every i+ 1 < m, ξ1(i) < ξ1(i+ 1) implies ξ2(i+ 1) ≥ ξ3(i) + ξ4(i),
on the other hand ξ1(i) = ξ1(j) implies ξk(i) = ξk(j) for k ∈ {2, 3, 4}, clearly ξ2(m) ≥ ξ3(m − 1) + ξ4(m − 1)
and ξk(i) = ξk(i+ 1) for i ≥ m and k ∈ {2, 3, 4}, then ξ satisfies items 6 and 8.
By the induction hypothesis, ξ � m ∈ Jf , since ξ1(n) = ξ1(m − 1) + 1 and ξ2(n) = ξ3(m − 1) + ξ4(m − 1)
hold for every n ≥ m, we conclude that ξ satisfies 7. Suppose [i, j) = ξ−1

1 (k) for some k in rang(ξ). Either

j < m or m = i. If j < m, by the induction hypothesis ξ5 � [i, j) ∈ P ξ2(i),ξ3(i)
ξ4(i) , if [i, j) = [m, dom(ξ)), then

ξ5 � [i, j) = h−1
η�m(η � [m, dom(ξ))) ∈ P

ξ2(m),ξ3(m)
ξ4(m) , ξ thus satisfies item 9. Since ξ is constant on [m,λ), ξ

satisfies 10 (a). Finally by item 10 (a) when dom(ζ) = λ, cf (ξ) = c(ξ5 � [m,λ)), where c is the color of

P
ξ2(m),ξ3(m)
ξ4(m) . Since ξ5 � [m,λ) = h−1

η�m(η � [m,λ)), cf (ξ) = c(h−1
η�m(η � [m,λ))) and since h is an isomorphism,

cf (ξ) = cW (η�m)(η � [m,λ)) = cg(η).

Let m witnesses (**) for η and suppose m is a limit ordinal. For every n < dom(ξ)

• If n < m, then ξ(n) = F−1
αj−1

(η � m)(n).

• For every n ≥ m. Let

– ξ1(n) = supθ<mξ1(θ)

– ξ2(n) = supθ<mξ2(θ)

– ξ3(n) = ξ2(m) +M(αj)

– ξ4(n) = γη�m

– ξ5(n) = h−1
η�m(η � [m, dom(η)))(n)

Note that, η � [m, dom(η)) is an element of W (η � m), this makes possible the definition of ξ5.
Let us check the items of Definition 2.6 to see that ξ ∈ Jf . Clearly item 1 is satisfied. By induction hypothesis,
ξ � m is increasing, ξ1(m) = supθ<mξ1(θ) so ξ(θ) < ξ(m) for every θ < m, and ξk is constant on [m,λ) for
k ∈ {1, 2, 3, 4}, since h−1

η�m(η) ∈ Pα,θγη , then ξ5 is increasing, and we conclude that ξ is increasing with respect
to the lexicographic order, so ξ satisfies item 2. Also we conclude ξ1(i) ≤ ξ1(i + 1) ≤ ξ1(i) + 1, so ξ satisfies
item 3. For every i < λ, ξ1(i) = 0 implies i < m, so ξ(i) = F−1

αj−1
(η � m)(i) and by the induction hypoth-

esis ξ satisfies item 4. By the induction hypothesis, ξ � m ∈ Jf , since ξ2(n) = supθ<mξ2(θ) holds for every
n ≥ m, we conclude that ξ satisfies 5. By the induction hypothesis, for every i + 1 < m, ξ1(i) < ξ1(i + 1)
implies ξ2(i + 1) ≥ ξ3(i) + ξ4(i), on the other hand ξ1(i) = ξ1(j) implies ξk(i) = ξk(j) for k ∈ {2, 3, 4}, clearly
ξ2(m) ≥ supθ<mξ3(θ) and ξk(i) = ξk(j) for j, i ≥ m and k ∈ {2, 3, 4}, then ξ satisfies items 6 and 8.
By the induction hypothesis, ξ � m ∈ Jf , since ξ1(n) = supθ<mξ1(θ) and ξ2(n) = supθ<mξ2(θ) hold for ev-
ery n ≥ m, we conclude that ξ satisfies 7. Suppose [i, j) = ξ−1

1 (k) for some k in rang(ξ). Either j < m
or m = i, notice that if i < m < j, then η � (m+ 1) ∈ rang(Fαj−1)). If j < m, by the induction hypoth-

esis ξ5 � [i, j) ∈ P
ξ2(i),ξ3(i)
ξ4(i) , if [i, j) = [m, dom(ξ)), then ξ5 � [i, j) = h−1

