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lteration theorems for successors of regular cardinals

(I) The <Rg-support iteration of ccc forcing is also ccc = Consistency of
FA,x, (ccc) = M A (Solovay-Tennembaum).

(I1) Let T be the family of well-met, X;-linked and R;-closed forcings. Under the CH, the

<Nj-support iteration of forcings in I" is Ng-cc = Consistency of FA,x, (I') := BA
(Baumgartner)

(I11) Let T' be the family of well-met, No-stationary-cc and N;-closed forcings with exact
upper bounds. Under the CH, the <X;-support iteration of members of I is
Ng-stationary-cc = Consistency of FA,x, (I') (Shelah)

(IV) Let 8y < cof(k) = x and T be the family of well-met, x-stationary-cc, k-closed and
countably parallel closed forcing. Under k<" = k, the iteration of <x-supported
iteration of members of I is k™ -stationary-cc Consistency of FAy«(I') (CDMMS)



Solve problems at the level of singular cardinal and their successors.

Two approaches
@ The approach of Dzamonja and Shelah, and CDMMS:

P> Begin with a large cardinal .

> Define a forcing iteration aimed to solve certain problem about x by appealing to some
of the above iterations theorems.

» At the end singularize x by appealing to a Prikry-type forcing. The former iteration
should anticipate the effect of this Prikry-type forcing.

@ Find an iteration theorem for k™ "-length and k-supported iterations of x**-cc
forcing, when & is a singular cardinal.




Solve problems at the level of singular cardinal and their successors. I

Strategy

Find an iteration theorem for k" "-length and x-supported iterations of x*"-cc forcing,
when k is a singular cardinal.

» In the context of successors of regular cardinals there is a vast theory of iterations
(Solovay-Tennembaum, Shelah, CDMMS)

» We know that k™" -cc is not strong enough (even for x regular) to iterate
(Rostanowski, Shelah) and, besides, that one needs to require additional properties
(well-metness, xt-closedness with exact bounds, etc)

» An additional caveat is that, for singular, the kT -closedness with exact bounds is
usually not available (e.g. let S C E” () Non-reflecting and CU(kT,SU E:;Of( ))
This is cof (x)-closed hence, if w = COf(K) < K, it is not even o-closed.)



So, if we do not have x-closedness with exact bounds, what can we do? l

An alternative: The Prikry workaround

An alternative is to look at forcings IP which are "layered-closed". Namely,

@ P can be written as | J,,, IP,, according to some reasonable notion of length (Graded
poset, from Lecture #1).

@ The layers IP,, are eventually as closed as we wish. That is, there is X := (k,, | n < w)
a non-decreasing sequence of uncountable regular cardinals such that, for each n < w,
» P, is kn-closed;
P> K = Sup, <y Kn;
> 1 IFp “kT is not collapsed”.

As we showed in the previous lecture, this is the typical situation for many Prikry-type
forcings centered on cofinality w and motivates the Z-Prikry framework



Revised Strategy

Find an iteration theorem for k™ *-length and x-supported iterations of x™"-cc Prikry-type
forcings, when k is a singular cardinal.

There already exists iteration theorems for Prikry-type forcing due to Magidor & Gitik.

Let us recall them



Magidor & Gitik iterations

Definition (Gitik)

A set P with two partial orders < and <* is called a Prikry-type forcing if <*C< and
(P, <,<*) has the Prikry property; i.e., for each sentence ¢ in the language of

IP := (P, <)-names and each p € P, there is ¢ <* p such that ¢ || ¢.

Magidor iterations (Magidor, Gitik)

Let o be an ordinal. A Magidor iteration of Prikry forcings with length o, (IP,; Qs |
a < o, < ), is defined by induction as follows. For each o < ¢ we define P, to be the
set of all sequences p = (pg | B < ) so that, for every 3 < o, p | B € IPg and

p | BlFp, “ps € Qs & (Qp,<p,<p) is a Prikry-type forcing”.




Magidor iterations (Magidor, Gitik)

Let o be an ordinal. A Magidor iteration of Prikry forcings with length o, (IPo; Qg |
a < o, < ), is defined by induction as follows. For each o < ¢ we define IP,, to be the
set of all sequences p = (pg | B < ) so that, for every 3 < o, p | B € IPg and

plBlkp, “ps € Qs & (Qp, <5, §;§> is a Prikry-type forcing”.

