Σ -Prikry forcings and their iterations

Alejandro Poveda

Departament de Matemàtiques i Informàtica

Joint Set Theory seminar of the BIU and the HUJI 13th May - 2020 Partially supported by MECD Grant no FPU15/00026.

Joint work with A. Rinot & D. Sinapova

- Sigma-Prikry forcing I: The axioms, Submitted to Canadian Journal of Mathematics (2019).
- **Sigma-Prikry forcing II: Iteration Scheme**, Submitted to Journal of Mathematical Logic (2019).

Iteration theorems for successors of regular cardinals

- (I) The $<\aleph_0$ -support iteration of ccc forcing is also $ccc \Rightarrow$ Consistency of $FA_{2^{\aleph_0}}(ccc) = MA$ (Solovay-Tennembaum).
- (II) Let Γ be the family of well-met, \aleph_1 -linked and \aleph_1 -closed forcings. Under the CH , the $<\aleph_1$ -support iteration of forcings in Γ is \aleph_2 -cc \Rightarrow Consistency of $\operatorname{FA}_{2^{\aleph_1}}(\Gamma):=BA$ (Baumgartner)
- (III) Let Γ be the family of well-met, \aleph_2 -stationary-cc and \aleph_1 -closed forcings with exact upper bounds. Under the CH , the $<\!\aleph_1$ -support iteration of members of Γ is \aleph_2 -stationary-cc \Rightarrow Consistency of $\operatorname{FA}_{2^{\aleph_1}}(\Gamma)$ (Shelah)
- (IV) Let $\aleph_1 \leq \operatorname{cof}(\kappa) = \kappa$ and Γ be the family of well-met, κ^+ -stationary-cc, κ -closed and countably parallel closed forcing. Under $\kappa^{<\kappa} = \kappa$, the iteration of $<\kappa$ -supported iteration of members of Γ is κ^+ -stationary-cc **Consistency of** $\operatorname{FA}_{2^\kappa}(\Gamma)$ **(CDMMS)**

Goal

Solve problems at the level of singular cardinal and their successors.

Two approaches

- The approach of Džamonja and Shelah, and CDMMS:
 - \blacktriangleright Begin with a large cardinal κ .
 - ightharpoonup Define a forcing iteration aimed to solve certain problem about κ^+ by appealing to some of the above iterations theorems.
 - At the end singularize κ by appealing to a Prikry-type forcing. The former iteration should anticipate the effect of this Prikry-type forcing.
 - **2** Find an iteration theorem for κ^{++} -length and κ -supported iterations of κ^{++} -cc forcing, when κ is a singular cardinal.

Goal

Solve problems at the level of singular cardinal and their successors.

Strategy

Find an iteration theorem for κ^{++} -length and κ -supported iterations of κ^{++} -cc forcing, when κ is a singular cardinal.

- ► In the context of successors of regular cardinals there is a vast theory of iterations (Solovay-Tennembaum, Shelah, CDMMS)
- We know that κ^{++} -cc is not strong enough (even for κ regular) to iterate (Rosłanowski, Shelah) and, besides, that one needs to require additional properties (well-metness, κ^+ -closedness with exact bounds, etc)
- An additional caveat is that, for κ singular, the κ^+ -closedness with exact bounds is usually not available (e.g. let $S \subseteq E_{\operatorname{cof}(\kappa)}^{\kappa^+}$ non-reflecting and $\operatorname{CU}(\kappa^+, S \cup E_{\neq \operatorname{cof}(\kappa)}^{\kappa^+})$. This is $\operatorname{cof}(\kappa)$ -closed hence, if $\omega = \operatorname{cof}(\kappa) < \kappa$, it is not even σ -closed.)

Question

So, if we do not have κ^+ -closedness with exact bounds, what can we do?

An alternative: The Prikry workaround

An alternative is to look at forcings \mathbb{P} which are "layered-closed". Namely,

- ① \mathbb{P} can be written as $\bigcup_{n<\omega} \mathbb{P}_n$, according to some reasonable notion of length (Graded poset, from Lecture #1).
- The layers \mathbb{P}_n are eventually as closed as we wish. That is, there is $\Sigma := \langle \kappa_n \mid n < \omega \rangle$ a non-decreasing sequence of uncountable regular cardinals such that, for each $n < \omega$,
 - $ightharpoonup \mathbb{P}_n$ is κ_n -closed:
 - $\kappa = \sup_{n < \omega} \kappa_n;$
 - ▶ $1 \Vdash_{\mathbb{P}}$ " $\check{\kappa}^+$ is not collapsed".

As we showed in the previous lecture, this is the typical situation for many Prikry-type forcings centered on cofinality ω and motivates the Σ -Prikry framework

Revised Strategy

Find an iteration theorem for κ^{++} -length and κ -supported iterations of κ^{++} -cc Prikry-type forcings, when κ is a singular cardinal.

Note

There already exists iteration theorems for Prikry-type forcing due to Magidor & Gitik.

Let us recall them

Magidor & Gitik iterations

Definition (Gitik)

A set P with two partial orders \leq and \leq^* is called a $\underline{\mathsf{Prikry-type}}$ forcing if $\leq^*\subseteq\leq$ and $\langle P, \leq, \leq^* \rangle$ has the Prikry property; i.e., for each sentence φ in the language of $\mathbb{P} := \langle P, \leq \rangle$ -names and each $p \in P$, there is $q \leq^* p$ such that $q \parallel \varphi$.

