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The subject matter of this talk is Prikry-type forcings

» Main role: Generally devised to change cofinalities and blow up the
power set of a singular cardinal

> Due to foundational reasons this needs Very Large Cardinals (Jensen)

» Have found several connections/applications in central areas of Set
Theory
» The Singular Cardinals Problem (Prikry, Magidor, Gitik...)
> Identity crises phenomena (Magidor, Apter...)
» Inner Model Theory (Mitchell, Cummings & Schimerling...)



Motivating goal

Assume that (k, | n < w) is an increasing sequence of supercompact
cardinals. Then there is a cofinality-preserving extension where

Q Kk = sup,..,, Kn is a strong limit cardinal;
Q@ —-SCH,;
© Refl(<w, k™) holds.

» Around the same time, it was also proved by Ben-Neria-Hayut-Unger
and soon after by Gitik.

» Their proof avoids iterated forcing and extends to uncountable
cofinality. The novelty in our approach is the iteration scheme for
2-Prikry forcings.

» Announced by A. Sharon in 2005.



Prikry-type forcings

The first representative of this family is the so-called Prikry forcing:
» Let k be a measurable cardinal.

» Let U be a non-principal, normal and x-complete ultrafilter over it
(measure).

Definition (Prikry 1970)

Prikry forcing 1Py, is the poset whose conditions are pairs (s, A) where

@ s € [k]<¥ strictly increasing;

Q A €U with max(s) < min(A4).
We will write (s, A) < (¢, B) iff s end-extends ¢, s\t C B and A C B.
We consider an additional ordering <*C< defined as (s, A) <* (¢, B) iff
(s,A) < (t,B) and s = t.




» For each n < w, let IP,, be the subposet of IP whose conditions (s, A)
have |s| = n joint with the trivial condition 1.

Properties of IP

@ [P is k-centered, hence cardinals >x™ are preserved:;
@ [P forces cof (k) = w.

© IP does not add bounded subsets to . In particular, cardinals <k are
preserved.

(1) and (2) of above are easy to prove but (3) is not so immediate:
@ for each n < w, (P, <) is k-closed;
Q@ [P satisfies the Prikry property.



Prikry property

For each p € IP and each sentence ¢ in the language of forcing, there is
q <* p such that ¢ decides .

In other words, the set D, = {p € P | p || ¢} is <*-dense.

Lemma (Prikry)

Prikry forcing has the Prikry property.

Theorem (Prikry)

If there is a measurable cardinal then there is a cardinal-preserving generic
extension where the measurable becomes a singular strong limit cardinal of
countable cofinality.




Some Examples

o

©0000O0O0

Prikry forcing (Prikry).

Supercompact Prikry forcing (Magidor).

Gitik-Sharon forcing.

Magidor forcing.

Radin forcing (Radin & Woodin)

Diagonal Supercompact Magidor forcing (Sinapova)
Extender Based Prikry forcing (EBPF) (Gitik & Magidor)

Extender Based Radin forcing (Merimovich)




The aim of our project

Our project has two goals:
@ Provide an abstract framework which allows a systematic study of
Prikry-type forcings

@ Devise a viable iteration scheme for these forcings



The X-Prikry framework

What characterize Prikry-type posets?

@ There is always involved a notion of length.
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Prikry forcing IP,, is k-closed)
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What characterizes a Prikry-type forcing?
© There is always involved a notion of length /.
@ For all length n, P, := {p | £(p) = n} is “closed enough”.
© There is a notion of minimal extension
@ Decision by pure extensions (e.g. the Prikry property).

We want to be able to iterate, so we will in addition require a quite
prevalent feature

(*) P has some good chain condition



>-Prikry forcings

Definition (Graded poset)
We say that (IP,¢) is a graded poset if P = (P, <) is a poset, £ : P — w
is a surjection, and, for all p € P, the following are true:

» For every g < p, ¢(q) > £(p);

» There exists ¢ < p with ¢(q) = ¢(p) + 1.

Notation

| A\

For a graded poset as above we write
Q P,:={peP|Llp)=n}
@ Pr:={qe P|q<p&tlg) = £p) +n}.
For ease of notation we sometimes write ¢ <" p rather than ¢ € P?.