Let p,q € P,. We write p <, ¢ iff the following are true:
Q Foreach < a,p|B<p,qlBandp|pBlp, ps <ps s
Q There is b € [a]<N0 such that for all € a\b, p | B IFp, Ps <5 ds-

Observation

Roughly speaking, the ordering <, \ <, is the <R¢-support iteration of the orderings <7,
for a < .




Magidor & Gitik iterations

Theorem (Magidor, Gitik)
The Magidor iteration of Prikry-type forcings is of Prikry-type.

One can define Gitik's iterations in a similar fashion requiring that:
@ Conditions of the iteration have Easton support;
Q@ p <, q if and only if the following is true:

@ foreach B < a, p fﬁﬁﬂ)ﬂ q|Bandp fﬁ“‘]PBpﬂ < qp;
@ there is b € [supp(q)]<N0 such that for each f € a\ b, p | 3 IFp, ps <j ds-

Observe that Bullet 2.2. is saying that we are only allowed to modify the stems at finitely
B € supp(q), but still we are free to take non-direct extensions at many a's outside

supp(q).




The utility of Magidor & Gitik iterations

The following lemma illustrates the purpose of Magidor/Gitik iterations:

Lemma (Gitik)

Let x be a strong compact cardinal and let <IPa;Q5 | @ < K, < k) be a Magidor iteration
of Prikry-type forcing notions such that P, C “V,, for unboundedly many o < x. Besides,
assume that the following is true:

@ For every a < &, 1 IFp, “(Qq, <) is |a|-closed”;
Q@ For all p,q,r € Qq, if p,q <* r then there is t € Q, such that t <* p,q.

Then & is a strong compact cardinal in VPr.




The utility of Magidor & Gitik iterations

The moral
Magidor & Gitik iterations are, in essence, iterations in the style of Easton.

@ The goal is modify V; so that at the end k enjoys certain property.
@ The chain condition of the iterates grows progressively.
© The closedness of the orderings <7, also increases along the iteration.

| \

Some relevant applications
@ Magidor's discovering of the identity crises phenomenon for strong compact cardinals.
@ Gitik & Shelah indestructibility results for strong cardinals.

© Ben-Neria & Unger result on the existence of an inaccessible cardinal x joint with a
club C C k where each \ € C'is singular and measurable in HOD.




The utility of Magidor & Gitik iterations

Magidor & Gitik iterations are, in essence, iterations in the style of Easton.
@ The goal is modify Vj; so that at the end k enjoys certain property.
@ The chain condition of the iterates grows progressively.

© The closedness of the orderings <” also increases along the iteration.

» We want to keep fixed both the chain condition and the degree of “layered-closedness”
along the iteration. Thus, we are looking for a different style of iterating Prikry-type
forcings.

» In particular, this implies that we need a different abstraction of Prikry-forcings than
that given by Gitik. This motivates the X-Prikry framework.

» Metaphorically, we aim for something more akin to the iteration that forces FA,,+ (T),
for x singular, rather than to the Easton-support iteration that forces 2/ = #*+ at a
measurable cardinal 6.



lterations of X-Prikry forcing

Solve problems at the level of singular cardinal and their successors.

Strategy

Find an iteration theorem for ™ "-length and k-supported iterations of x*"-cc Prikry-type
forcings, when k is a singular cardinal.

» One of the main features of our iteration is that it is wholly concentrated on the
cardinal k™.
> That is, we force at each successor stage o < ™1 accordingly to destroy a potential
counterexample for our intended property at k™. The "catch your tail" arguments
guarantee that k™ enjoys the desired property in the final generic extension.



lterations of X-Prikry forcing

Solve problems at the level of singular cardinal and their successors.

Strategy

Find an iteration theorem for ™ "-length and k-supported iterations of x*"-cc Prikry-type
forcings, when k is a singular cardinal.

» One of the main features of our iteration is that it is wholly concentrated on the
cardinal k™.

» It is not a forcing iteration in the usual sense.