Magidor iterations (Magidor, Gitik)

Let ϱ be an ordinal. A Magidor iteration of Prikry forcings with length ϱ , $\langle \mathbb{P}_{\alpha}; \mathbb{Q}_{\beta} \mid \alpha \leq \varrho, \beta < \varrho \rangle$, is defined by induction as follows. For each $\alpha < \varrho$ we define \mathbb{P}_{α} to be the set of all sequences $p = \langle p_{\beta} \mid \beta < \alpha \rangle$ so that, for every $\beta < \alpha$, $p \upharpoonright \beta \in \mathbb{P}_{\beta}$ and

$$p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} "p_{\beta} \in \mathbb{Q}_{\beta} \& \langle \dot{Q}_{\beta}, \dot{\leq}_{\beta}, \dot{\leq}_{\beta}^{*} \rangle$$
 is a Prikry-type forcing".

Magidor iterations (Magidor, Gitik)

Let ϱ be an ordinal. A Magidor iteration of Prikry forcings with length ϱ , $\langle \mathbb{P}_{\alpha}; \mathbb{Q}_{\beta} \mid \alpha \leq \varrho, \beta < \varrho \rangle$, is defined by induction as follows. For each $\alpha < \varrho$ we define \mathbb{P}_{α} to be the set of all sequences $p = \langle \dot{p}_{\beta} \mid \beta < \alpha \rangle$ so that, for every $\beta < \alpha$, $p \upharpoonright \beta \in \mathbb{P}_{\beta}$ and

$$p \upharpoonright \beta \Vdash_{\mathbb{P}_\beta} "p_\beta \in \mathbb{Q}_\beta \ \& \ \langle \dot{Q}_\beta, \dot{\leq}_\beta, \dot{\leq}_\beta^* \rangle \text{ is a Prikry-type forcing"}.$$

Let $p, q \in \mathbb{P}_{\alpha}$. We write $p \leq_{\alpha} q$ iff the following are true:

- For each $\beta < \alpha$, $p \upharpoonright \beta \leq_{\mathbb{P}_{\beta}} q \upharpoonright \beta$ and $p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} \dot{p}_{\beta} \leq_{\beta} \dot{q}_{\beta}$.
- ② There is $b \in [\alpha]^{\leq \aleph_0}$ such that for all $\beta \in \alpha \setminus b$, $p \upharpoonright \beta \Vdash_{\mathbb{P}_\beta} \dot{p}_\beta \leq_\beta^* \dot{q}_\beta$.

Observation

Roughly speaking, the ordering $\leq_{\varrho} \setminus \leq_{\rho}^*$ is the $<\aleph_0$ -support iteration of the orderings \leq_{α}^* , for $\alpha < \varrho$.

Magidor & Gitik iterations

Theorem (Magidor, Gitik)

The Magidor iteration of Prikry-type forcings is of Prikry-type.

One can define Gitik's iterations in a similar fashion requiring that:

- Onditions of the iteration have Easton support;
- $p \leq_{\alpha} q$ if and only if the following is true:
 - $\bullet \ \text{ for each } \beta < \alpha \text{, } p \upharpoonright \beta \leq_{\mathbb{P}_\beta} q \upharpoonright \beta \text{ and } p \upharpoonright \beta \Vdash_{\mathbb{P}_\beta} \dot{p}_\beta \leq_\beta \dot{q}_\beta;$
 - $\textbf{ 2} \ \, \text{there is} \,\, b \in [\operatorname{supp}(q)]^{<\aleph_0} \,\, \text{such that for each} \,\, \beta \in \alpha \setminus b, \,\, p \upharpoonright \beta \Vdash_{\mathbb{P}_\beta} \dot{p}_\beta \leq_\beta^* \dot{q}_\beta.$

Remark

Observe that Bullet 2.2. is saying that we are only allowed to modify the stems at finitely $\beta \in \operatorname{supp}(q)$, but still we are free to take non-direct extensions at many α 's outside $\operatorname{supp}(q)$.

The utility of Magidor & Gitik iterations

The following lemma illustrates the purpose of Magidor/Gitik iterations:

Lemma (Gitik)

Let κ be a strong compact cardinal and let $\langle \mathbb{P}_{\alpha}; \dot{\mathbb{Q}}_{\beta} \mid \alpha \leq \kappa, \beta < \kappa \rangle$ be a Magidor iteration of Prikry-type forcing notions such that $\mathbb{P}_{\alpha} \subseteq {}^{\alpha}V_{\alpha}$ for unboundedly many $\alpha < \kappa$. Besides, assume that the following is true:

- For every $\alpha < \kappa$, $\mathbb{1} \Vdash_{\mathbb{P}_{\alpha}} "\langle \mathbb{Q}_{\alpha}, \leq_{\alpha}^* \rangle$ is $|\alpha|$ -closed";
- ② For all $p,q,r\in\dot{\mathbb{Q}}_{\alpha}$, if $p,q\leq^*r$ then there is $t\in\dot{\mathbb{Q}}_{\alpha}$ such that $t\leq^*p,q$.

Then κ is a strong compact cardinal in $V^{\mathbb{P}_{\kappa}}$.