The 2-Prikry framework

@ P = (P,<) is a notion of forcing with a greatest element 1;

@ X = (kp | n < w) is a non-decreasing sequence of regular uncountable
cardinals with x := sup,, ., kn;

@ v is a cardinal such that 1 lkp i = x™;

Q@ ¢: P — wandc: P — pu are functions;

Definition (X-Prikry forcing)

We say that (IP, ¢, ¢) is X-Prikry iff all of the following hold:
@ (IP,¢) is a graded poset;
Q Foralln <w, P, := (P, U{1}, <) is ky-directed-closed;
© For all p,q € P, if c(p) = c(q), then P N Py is non-empty;

Q Forallpe P, n,m <wand ¢ <"t™ p, the set {r <" p|q <™ r}
contains a <-largest condition m(p,q). In the particular case that
m = 0, we write w(p, q) instead of m(p,q);




Definition (2-Prikry forcing)
We say that (IP, 4, ¢) is -Prikry iff all of the following hold:
@ (IP,¢) is a graded poset;
Q Foralln <w, P, := (P, U{1},<) is ky-directed-closed;
© Forall p,q € P, if ¢(p) = ¢(q), then Py N P{ is non-empty;
Q Forallpe P, n,m <wand g <""™ p, the set {r <" p|q <™ r}
contains a <-largest condition m(p,q). In the particular case that
m = 0, we write w(p, q) instead of m(p, q);
@ For all p € P, the set W(p) := {w(p,q) | ¢ < p} has size <y;
@ Forall p’ <pin P, ¢ — w(p,q) forms an order-preserving map from
W (p') to W(p);
@ Suppose that U C P is a 0-open set, i.e., 7 € U iff Py C U. Then,
for all p € P and n < w, there is ¢ € P}, such that, either
PINU =0or PICU.




Some clarifications

How m(p, q) and w(p, q) look like?
For simplicity let us assume that IP is Prikry forcing. Say p = (s, A) and
q=(s"{(a,8),B). Let m < {(q) — £(p).
» Intuitively, w(p, q) is the <-greatest interpolation between p and ¢
with length £(q). In this case, w(p,q) = (s (o, B), A\ B+ 1).
» In general, m(p,q) is the <-greatest interpolation between p and ¢
with length ¢(¢) —m. In this case, 1(p,q) = (s"(a), A\ a+1) and
2(p,q) = (s,A) =p.

For each n < w and p € P, we write W,,(p) := {w(p,q) | ¢ <" p}. Hence,
W(p) = Un<w Wa(p)-




Novelties of the 2-Prikry framework

pT-Linkedg-property

For all p,q € P, if ¢c(p) = c(q), then P)' N P{ is non-empty.

Complete Prikry Property

Suppose that U C P is a 0-open set, i.e., 7 € U iff Py C U.
Then, for all p € P and n < w, there is ¢ € P?, such that, either
PINU =0or PICU.

» The first one is a strong form of y*-2-Linkedness, hence a
strengthening of the u™-cc.

» The second one is inspired by the Complete Ramsey Property.
Captures two features of Prikry-type forcings: the Prikry Property
and the Strong Prikry Property (see next slide)

» Both are crucial to define viable iterations of X-Prikry forcings



CPP yiels the SPP and the PP

Proposition
Let IP be some X-Prikry forcing. Then the following are true:
@ [P has the Prikry property.

@ [P has the Strong Prikry property; namely, for each dense open set
D C P and each p € P, there is ¢ <° p and n < w such that
P11 C D, for each m > n.

For the proof we use the key concept of 0-open coloring:

Definition

Let (IP,4,c) be a X-Prikry triple. A 0-open coloring d: P — 6 is a map
such that for each pair p’ < p of conditions in P, d(p) € {0,d(p')}.
We say that H C P is a set of indiscernibles for d if for each p,q € H,
d(p) = d(q), provided £(p) = {(q).




CPP yiels the SPP and the PP

Lemma

Let (IP, ¢, c) be a X-Prikry triple. For each p € P, n > 2 and each 0-open
coloring d : P — n, there is ¢ <° p such that the set of conditions of P
below ¢ is a set of indiscernibles for d.

| A\

The CPP yields the PP

Let p € P and ¢ a sentence in the language of forcing. Defined: P — 3
as
1, ifrlkp g;
d(r):=<2, ifrlp —yp;

0, otherwise.

Appeal to the above lemma to find ¢ <° p such that P9 is a set of
indescirnibles for d. It is not hard to check that ¢ already decides ¢.




CPP yiels the SPP and the PP

Let (IP,¢,c) be a X-Prikry triple. For each p € P, n > 2 and each 0-open
coloring d : P — n, there is ¢ <° p such that the set of conditions of P
below ¢ is a set of indiscernibles for d.