» We do not define the successors stages as P71 = Py * Q.. where Q,, is a IP,-name for
a forcing notion. Instead we invoke a (ground model) functor A(-,-) which, given a

problem z, produces a forcing A(IP,, z) solving the problem z and projecting onto P, (in
some strong sense).



lterations of X-Prikry forcing

» It is not a forcing iteration in the usual sense.

» We do not define the successors stages as P41 = Py * Q.. where Q,, is a IP,-name for
a forcing notion. Instead we invoke a (ground model) functor A(-,-) which, given a

problem z, produces a forcing A(IP,, z) which solves the problem z and projects onto PP,
(in some strong sense).

An advantage of this approach

It allows to keep a good chain conditions even in the presence of 2% > k™. Observe that
in the context of usual iterations, if P, forces 2% > k™", any natural poset devised to add
a subset of kT via bounded approximation will not have the x**-cc in Ve,




Main theorem (actually a special version when p = k™)

Suppose that £ = (k,, | n < w) is a strictly increasing sequence of regular uncountable
cardinals, converging to a cardinal x. Let us say that a notion of forcing IP is nice if
1 IFp “%7 is not collapsed” and IP C H,.++. Suppose that:

» (Q,4,c) is a nice X-Prikry notion of forcing;

» A(-,-) is a functor that produces for every nice X-Prikry notion of forcing IP and every
P-name z € H,++, a corresponding nice X-Prikry notion of forcing (A(PP, z), ¢, )
that admits a forking projection to IP and satisfies some additional properties;

» 22" = kT so that we may fix a bookkeeping list (z, | @ < k™) of elements of H,.++.
Then there exists a k-supported sequence ((IPy,%n,ca) | @ < kTT) of nice Z-Prikry
forcings such that Py is isomorphic to Q, P41 = A(IPy, z) and, for every pair
a < B <ktt, (Pg,{s,cg) forking projects onto (Py,fq,cq) and (P ++, £, ++) forking
projects onto (IPg,¢3).




The 2-Prikry framework

@ P = (P,<) is a notion of forcing with a greatest element 1;

@ X = (kp | n < w) is a non-decreasing sequence of regular uncountable cardinals with
K 1= SUDy, ., Kn;

@ v is a cardinal such that 1 lkp i = x™;

£:P — wand c: P— p are functions;

Definition (X-Prikry forcing)

We say that (IP, ¢, ¢) is X-Prikry iff all of the following hold:
@ (IP,¢) is a graded poset;
Q Foralln <w, P, := (P, U{1},<) is ky-directed-closed;
© For all p,q € P, if ¢(p) = c(q), then P N Py is non-empty;

Q Forallpe P, n,m <w and q <""™ p, the set {r <" p | ¢ <™ r} contains a
<-largest condition m(p, q). In the particular case that m = 0, we write w(p, q)
instead of m(p, q);




Definition (continuation)

We say that (IP, ¢, ¢) is X-Prikry iff all of the following hold:
@ (IP,¢) is a graded poset;
Q Forall n <w, P, := (P, U{1},<) is ky-directed-closed;
Q For all p,q € P, if ¢(p) = c(q), then P N P{ is non-empty;

Q Forallpe P, n,m <w and ¢ <"™™ p, the set {r <" p| ¢ <™ r} contains a
<-largest condition m(p, q). In the particular case that m = 0, we write w(p, q)
instead of m(p, q);

For all p € P, the set W (p) := {w(p,q) | ¢ < p} has size <y;

For all p" <pin P, g — w(p,q) forms an order-preserving map from W (p') to W (p);

Suppose that U C P is a 0-open set, i.e., r € U iff Bf C U. Then, for all p € P and
n < w, there is ¢ € P}, such that, either PAINU = or PI C U.

© 00




Comparing iteration theorems: regulars vs successors of singulars

Successors of Regular cardinals (CDMMS) Successor of Singular cardinals (PRS)
KSR =g 1lFp “k singular & i = k1" and p~H = p
k-closedness+countably parallel closed CPP + layered closedness
Kk T-stationary-cc p " -Linkedg-property
well-metness Not available (e.g. EBPF)

The key concept that allows to preserve the above properties (as well as the others
definining a X-Prikry forcing) along the iteration is the notion of forking projection.