The utility of Magidor & Gitik iterations

The moral

Magidor & Gitik iterations are, in essence, iterations in the style of Easton.

- The goal is modify V_{κ} so that at the end κ enjoys certain property.
- 2 The chain condition of the iterates grows progressively.
- **3** The closedness of the orderings \leq_{α}^* also increases along the iteration.

Some relevant applications

- Magidor's discovering of the identity crises phenomenon for strong compact cardinals.
- 2 Gitik & Shelah indestructibility results for strong cardinals.
- **3** Ben-Neria & Unger result on the existence of an inaccessible cardinal κ joint with a club $C \subseteq \kappa$ where each $\lambda \in C$ is singular and measurable in HOD.

The utility of Magidor & Gitik iterations

The moral

Magidor & Gitik iterations are, in essence, iterations in the style of Easton.

- The goal is modify V_{κ} so that at the end κ enjoys certain property.
- 2 The chain condition of the iterates grows progressively.
- **3** The closedness of the orderings \leq_{α}^* also increases along the iteration.
- ▶ We want to keep fixed both the chain condition and the degree of "layered-closedness" along the iteration. Thus, we are looking for a different style of iterating Prikry-type forcings.
- ▶ In particular, this implies that we need a different abstraction of Prikry-forcings than that given by Gitik. This motivates the Σ -Prikry framework.
- Metaphorically, we aim for something more akin to the iteration that forces $FA_{2^{\kappa^+}}(\Gamma)$, for κ singular, rather than to the Easton-support iteration that forces $2^{\theta}=\theta^{++}$ at a measurable cardinal θ .

Iterations of Σ -Prikry forcing

Goal

Solve problems at the level of singular cardinal and their successors.

Strategy

Find an iteration theorem for κ^{++} -length and κ -supported iterations of κ^{++} -cc Prikry-type forcings, when κ is a singular cardinal.

- One of the main features of our iteration is that it is wholly concentrated on the cardinal κ^+ .
 - That is, we force at each successor stage $\alpha < \kappa^{++}$ accordingly to destroy a potential counterexample for our intended property at κ^+ . The "catch your tail" arguments guarantee that κ^+ enjoys the desired property in the final generic extension.

Iterations of Σ -Prikry forcing

Goal

Solve problems at the level of singular cardinal and their successors.

Strategy

Find an iteration theorem for κ^{++} -length and κ -supported iterations of κ^{++} -cc Prikry-type forcings, when κ is a singular cardinal.

- One of the main features of our iteration is that it is wholly concentrated on the cardinal κ^+ .
- ▶ It is not a forcing iteration in the usual sense.
 - We do not define the successors stages as $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$, where $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a forcing notion. Instead we invoke a (ground model) functor $\mathbb{A}(\cdot,\cdot)$ which, given a problem z, produces a forcing $\mathbb{A}(\mathbb{P}_{\alpha},z)$ solving the problem z and projecting onto \mathbb{P}_{α} (in some strong sense).

Iterations of Σ -Prikry forcing

- ▶ It is not a forcing iteration in the usual sense.
 - We do not define the successors stages as $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$, where $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a forcing notion. Instead we invoke a (ground model) functor $\mathbb{A}(\cdot,\cdot)$ which, given a problem z, produces a forcing $\mathbb{A}(\mathbb{P}_{\alpha},z)$ which solves the problem z and projects onto \mathbb{P}_{α} (in some strong sense).

An advantage of this approach

It allows to keep a good chain conditions even in the presence of $2^{\kappa} \geq \kappa^{++}$. Observe that in the context of usual iterations, if \mathbb{P}_{α} forces $2^{\kappa} \geq \kappa^{++}$, any natural poset devised to add a subset of κ^+ via bounded approximation will not have the κ^{++} -cc in $V^{\mathbb{P}_{\alpha}}$.

Main theorem (actually a special version when $\mu = \kappa^+$)

Suppose that $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is a strictly increasing sequence of regular uncountable cardinals, converging to a cardinal κ . Let us say that a notion of forcing $\mathbb P$ is nice if $\mathbb 1 \Vdash_{\mathbb P}$ " $\check{\kappa}^+$ is not collapsed" and $\mathbb P \subseteq H_{\kappa^{++}}$. Suppose that:

- \blacktriangleright (Q, ℓ , c) is a nice Σ -Prikry notion of forcing;
- All All All All All is a functor that produces for every nice All-Prikry notion of forcing All and every All-name $z \in H_{\kappa^{++}}$, a corresponding nice All-Prikry notion of forcing All All All All that admits a forking projection to All and satisfies some additional properties;
- $ightharpoonup 2^{2^{\kappa}} = \kappa^{++}$, so that we may fix a bookkeeping list $\langle z_{\alpha} \mid \alpha < \kappa^{++} \rangle$ of elements of $H_{\kappa^{++}}$.