The CPP yields the SPP

Let p € P and D be an open dense set. Define d: P — 2 as d(r) := 1 iff
r € D. Appealing to the lemma we get ¢ <° p such that P9 is a set of
indescirnibles for d. Since D is dense, there is n < w and r <™ ¢ such that
r € D. By definition of d, d(r) = 1, hence P4 C D. Finally the opennes
of D yields the desired result; that is, P C D, for each m > n.




Other properties of X-Prikry forcings

Proposition

Let IP := (P, <) be some X-Prikry forcing and p € P. Then, the following
are true:

@ P does not add bounded subsets of «;

@ For each v > & regular, and each p € P, if p IFp cof(v) < k then
there is p’ < p such that [W(p')| > v.

© Assume 1 IFp “k is singular”. Then, u = ™ iff |[W(p)| < , for each
p € P.

Q For each n < w, W,,(p) is a maximal antichain below p.

@ Any two compatible elements of W (p) are comparable. Thus,
(W(p),>) is a tree (the p-tree)

Q ¢ | W(p) is injective.




Some examples: Prikry forcing

Definition (Prikry 1970)

Prikry forcing IP is the poset whose conditions are pairs (s, A) where
Q s € [k]<Y strictly increasing;
Q@ A €U with max(s) < min(A).

(s, A) < (¢, B) iff s end-extends ¢, s\t C B and A C B.

Prikry forcing is 2-Prikry

@ X is the constant w-sequence with value x and ;i = kT
Q@ (s, A) := |s;
Q c(s,A) :=s;




Some examples: Gitik-Sharon forcing

Let (k, | n < w) be an increasing sequence of regular cardinals. Suppose
that U is a supercompact measure on Py, ("), and let U, be its
projection onto P, (k).

Definition (Gitik & Sharon 2008 )

Conditions in IP are sequences p = (zf, ...,z ;AP AP | ...) such that

the following holds: !

Q z; € Pyy(ki).

Q z; < w1 (i-e. otp(w;) < otp(wit1 N ko))

Q A €Uy and {x € Ay | 2b_| <z} C Ay.
The order is the usual: we extend the stems by picking elements from the
measure one sets, and then shrink the measure one sets.




Some examples: Gitik-Sharon forcing

Definition (Gitik & Sharon 2008 )
Conditions in IP are sequences p = (zf),...,zh ;AP AP | ...) such that
the following holds:

Q z; € 'P,;O(Hi).

Q z; < xiq1 (i.e. otp(z;) < otp(zi+1 NKo)).

Q Ay €Uy and {x € Ay | 2P _| <z} C Ay.
The order is the usual: we extend the stems by picking elements from the
measure one sets, and then shrink the measure one sets.

GS-poset is X-Prikry
@ X is the constant w-sequence with value xo and = (sup, ., kn)™".
@ ((p) i= (e, ")

Q c(p) :=(ab,...,xn_1).

+|
N,




Some examples: The Extender-Based Prikry forcing

» (K | n < w) be a strictly increasing sequence of cardinals;
P K= SUp,., kn, pi= kKT and X := 2K,
> u<F = pand XA =\,

» for each n < w, Ky, carries a (K, A + 1)-extender E,,.

In particular, for each n < w, we are assuming that there is an elementary
embedding j,, : V — M,with crit(j) = k, such that M,, is a transitive
class, " M,, C M, Vy11 C M, and j, (k) > A.

Definition

For each n < w, and each oo < A, define E,, o := {X C K, | a € jn(X)}.
For each a, B < A write o <pg, B iff « < 3 and there is mg ot Ky — Kp,
such that j,(75,0)(8) = a.




For n < w, Qyg is defined as follows:

(0)n, Qno := (Qno, <no), where elements of Q0 are triples
p = (aP, AP, fP) meeting the following requirements:

© fPis a function from some x € [A]< to Ky

@ aP € [\]<"", and aP contains a <p, -maximal element, which hereafter
is denoted by mc(aP);

© dom(fP)Na? = 0;

Q AP e En,mc(ap);

@ if <aisapairina, forall v € A mp(ar)s(V) < Tme(ar)a(V);

0 ifa,B,7 € awith y<p, S <g, o, then, forall v e Wmc(ap)a“A,

Tay (V) = T3y (Tap(V)).
The ordering <, is defined as follows: (a?, AP, fP) <,o (b7, B%, g7)
iff the following are satisfied:
(i) /7244
(i) aP D b4,
(iii) 7anu:(al")mc(bq)“Ap C BY.