The set-up of forking projections

Q@ (P, /p,cp) is a Z-Prikry triple with 1 IFp gt = x.

Q (A,lp) is a graded poset, A := (A, ), joint with a function cp : A — 9N, where M
is some canonical structure of size .




We say that (A, ¢p,ca) forking projects onto (IP, £p, cp) iff there are maps 7 and rh as
follows:

@ 7 is a projection from A onto IP and /p = fpo .

@ For each p € P, the set {a € A | w(a) = p} contains a J-greatest element denoted by
[p]%.

For each a € A, M(a) is a order-preserving map from IP | 7(a) to A | a.

Furthermore, th(a) | W(m(a)) is a bijection onto W (a).

For all n,m < w, b <""™q, m(a,b) = M(a)(m(n(a),n(b)).

For all a € A, M(a) splits 7; i.e., w(th(a)(q)) = ¢, for ¢ < 7(a).

Foralla € A and ¢ < m(a), a = [7(a)]™ iff h(a)(q) = [q]2.

Foralla€ A, ' <%a and r <° w(a’), M(a')(r) <°h(a)(r).

For all a,a’ € A, if ca(a) = ca(a’) then cp(m(a)) = cp(n(a’)) and for all
re BB, iia)(r) = m(@) ().

©
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Note

In case there are maps 7 and  just satisfying (1)-(7) of the above we will say that
(A, Lp) forking projects onto (IP, {p)

Some intuitions

@ Clause (2) states that any condition p € P "lifts” to a condition in A. The condition
[p]2 is analogous to (p,1g) in a two-step iteration A =P x Q.
@ Intuitively speaking, M(a)(p) give us the <J-greatest extension of a whose projection
under 7 is p.
© Clauses (1)+(3)+(4)+(5) imply that the map defined by
w(mw(a), 7(b)) — M(a)(w(m(a), (b)) establishes an isomorphism between the a-tree
W (a),>) and the 7(a)-tree (W (m(a)),>).
> By (3), M(a) is order-preserving.
> Let w(a,b1) Jw(a,by). By (4), w(a,b;) = M(a)(w(n(a),7(b;)) and combining (5) and
(1) w(m(a), w(b1)) < w(w(a), 7 (bo)).

| .




@ Clause (6) can be interpreted as follows. A condition a € A is a lift if and only if
M(a)(q) is a lift, for each ¢ < 7 (a).

@ Let X := (k, | n < w). Clause (7) is key to guarantee that for each n < w, A, is
kn-directed closed.

@ Observe that M(a)(r) = M(a’)(r) € AGN AZ'. Thus, (8) claims that cp satisfies a
strong form of the u™-Linkednessy-property: namely, this property is witnessed by any
condition of the form M(a)(r), for any r € Poﬂ(a) N Pg(a ),




Main theorem

Suppose that £ = (k,, | n < w) is a strictly increasing sequence of regular uncountable
cardinals, converging to a cardinal . Let us say that a notion of forcing IP is nice if
Tlkp i =k and P C H,+. Now, suppose that:

» (Q,4,c) is a nice Z-Prikry notion of forcing;

» A(-,-) is a functor that produces for every nice X-Prikry notion of forcing IP and every
P-name z € H,+, a corresponding nice X-Prikry notion of forcing (A(IP, 2),¢',c)
that admits a forking projection to IP and satisfies some additional properties;

» <t = pand 2# = pt, so that we may fix a bookkeeping list (2, | v < ) of H+.
Then there exists a <u-supported sequence ((Py, £a, o) | @ < pT) of nice -Prikry
forcings such that IP; is isomorphic to Q, P,+1 is isomorphic to A(IP,, z,) and, for every
pair o < B < ™, (IPg, g, cg) forking projects onto (P, £o,cq) and (IP,+,£,+) forking
projects onto (IPg, £g).




Let us iterate X-Prikry forcings

Let us assume throughout that ;1 ~# = u.

Building block |

We are given (Q, lg,cq) a X-Prikry forcing such that 1 IFp i = s+, Q C H,+ and
1 IFp “k is singular”.

| \

Building block Il

We are given a function ¢: u* — H .