Then there exists a κ -supported sequence $\langle (\mathbb{P}_{\alpha}, \ell_{\alpha}, c_{\alpha}) \mid \alpha \leq \kappa^{++} \rangle$ of nice Σ -Prikry forcings such that \mathbb{P}_1 is isomorphic to \mathbb{Q} , $\mathbb{P}_{\alpha+1} = \mathbb{A}(\mathbb{P}_{\alpha}, z_{\alpha})$ and, for every pair $\alpha \leq \beta < \kappa^{++}$, $(\mathbb{P}_{\beta}, \ell_{\beta}, c_{\beta})$ forking projects onto $(\mathbb{P}_{\alpha}, \ell_{\alpha}, c_{\alpha})$ and $(\mathbb{P}_{\kappa^{++}}, \ell_{\kappa^{++}})$ forking projects onto $(\mathbb{P}_{\beta}, \ell_{\beta})$.

The Σ -Prikry framework

- **1** $\mathbb{P} = (P, \leq)$ is a notion of forcing with a greatest element 1;
- ② $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is a non-decreasing sequence of regular uncountable cardinals with $\kappa := \sup_{n < \omega} \kappa_n$;
- **3** μ is a cardinal such that $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \kappa^+$;
- $\ell:P \to \omega$ and $c:P \to \mu$ are functions;

Definition (Σ -Prikry forcing)

We say that (\mathbb{P}, ℓ, c) is Σ -Prikry iff all of the following hold:

- \bullet (\mathbb{P}, ℓ) is a graded poset;
- **2** For all $n < \omega$, $\mathbb{P}_n := (P_n \cup \{1\}, <)$ is κ_n -directed-closed;
- For all $p, q \in P$, if c(p) = c(q), then $P_0^p \cap P_0^q$ is non-empty;
- For all $p \in P$, $n, m < \omega$ and $q \le^{n+m} p$, the set $\{r \le^n p \mid q \le^m r\}$ contains a \le -largest condition m(p,q). In the particular case that m=0, we write w(p,q) instead of m(p,q);

Definition (continuation)

We say that (\mathbb{P}, ℓ, c) is Σ -Prikry iff all of the following hold:

- \bullet (\mathbb{P}, ℓ) is a graded poset;
- \bullet For all $n < \omega$, $\mathbb{P}_n := (P_n \cup \{1\}, \leq)$ is κ_n -directed-closed;
- For all $p, q \in P$, if c(p) = c(q), then $P_0^p \cap P_0^q$ is non-empty;
- For all $p \in P$, $n, m < \omega$ and $q \le^{n+m} p$, the set $\{r \le^n p \mid q \le^m r\}$ contains a \le -largest condition m(p,q). In the particular case that m=0, we write w(p,q)
- instead of m(p,q);
- $\bullet \ \, \text{For all} \,\, p \in P \text{, the set} \,\, W(p) := \{w(p,q) \mid q \leq p\} \,\, \text{has size} < \mu;$
- $\bullet \ \, \text{For all} \,\, p' \leq p \,\, \text{in} \,\, P, \,\, q \mapsto w(p,q) \,\, \text{forms an order-preserving map from} \,\, W(p') \,\, \text{to} \,\, W(p);$
- Suppose that $U\subseteq P$ is a 0-open set, i.e., $r\in U$ iff $P_0^r\subseteq U$. Then, for all $p\in P$ and $n<\omega$, there is $q\in P_0^p$, such that, either $P_n^q\cap U=\emptyset$ or $P_n^q\subseteq U$.

Comparing iteration theorems: regulars vs successors of singulars

Successors of Regular cardinals (CDMMS)	Successor of Singular cardinals (PRS)
$\kappa^{<\kappa} = \kappa$	$1 \Vdash_{\mathbb{P}}$ " κ singular & $\check{\mu} = \kappa^+$ " and $\mu^{<\mu} = \mu$
κ -closedness+countably parallel closed	CPP + layered closedness
κ^+ -stationary-cc	μ^+ -Linked $_0$ -property
well-metness	Not available (e.g. EBPF)

The key concept that allows to preserve the above properties (as well as the others definining a Σ -Prikry forcing) along the iteration is the notion of forking projection.

The set-up of forking projections

- ($\mathbb{P}, \ell_{\mathbb{P}}, c_{\mathbb{P}}$) is a Σ -Prikry triple with $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \kappa^+$.
- ② $(\mathbb{A}, \ell_{\mathbb{A}})$ is a graded poset, $\mathbb{A} := (A, \leq)$, joint with a function $c_{\mathbb{A}} : A \to \mathfrak{M}$, where \mathfrak{M} is some canonical structure of size μ .

Definition

We say that $(\mathbb{A}, \ell_{\mathbb{A}}, c_{\mathbb{A}})$ forking projects onto $(\mathbb{P}, \ell_{\mathbb{P}}, c_{\mathbb{P}})$ iff there are maps π and \pitchfork as follows:

- $\bullet \ \pi \text{ is a projection from } \mathbb{A} \text{ onto } \mathbb{P} \text{ and } \ell_{\mathbb{A}} = \ell_{\mathbb{P}} \circ \pi.$
- ② For each $p \in P$, the set $\{a \in A \mid \pi(a) = p\}$ contains a ⊴-greatest element denoted by $\lceil p \rceil^{\mathbb{A}}$.
- **③** For each a ∈ A, $\pitchfork(a)$ is a order-preserving map from $\mathbb{P} \downarrow \pi(a)$ to $\mathbb{A} \downarrow a$. Furthermore, $\pitchfork(a) \upharpoonright W(\pi(a))$ is a bijection onto W(a).
- For all $n, m < \omega$, $b \leq^{n+m} a$, $m(a, b) = \pitchfork(a)(m(\pi(a), \pi(b)))$. • For all $a \in A$, $\pitchfork(a)$ splits π ; i.e., $\pi(\pitchfork(a)(q)) = q$, for $q \leq \pi(a)$.
- For all $a \in A$, m(a) spins x, i.e., $\pi(m(a)(q)) = q$, for $q \le \pi(a)$.
- For all $a \in A$, $a' \triangleleft^0 a$ and $r \leq^0 \pi(a')$, $\pitchfork(a')(r) \triangleleft^0 \pitchfork(a)(r)$.
- For all $a, a' \in A$, if $c_{\mathbb{A}}(a) = c_{\mathbb{A}}(a')$ then $c_{\mathbb{P}}(\pi(a)) = c_{\mathbb{P}}(\pi(a'))$ and for all $r \in P_0^{\pi(a)} \cap P_0^{\pi(a')}$, h(a)(r) = h(a')(r).

Note

In case there are maps π and \pitchfork just satisfying (1)-(7) of the above we will say that $(\mathbb{A}, \ell_{\mathbb{A}})$ forking projects onto $(\mathbb{P}, \ell_{\mathbb{P}})$

Some intuitions

- Clause (2) states that any condition $p \in P$ "lifts" to a condition in A. The condition $\lceil p \rceil^{\mathbb{A}}$ is analogous to $(p, \dot{\mathbb{1}}_{\mathbb{O}})$ in a two-step iteration $\mathbb{A} = \mathbb{P} * \dot{\mathbb{Q}}$.
 - ② Intuitively speaking, $\pitchfork(a)(p)$ give us the \unlhd -greatest extension of a whose projection under π is p.
 - ③ Clauses (1)+(3)+(4)+(5) imply that the map defined by $w(\pi(a),\pi(b))\mapsto \pitchfork(a)(w(\pi(a),\pi(b)))$ establishes an isomorphism between the a-tree $(W(a),\trianglerighteq)$ and the $\pi(a)$ -tree $(W(\pi(a)),\trianglerighteq)$.
 - ▶ By (3), $\pitchfork(a)$ is order-preserving.
 - Let $w(a,b_1) \leq w(a,b_0)$. By (4), $w(a,b_i) = \pitchfork(a)(w(\pi(a),\pi(b_i)))$ and combining (5) and (1) $w(\pi(a),\pi(b_1)) \leq w(\pi(a),\pi(b_0))$.

Some intuitions

- Clause (6) can be interpreted as follows. A condition $a \in A$ is a lift if and only if $\pitchfork(a)(q)$ is a lift, for each $q < \pi(a)$.
- 2 Let $\Sigma := \langle \kappa_n \mid n < \omega \rangle$. Clause (7) is key to guarantee that for each $n < \omega$, \mathbb{A}_n is κ_n -directed closed.
- Observe that $\pitchfork(a)(r) = \pitchfork(a')(r) \in A_0^a \cap A_0^{a'}$. Thus, (8) claims that $c_{\mathbb{A}}$ satisfies a strong form of the μ^+ -Linkedness₀-property: namely, this property is witnessed by any condition of the form $\pitchfork(a)(r)$, for any $r \in P_0^{\pi(a)} \cap P_0^{\pi(a')}$.

Main theorem

Suppose that $\Sigma = \langle \kappa_n \mid n < \omega \rangle$ is a strictly increasing sequence of regular uncountable cardinals, converging to a cardinal κ . Let us say that a notion of forcing $\mathbb P$ is nice if $\mathbb 1 \Vdash_{\mathbb P} \check{\mu} = \kappa^+$ and $\mathbb P \subseteq H_{\mu^+}$. Now, suppose that:

- $ightharpoonup (\mathbb{Q}, \ell, c)$ is a nice Σ -Prikry notion of forcing;
- $\mathbb{A}(\cdot,\cdot)$ is a functor that produces for every nice Σ-Prikry notion of forcing \mathbb{P} and every \mathbb{P} -name $z \in H_{\mu^+}$, a corresponding nice Σ-Prikry notion of forcing $(\mathbb{A}(\mathbb{P},z),\ell',c')$ that admits a forking projection to \mathbb{P} and satisfies some additional properties;
- $\blacktriangleright \mu^{<\mu} = \mu$ and $2^{\mu} = \mu^+$, so that we may fix a bookkeeping list $\langle z_{\alpha} \mid \alpha < \mu^+ \rangle$ of H_{μ^+} .

Then there exists a $<\mu$ -supported sequence $\langle (\mathbb{P}_{\alpha},\ell_{\alpha},c_{\alpha}) \mid \alpha \leq \mu^{+} \rangle$ of nice Σ -Prikry forcings such that \mathbb{P}_{1} is isomorphic to \mathbb{Q} , $\mathbb{P}_{\alpha+1}$ is isomorphic to $\mathbb{A}(\mathbb{P}_{\alpha},z_{\alpha})$ and, for every pair $\alpha \leq \beta < \mu^{+}$, $(\mathbb{P}_{\beta},\ell_{\beta},c_{\beta})$ forking projects onto $(\mathbb{P}_{\alpha},\ell_{\alpha},c_{\alpha})$ and $(\mathbb{P}_{\mu^{+}},\ell_{\mu^{+}})$ forking projects onto $(\mathbb{P}_{\beta},\ell_{\beta})$.