η�m(η � [m, dom(ξ))) ∈ P
ξ2(m),ξ3(m)
ξ4(m) ,

ξ thus satisfies item 9. Since ξ is constant on [m,λ), ξ satisfies 10 (a). Finally by item 10 (a) when

dom(ζ) = λ, cf (ξ) = c(ξ5 � [m,λ)), where c is the color of P
ξ2(m),ξ3(m)
ξ4(m) . Since ξ5 � [m,λ) = h−1

η�m(η � [m,λ)),

cf (ξ) = c(h−1
η�m(η � [m,λ))) and since h is an isomorphism, cf (ξ) = cW (η�m)(η � [m,λ)) = cg(η).

Case η satisfies (∗ ∗ ∗).
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Clearly dom(η) = λ, by the induction hypothesis and condition d), rang(η) = λ, otherwise η ∈ rang(Fαj−1).
Let F−1

αj (η) = ξ = ∪n<λF−1
αj−1

(η � n), by the induction hypothesis, ξ is well defined. Since for every n < λ,

ξ � n ∈ Jf , then ξ ∈ Jf . Let us check that cf (ξ) = cg(η). First note that ξ /∈ Jαj−1

f , otherwise by the induction
hypothesis f),

Fαj−1
(ξ) =

⋃
n<λ

Fαj−1
(ξ � n) =

⋃
n<λ

η � n = η

giving us η ∈ rang(Fαj−1
). By the equation (2), sup(rang(ξ5)) = αj−1 and ξ satisfies item 10 b) in Jf , therefore

cf (ξ) = f(αj−1). Also by the definition of Jαf and since ξ � n ∈ Jαj−1

f for every n < λ, αj−1 is a limit ordinal and

by condition a), j − 1 is a limit ordinal and αj−1 ∈ C. The conditions b) and c) ensure rang(Fαj−1
) = J

αj−1

f .

This implies, η /∈ Jαj−1

f . By the equation (2), sup(rang(η5)) = αj−1. Therefore αj−1 has cofinality λ, αj−1 ∈ C ′
and f(αj−1) = g(αj−1). By item 10 b) in Jg, cg(η) = g(αj−1) = f(αj−1) = cf (ξ).

Next we show that Fαi is a color preserving partial isomorphism. We already showed that Fαi preserve the
colors, so we only need to show that

η ( ξ ⇔ F−1
αi (η) ( F−1

αi (ξ). (3)

From left to right.
When η, ξ ∈ rang(Fαi−1

), the induction hypothesis implies (3) from left to right. If η ∈ rang(Fαi−1
) and

ξ /∈ rang(Fαi−1
), the construction implies (3) from left to right. Let us assume η, ξ /∈ rang(Fαi−1

), then η, ξ
satisfy (**). Let m1 and m2 be the respective ordinal numbers that witness (**) for η and ξ, respectively. Notice
that m2 < dom(η), otherwise, η ∈ rang(Fαi−1). If m1 < m2, clearly η ∈ rang(Fαi−1) what is not the case. A
similar argument shows that m2 < m1 cannot hold. We conclude that m1 = m2 and by the construction of
Fαi , F

−1
αi (η) ( F−1

αi (ξ).
From right to left.
When η, ξ ∈ rang(Fαi−1

), the induction hypothesis implies (3) from right to left. If η ∈ rang(Fαi−1
) and

ξ /∈ rang(Fαi−1), the construction implies (3) from right to left. Let us assume η, ξ /∈ rang(Fαi−1), then η, ξ
satisfy (**). Let m1 and m2 be the respective ordinal numbers that witness (**) for η and ξ, respectively.
Notice that m2 < dom(η), otherwise, F−1

αi (η) = F−1
αi−1

(η) and η ∈ rang(Fαi−1
). Let us denote by θ the inverse

map F−1
αi (e.g. θ(ζ) = F−1

αi (ζ)), and the first component by θ1 (e.g. θ1(ζ) = F−1
αi (ζ)1).

If m1 < m2 and m2 is a successor ordinal, then

θ1(η)(m2 − 1) = (θ(ξ) �m2
)1(m2 − 1)

< θ1(ξ �m2
)(m2 − 1) + 1

= θ1(η)(m2)
= θ1(η)(m2 − 1).