Note

The typical choice of 1 in applications are bookkeping functions: i.e., 9 is such that
|~ {x}| = p*, for each & € H,+. For this one just need to add |H,+| = u* to the above
assumptions.

| A\

4




Building block Il1

For every nice X-Prikry triple (P, /p,cp), every r* € P, and every IP-name z € H,,+, we are
given a X-Prikry triple (A, ¢a, ca) such that:

@ (A,lp,cp) admits a forking projection to (IP, ¢p,cp) as witnessed by maps h and ;
Q@ A = (A, Q) is nice;
© Mixing property: for all a € A, m < w, and p’ <% 7(a), and for every function

g: Wn(p') — A satisfying g(r) <a and 7(g(r)) = r for every r € W,,,(p'), there
exists b <" a with 7(b) = p’ such that th(b)(r) <° g(r) for every r € W, (p').

By virtue of a lemma concerning canonical forms we may further assume:
@ each element of A is a pair (z,y) with 7(x,y) = z;
Q foreverya € A, (ﬂ(aﬂA = (7(a),0);
@ for every p,q € P, if cp(p) = cp(q), then ca([p]™) = ca([a]®);



<p-supported, p"-iterations of X-Prikry forcing

Since u~H = p,
» Fix eq: @ — u an injection, for each o < p™;

» Let (e! |i < p), e': u™ — p, be such that for each e : €' — p with C € [u*]<H there
is i < p such that e C ¢ (Engelking-Karlowicz).

Notation

@ For the ease of notation, let us write () rather than 1g.
Q Foreach a < u™, 0, :={(3,0) | B8 < a}.
@ For each v < a < u', p a y-sequence and ¢ an a-sequence,

pkqi= Q(ﬁ), v< B <a;
"~ |p(B), otherwise.

© For each sequence p, B, := {8+ 1| 8 € dom(p) & p(B3) # 0}.




We define our iteration by induction on a < pt.

Q@ Py := ({0}, <o) be the trivial forcing.

Q P, := ({@}Q, <1) where p <; ¢ iff p(0) <q ¢(0), 41 (p) := Lo(p(0)) and
c1(p) == co(p(0)). Besides, w10 : P — {0}, hio: P1 — {0} and rhy 1:=id.

| A\

Successor stage o + 1
Suppose ((Pg, (5, c5). (M. ma | 7 < f < a)) was already defined.

» Suppose that ¢(a)) = (3,r,0) where 8 < o, € Pg and o is a Pg-name. Then
appeal to Building Block lll w.r.t. r* := 7% (4, z := {(7%,px0,) | (,p) € 0)} to
get (A,lp,cp) a X-Prikry triple joint with two maps 7 and M witnessing that
(A, Llp,cp) forking projects onto (IPy, £y, cq)-

» Otherwise, appeal to Building Block Ill w.r.t. r* := (), and 2 := () and get the
corresponding X-Prikry forcing joint with maps 7 and .




Successor stage o + 1 (continuation)

Once (A, lp,cp), ™ and M are obtained, we define (IPy+1,fa+1,Ca+1) and the maps
(Mat1,8,Tat1,8 | 1 < B < a+1) as follows:

> Potr:={2"(y) | (2,y) € A} and
p<ar1q <= (pla,p(a)) (g o q(a)).

» Tat18(p) :=p [ B, lat1 :={10Tar1,1.
» cot1(p) :=calp | a,p(a)).
» MNat1,a+1:=id and for each f < «a, p € P, and r € P3

Mat1,8(p)(r) =2 (y) iff M(p [ @, p())(Mas(p [ @)(r)) = (z,y)




Limit stage 0 < o < p™*

Suppose ((IPg,£3,¢3), (Mg~ 5, | ¥ < B < a)) was already defined. We define
(Pg, 4o, o) and the maps (ha g, Tas | 1 < 5 < a) as follows:

» Let P, be the set of all a-sequences p such that, for each 8 < o, p | 5 € P and
|Bp| < p. Define p <, g in the natural way.

> Ta5(p) :=p B la i =Ll10Ta.
» Mqq:=1id and for each f < a, p € P, and r € Pg,
ha,s(0)(r) = | hap(p I 0)(r).