Let us iterate Σ -Prikry forcings

Let us assume throughout that $\mu^{<\mu} = \mu$.

Building block I

We are given $(\mathbb{Q}, \ell_{\mathbb{Q}}, c_{\mathbb{Q}})$ a Σ -Prikry forcing such that $\mathbb{1} \Vdash_{\mathbb{P}} \check{\mu} = \kappa^+$, $\mathbb{Q} \subseteq H_{\mu^+}$ and $\mathbb{1} \Vdash_{\mathbb{P}} "\kappa$ is singular".

Building block II

We are given a function $\psi \colon \mu^+ \to H_{\mu^+}$.

Note

The typical choice of ψ in applications are bookkeping functions: i.e., ψ is such that $|\psi^{-1}\{x\}|=\mu^+$, for each $x\in H_{\mu^+}$. For this one just need to add $|H_{\mu^+}|=\mu^+$ to the above assumptions.

Building block III

For every nice Σ -Prikry triple $(\mathbb{P}, \ell_{\mathbb{P}}, c_{\mathbb{P}})$, every $r^* \in P$, and every \mathbb{P} -name $z \in H_{\mu^+}$, we are given a Σ -Prikry triple $(\mathbb{A}, \ell_{\mathbb{A}}, c_{\mathbb{A}})$ such that:

 \bullet $(\mathbb{A}, \ell_{\mathbb{A}}, c_{\mathbb{A}})$ admits a forking projection to $(\mathbb{P}, \ell_{\mathbb{P}}, c_{\mathbb{P}})$ as witnessed by maps \pitchfork and π ;

Mixing property: for all $a \in A$, $m < \omega$, and $p' ≤^0 \pi(a)$, and for every function $g: W_m(p') \to A$ satisfying g(r) ⊆ a and $\pi(g(r)) = r$ for every $r ∈ W_m(p')$, there exists $b ⊆^0 a$ with $\pi(b) = p'$ such that $\pitchfork(b)(r) ⊆^0 g(r)$ for every $r ∈ W_m(p')$.

By virtue of a lemma concerning canonical forms we may further assume:

- each element of A is a pair (x,y) with $\pi(x,y)=x$;
 - 2 for every $a \in A$, $[\pi(a)]^{\mathbb{A}} = (\pi(a), \emptyset)$;
 - \bullet for every $p,q\in P$, if $c_{\mathbb{P}}(p)=c_{\mathbb{P}}(q)$, then $c_{\mathbb{A}}(\lceil p\rceil^{\mathbb{A}})=c_{\mathbb{A}}(\lceil q\rceil^{\mathbb{A}})$;

$<\mu$ -supported, μ^+ -iterations of Σ -Prikry forcing

Since $\mu^{<\mu} = \mu$,

- ► Fix e_{α} : $\alpha \to \mu$ an injection, for each $\alpha < \mu^+$;
- Let $\langle e^i \mid i < \mu \rangle$, $e^i \colon \mu^+ \to \mu$, be such that for each $e \colon C \to \mu$ with $C \in [\mu^+]^{<\mu}$ there is $i < \mu$ such that $e \subseteq e^i$ (Engelking-Karlowicz).

Notation

- For the ease of notation, let us write \emptyset rather than $\mathbb{1}_{\mathbb{O}}$.
- **3** For each $\gamma \leq \alpha \leq \mu^+$, p a γ -sequence and q an α -sequence,

$$p * q := \begin{cases} q(\beta), & \gamma \le \beta < \alpha; \\ p(\beta), & \text{otherwise.} \end{cases}$$

For each sequence p, $B_p := \{\beta + 1 \mid \beta \in \text{dom}(p) \& p(\beta) \neq \emptyset\}$.

We define our iteration by induction on $\alpha \leq \mu^+$.

- $\mathbb{P}_0 := (\{\emptyset\}, \leq_0)$ be the trivial forcing.
- ② $\mathbb{P}_1 := ({}^{\{\emptyset\}}Q, \leq_1)$ where $p \leq_1 q$ iff $p(0) \leq_\mathbb{Q} q(0)$, $\ell_1(p) := \ell_\mathbb{Q}(p(0))$ and $c_1(p) := c_\mathbb{Q}(p(0))$. Besides, $\pi_{1,0} : P_1 \to \{\emptyset\}$, $\pitchfork_{1,0} : P_1 \to \{\emptyset\}$ and $\pitchfork_{1,1} := \mathrm{id}$.

Successor stage $\alpha + 1$

Suppose $\langle (\mathbb{P}_{\beta}, \ell_{\beta}, c_{\beta}), \langle h_{\beta, \gamma}, \pi_{\beta, \gamma} \mid \gamma \leq \beta \leq \alpha \rangle \rangle$ was already defined.