If m1 < m2 and m2 is a limit ordinal, then

∀γ ∈ [m1,m2) θ1(η)(γ) = (θ(ξ) �m2
)1(γ)

< supn<m2
θ1(ξ �m2

)(n)
= θ1(η)(m2)
= θ1(η)(γ).

This cannot hold. A similar argument shows that m2 < m1 cannot hold. We conclude that m1 = m2.
By the induction hypothesis F−1

αi−1
(η � m1) = F−1

αi−1
(ξ � m2) implies η � m1 = ξ � m2 (also implies hη�m1 =

hξ�m2
). Since F−1

αi−1
(η � m1)(n) = F−1

αi (η)(n) for all n < m1, we only need to prove that η � [m1, dom(η)) (
ξ � [m2, dom(ξ)). But hη�m1 is an isomorphism and F−1

αi (η)5(n) = F−1
αi (ξ)5(n) for every n ≥ m1, so h−1

η�m1
(η �

[m1, dom(η)))(n) = h−1
ξ�m2

(ξ � [m2, dom(ξ)))(n). Therefore η � [m1, dom(η)) ( ξ � [m2, dom(ξ)).

Let us check that this three constructions satisfy the conditions a)-f).
When i is a successor we have αi−1 < β < αi = β+ 1 for some β ∈ C, this is the condition a). Clearly the three
cases satisfy b). We defined F−1

αi according to (*), (**), or (***); since every η ∈ Jαjg satisfies one of these, we
conclude rang(Fαi) = J

αj
g which is the condition c).

Let us show that the Fαi satisfy condition d). Let ξ and η be as in the assumptions of condition d) for
domain. Notice that if ξ ∈ dom(Fαi−1

) then the induction hypothesis ensure that η ∈ dom(Fαi). Suppose
ξ /∈ dom(Fαi−1

), then Fαi(ξ) /∈ rang(Fαi−1
). Since dom(ξ) < λ, so Fαi(ξ) satisfies (**). Let m be the number

witnessing it. If m is a limit ordinal, then dom(ξ) ≥ m + 1, therefore ξ � m+ 1 ∈ Jαif and by Claim 2.7.1
η ∈ Jαif . If m is a successor ordinal, then ξ ∈ Jαif and by Claim 2.7.1 η ∈ Jαif . By item 8 in Jαif , ηk is

constant on [m, dom(η)) for k ∈ {2, 3, 4}, now by Definition 2.6 item 9 in Jαif , η5 � [m, dom(η)) ∈ Pα,βγξ�m
. Let

ζ = hξ�m(η[m,dom(η))), then η = F−1
αi (Fαi(ξ � m)_ζ) and η ∈ dom(Fαi).

Using the same argument, the condition d) can be proved.
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For the conditions e) and f), notice that ξ was constructed such that dom(ξ) = dom(η) and ξ � k ∈ dom(Fαi)
which are these conditions.

Even successor step.
Suppose that j < k is a successor ordinal such that j = βj + nj for some limit ordinal (or 0) βj and an even
integer nj . Assume αl and Fαl are defined for every l < j satisfying conditions a)-f).

Let αj = β+ 1 where β ∈ C such that β > αj−1 and dom(Fαj−1) ⊂ Jβf , such a β exists because |dom(Fαj−1)| ≤
2|αj−1| and κ is strongly inaccessible. The construction of Fαj such that dom(Fαj ) = Jαif follows as in the odd

successor step, with the equivalent definitions for dom(Fαj ) and Jαif . Notice that for every η ∈ Jαjf , there are
only the following cases:

(*) η ∈ dom(Fαj−1
).

(**) ∃m < dom(η)(η � m ∈ dom(Fαj−1) ∧ η � (m+ 1) /∈ dom(Fαj−1)).

Limit step.
Assume j is a limit ordinal. Let αj = ∪i<jαi and Fαj = ∪i<jFαi , clearly Fαj : J

αj
f → Jg and satisfies condition

c). Since for i successor, αi is the successor of an ordinal in C, then αj ∈ C and satisfies the condition a). Also
Fαj is a partial isomorphism. Remember that ∪i<jJαif = J

αj
f , the same for Jg. By the induction hypothesis

and the conditions b) and c) for i < j, we have dom(Fαj ) = J
αj
f (this is the condition b)) and rang(Fαj ) = J

αj
g .

This and Claim 2.7.1 ensure that condition d) is satisfied. By the induction hypothesis, for every i < j, Fαi
satisfies conditions e) and f), then Fαj satisfies conditions e) and f).

Define F = ∪i<κFαi , clearly, it is an isomorphism between Jf and Jg.
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