B<é<a

Idea: Guarantee that M, g(p)(r) [ 6 = s~ (p [ §)(r) as we want to preserve the existence
of forking projections.




Limit stage 0 < o < pt (continuation)

For the definition of ¢, we distinguish two cases: either o < pu™ or o = .

> Ifa < 1", define ca(p) i= {(ca (), (p 1 7)) | 7 € By},
» Otherwise, for each p € P, set C':= cl(B,) and, for each v € C, set

fo(7) = (&4[CNAl,ey(p T 7))

Finally, define ¢+ (p) := min{i < p | f, C €'}




The idea when 0 < o < ' is limit

We want to devise ¢, in such a way that Clause (8) of forking projections is true for each
1 <~ < . In particular this will show that ¢, witnesses the p*-Linkedg-property of IP,,.

Observe that if ¢, (p) = ca(q) then B := B, = B, and

(*) ey(p17) =cy(q]7), for each v € B.

The moral is that, if we have forking projections between all the stages § < v < a, the
coordinates v € o\ B are “not important”, i.e. (x) yields

Cv(p TV) = 67(q [’y), for each v < a.
Once this is proved, it is not hard to check that Ma(p)(r) = Ma,~(g)(r), for each
re (PR (P



Sketch: c,+ witnesses the y"-Linked-property

The caveat now is that there are no forking projections between (]P“+,£#+,cu+) and
(Pa, Loy o), for a < p™. We will be assuming that (P, 4o, cq ) is X-Prikry, for each
a<pt.

We devise c,+ in such a way that, if c,+(p) = ¢,+(q) and C := cl(B,) and Cy := cl(B,),
then both (), and C; can be represented as foIIows

R _
c, 1) 01 Op+1 = max(C, U Cy)
0 09
C) ——3 _2

Let us now show how to use this to define r € (P,+)f N (P,+){.



Set C':= cl(B,) and C; := cl(B,) and assume c,+(p) = c¢,+(q). For simplicity, say n = 2.

c, L‘i _él _S3=max(C,UCy)
o
. D

» Since c,+(p) = c,+(q) entails f, [ R = f, [ R, and 6 € R, it follows that
[p(8) = f4(8). In particular, ¢s(p [ §) = cs5(q [ 6). Thus, there is
re (Ps)PP N (Py)al°. Set rg :=r.
» Now, we begin “copying” the information:
> 1=ty 50 (p [ 61)(r0), 72 1= sy 5, (g [ 92)(r1) and 3 1= sy 5, (P [ d3) (r2).
> r* =,

By construction it is not hard to check that * € (P,+)f N (P,+)8.



Sketch: for each 1 < a < u™, P, has the CPP

To enlighten the presentation let us prove the result for a graded poset (A, ¢p) which
forking projects onto (IP,¢p) and (IP, ¢p, cp) is X-Prikry. Denote by 7 and rh the
corresponding maps witnessing this.

The main two ingredients are:
Q@ Mixing lemma.
@ CPP of P

Sketch of proof

Let a € A and D C A be a 0-open set. We want to find b <° @ and n < w such that either
A C Dor AND=10. Set D, := D | a, U:=7[D,] and p := 7(a).

Using elementary properties of h one can show that U is a 0-open set in P. Thus, by the
CPP for P, there is ¢ <" p and n < w such that, either P4 C U, or PINU = .




Sketch of proof (continuation)

»» PINU = ): Set b:=(a)(q). It is routine to check that A% N D = {), so we are done.
»» P CU: Let g: W,(q) = D, be such that 7(g(r)) = r. Now use the mixing lemma
to find b <% a with m(b) = ¢ such that M(b)(r) <Y g(r). By 0-openes of D,

M(b)[Wn(q)] € D, and this is the same as W,,(b) C D,. Again, by the 0-openess of D,,
A% C D, as desired.




The papers

O Sigma-Prikry forcing I: The axioms, Submitted to Canadian Journal of
Mathematics (2019).

@ Sigma-Prikry forcing ll: Iteration Scheme, Submitted to Journal of Mathematical
Logic (2019).

Find the papers and the slides of Lecture #1 here!
http://assafrinot.com/t/sigma-prikry
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