- Suppose that $\psi(\alpha)=(\beta,r,\sigma)$ where $\beta<\alpha,r\in P_{\beta}$ and σ is a \mathbb{P}_{β} -name. Then appeal to Building Block III w.r.t. $r^{\star}:=r*\emptyset_{\alpha}, z:=\{(\tau^{\beta,\alpha},p*\emptyset_{\alpha})\mid (\tau,p)\in\sigma)\}$ to get $(\mathbb{A},\ell_{\mathbb{A}},c_{\mathbb{A}})$ a Σ -Prikry triple joint with two maps π and \pitchfork witnessing that $(\mathbb{A},\ell_{\mathbb{A}},c_{\mathbb{A}})$ forking projects onto $(\mathbb{P}_{\alpha},\ell_{\alpha},c_{\alpha})$.
- ▶ Otherwise, appeal to Building Block III w.r.t. $r^* := \emptyset_\alpha$ and $z := \emptyset$ and get the corresponding Σ-Prikry forcing joint with maps π and \pitchfork .

Successor stage $\alpha + 1$ (continuation)

Once $(\mathbb{A}, \ell_{\mathbb{A}}, c_{\mathbb{A}})$, π and \pitchfork are obtained, we define $(\mathbb{P}_{\alpha+1}, \ell_{\alpha+1}, c_{\alpha+1})$ and the maps $\langle \pitchfork_{\alpha+1,\beta}, \pi_{\alpha+1,\beta} \mid 1 \leq \beta \leq \alpha+1 \rangle$ as follows:

$$ightharpoonup P_{\alpha+1}:=\{x^\smallfrown\langle y\rangle\mid (x,y)\in A\}$$
 and

$$p \leq_{\alpha+1} q \iff (p \upharpoonright \alpha, p(\alpha)) \lhd (q \upharpoonright \alpha, q(\alpha)).$$

$$ightharpoonup c_{\alpha+1}(p) := c_{\mathbb{A}}(p \upharpoonright \alpha, p(\alpha)).$$

$$ightharpoonup \pitchfork_{\alpha+1,\alpha+1}:=\mathrm{id}$$
 and for each $\beta\leq\alpha$, $p\in P_{\alpha}$ and $r\in P_{\beta}$

$$\pitchfork_{\alpha+1,\beta}(p)(r) := x^{\hat{}}\langle y\rangle \text{ iff } \pitchfork(p \upharpoonright \alpha, p(\alpha))(\pitchfork_{\alpha,\beta}(p \upharpoonright \alpha)(r)) = (x,y)$$

Limit stage $0 < \alpha \le \mu^+$

Suppose $\langle (\mathbb{P}_{\beta}, \ell_{\beta}, c_{\beta}), \langle h_{\beta, \gamma}, \pi_{\beta, \gamma} \mid \gamma \leq \beta < \alpha \rangle \rangle$ was already defined. We define

- $(\mathbb{P}_{\alpha}, \ell_{\alpha}, c_{\alpha})$ and the maps $\langle h_{\alpha,\beta}, \pi_{\alpha,\beta} \mid 1 \leq \beta \leq \alpha \rangle$ as follows: • Let P_{α} be the set of all α -sequences p such that, for each $\beta < \alpha$, $p \upharpoonright \beta \in P_{\beta}$ and
 - Let P_{α} be the set of all α -sequences p such that, for each $\beta < \alpha$, $p \mid \beta \in P_{\beta}$ $|B_p| < \mu$. Define $p \leq_{\alpha} q$ in the natural way.

 - $\blacktriangleright \ \pitchfork_{\alpha,\alpha} := \mathrm{id} \ \mathrm{and} \ \mathrm{for} \ \mathrm{each} \ \beta < \alpha, \ p \in P_{\alpha} \ \mathrm{and} \ r \in P_{\beta},$

$$\pitchfork_{\alpha,\beta}(p)(r) := \bigcup_{\beta < \delta < \alpha} \pitchfork_{\delta,\beta}(p \upharpoonright \delta)(r).$$

Idea: Guarantee that $\pitchfork_{\alpha,\beta}(p)(r) \upharpoonright \delta = \pitchfork_{\delta,\gamma}(p \upharpoonright \delta)(r)$ as we want to preserve the existence of forking projections.

Limit stage $0 < \alpha \le \mu^+$ (continuation)

For the definition of c_{α} we distinguish two cases: either $\alpha < \mu^+$ or $\alpha = \mu^+$.

- For the definition of c_{α} we distinguish two cases: either $\alpha < \mu^+$ or $\alpha = \mu^+$.

 If $\alpha < \mu^+$, define $c_{\alpha}(p) := \{(e_{\alpha}(\gamma), c_{\gamma}(p \upharpoonright \gamma)) \mid \gamma \in B_p\}$.
 - ▶ Otherwise, for each $p \in P_{\mu^+}$ set $C := \operatorname{cl}(B_p)$ and, for each $\gamma \in C$, set

Otherwise, for each
$$p \in P_{\mu^+}$$
 set $C := \operatorname{cl}(B_p)$ and, for each $\gamma \in C$, set

$$f_p(\gamma) := (e_{\gamma}[C \cap \gamma], c_{\gamma}(p \upharpoonright \gamma)).$$

Finally, define $c_{\mu^+}(p) := \min\{i < \mu \mid f_p \subseteq e^i\}.$

The idea when $0 < \alpha < \mu^+$ is limit

We want to devise c_{α} in such a way that Clause (8) of forking projections is true for each $1 \leq \gamma \leq \alpha$. In particular this will show that c_{α} witnesses the μ^+ -Linked₀-property of \mathbb{P}_{α} .

Observe that if $c_{\alpha}(p)=c_{\alpha}(q)$ then $B:=B_p=B_q$ and

$$(\star)$$
 $c_{\gamma}(p \upharpoonright \gamma) = c_{\gamma}(q \upharpoonright \gamma)$, for each $\gamma \in B$.

The moral is that, if we have forking projections between all the stages $\beta \leq \gamma < \alpha$, the coordinates $\gamma \in \alpha \setminus B$ are "not important", i.e. (\star) yields $c_{\gamma}(p \upharpoonright \gamma) = c_{\gamma}(q \upharpoonright \gamma)$, for each $\gamma \leq \alpha$.

Once this is proved, it is not hard to check that $\pitchfork_{\alpha,\gamma}(p)(r) = \pitchfork_{\alpha,\gamma}(q)(r)$, for each $r \in (P_\gamma)_0^{p \upharpoonright \gamma} \cap (P_\gamma)_0^{q \upharpoonright \gamma}$.

Sketch: c_{μ^+} witnesses the μ^+ -Linked₀-property

The caveat now is that there are no forking projections between $(\mathbb{P}_{\mu^+}, \ell_{\mu^+}, c_{\mu^+})$ and $(\mathbb{P}_{\alpha}, \ell_{\alpha}, c_{\alpha})$, for $\alpha < \mu^+$. We will be assuming that $(\mathbb{P}_{\alpha}, \ell_{\alpha}, c_{\alpha})$ is Σ -Prikry, for each $\alpha < \mu^+$.

We devise c_{μ^+} in such a way that, if $c_{\mu^+}(p)=c_{\mu^+}(q)$ and $C:=\mathrm{cl}(B_p)$ and $C_q:=\mathrm{cl}(B_q)$, then both C_p and C_q can be represented as follows:

Let us now show how to use this to define $r \in (P_{\mu^+})_0^p \cap (P_{\mu^+})_0^q$.

Set $C:=\mathrm{cl}(B_p)$ and $C_q:=\mathrm{cl}(B_q)$ and assume $c_{\mu^+}(p)=c_{\mu^+}(q)$. For simplicity, say n=2.

$$C_p$$
 R
 δ
 δ_1
 $\delta_3 = \max(C_p \cup C_q)$
 C_q
 δ
 δ_2

- Since $c_{\mu^+}(p) = c_{\mu^+}(q)$ entails $f_p \upharpoonright R = f_q \upharpoonright R$, and $\delta \in R$, it follows that $f_p(\delta) = f_q(\delta)$. In particular, $c_\delta(p \upharpoonright \delta) = c_\delta(q \upharpoonright \delta)$. Thus, there is $r \in (P_\delta)_0^{p \upharpoonright \delta} \cap (P_\delta)_0^{q \upharpoonright \delta}$. Set $r_0 := r$.
- Now, we begin "copying" the information:

 - $r^{\star} := r_3 * \emptyset_{\mu^+}.$

By construction it is not hard to check that $r^* \in (P_{\mu^+})_0^p \cap (P_{\mu^+})_0^q$.

Sketch: for each $1 \leq \alpha \leq \mu^+$, \mathbb{P}_{α} has the CPP

To enlighten the presentation let us prove the result for a graded poset $(\mathbb{A},\ell_{\mathbb{A}})$ which forking projects onto $(\mathbb{P},\ell_{\mathbb{P}})$ and $(\mathbb{P},\ell_{\mathbb{P}},c_{\mathbb{P}})$ is Σ -Prikry. Denote by π and \pitchfork the corresponding maps witnessing this.

The main two ingredients are:

- Mixing lemma.
- ② CPP of ℙ.

Sketch of proof

Let $a \in A$ and $D \subseteq A$ be a 0-open set. We want to find $b \leq^0 a$ and $n < \omega$ such that either $A_n^b \subseteq D$ or $A_n^b \cap D = \emptyset$. Set $D_a := D \downarrow a$, $U := \pi[D_a]$ and $p := \pi(a)$.

Using elementary properties of \pitchfork one can show that U is a 0-open set in P. Thus, by the CPP for P, there is $q \leq^0 p$ and $n < \omega$ such that, either $P_n^q \subseteq U$, or $P_n^q \cap U = \emptyset$.

Sketch of proof (continuation)

 $A_n^b \subseteq D$, as desired.

 $\blacktriangleright \blacktriangleright P_n^q \cap U = \emptyset$: Set $b := \pitchfork(a)(q)$. It is routine to check that $A_n^b \cap D = \emptyset$, so we are done.

 $ightharpoonup P_n^q \subseteq U$: Let $g: W_n(q) \to D_q$ be such that $\pi(q(r)) = r$. Now use the mixing lemma

to find $b \leq^0 a$ with $\pi(b) = q$ such that $\pitchfork(b)(r) \leq^0 q(r)$. By 0-openes of D_a . $\pitchfork(b)[W_n(q)] \subseteq D_a$ and this is the same as $W_n(b) \subseteq D_a$. Again, by the 0-openess of D_a ,

The papers

- Sigma-Prikry forcing I: The axioms, Submitted to Canadian Journal of Mathematics (2019).
- Sigma-Prikry forcing II: Iteration Scheme, Submitted to Journal of Mathematical Logic (2019).

Find the papers and the slides of Lecture #1 here! http://assafrinot.com/t/sigma-prikry