Definition

For n < w, Q,,1 is defined as follows:

(1), Qn1 := (Qn1,<n1), where Qn1 := U{%kn | © € [\]=*} and
<p1:= 2.

Essentially Q1 is Cohen forcing Add(x™, ).

For n < w, Q,, is defined as

(2)n Qn := (Qno U Qn1,<n)-

The ordering <,, is defined as follows: for each p,q € @, p <, q iff
Q either p,q € Q,,; for some i € 2 and p <,;; q, or
@ p € Qni, ¢ € Qno and, for some v € A, p <p1 ¢ (v), where

qm<’/> = fiu {(Bvﬂmc(a‘l),ﬁ(y)) | B e aq}.




Some examples: The Extender-Based Prikry forcing

Definition
The Extender Based Prikry Forcing is the poset IP := (P, <) defined by
the following clauses:

» Conditions in P are sequences p = (p, | n < w) € [],, .., @n-

» For all p,g € P, p < qiff p, <, g, for every n < w.

» Forall p € P:

» There is n < w such that p, € Qno;
» For every n < w, if p, € Qno, then p,+1 € Qno and aPr C aPntl.

The Extender-Based Prikry forcing is X-Prikry

+|
A\

Q@ X:= (k,|n <w) and p:= (sup,, kn)
Q /(p) :=min{n < w | pn € Qno}-
© c is more elaborated than in the previous cases.




The function ¢ for the EBPF

Since we are assuming p” = p and 2# = ), let us fix a sequence
(€' | i < p) of functions from X to p with the property that, for every
function e : z — p with 2 € [A\]S", there exists i < u with e C €.
Definition
For every f € Upcw Qn1, let i(f) :=min{i < u | f Ce'}.
For every p = (a, A, f) € U,<o, @no, let i(p) be the least i < u such that:
» for all a € a, e'(a) = 0;
» for all a € dom(f), e'(a) = f(a) + 1.
Finally, for every condition p = (p, | n < w) in P, let

c(p) == L(p)"(i(pn) | n < w).




The function ¢ for the EBPF

The Extender Based Prikry forcing has the p"-Linkedo-property

Let p, ¢ be two conditions in the EBPF with ¢(p) = ¢(q). The goal is to
show that p and ¢ are compatible as witnessed by a 0-extension of both
conditions. More precisely, we want to prove P} N P # 0.

Set i be this common value of the ¢ function. By definition, p and ¢ have
the same length, say ¢. Now let n > ¢. To prove P} N P{ # 0 it suffices to
check that a Ndom(f?) = a? Ndom(fP) = (). Let us just check that

aP Ndom(f7) = () as the other equality can be proved similarly.

Indeed, since ¢(p) = i it follows that e’ | a2 = 0. On the other hand, as
c(q) =1, €' | dom(f?) # 0. Both equalities combined finally yield
ab Ndom(f%) =0, as desired.




@ Supercompact Prikry forcing (Magidor);
@ AIM forcing (Cummings et al.);

V.

Other candidates to be X-Prikry

© Tree Prikry forcing;

@ Strongly Compact Gitik-Sharon forcing;

© Extender Based Prikry forcing with a single extender;




An interlude on iterations of
forcing



Some iteration theorems

(I) The <Xg-support iteration of ccc forcing is also ccc = Consistency
of FA,x, (ccc) = M A (Solovay-Tennembaum)

Observation

The above result does not extend to larger supports. Namely, even under
the CH, there are countable support iterations of Ny-cc + Nq-closed
forcing which are not Ny-cc (Mitchell).




(I) The <Xg-support iteration of ccc forcing is also ccc = Consistency
of FA,x, (ccc) = M A (Solovay-Tennembaum).

(I1) Let T be the family of well-met, X;-linked and R;-closed forcings.
Under the CH, the <N;-support iteration of forcings in I" is No-cc =
Consistency of FA,x, (I') := BA (Baumgartner)



(I) The <Xg-support iteration of ccc forcing is also ccc = Consistency
of FA,x,(ccc) = M A (Solovay-Tennembaum).

(I1) Let I' be the family of well-met, N;-linked and N;-closed forcings.
Under the CH, the <N;-support iteration of forcings in T" is Ny-cc =
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forcings with exact upper bounds. Under the CH, the <Xj-support

iteration of members of I' is Ny-stationary-cc = Consistency of
FA,x, (T') (Shelah)



(I) The <Xg-support iteration of ccc forcing is also ccc = Consistency
of FA,x,(ccc) = M A (Solovay-Tennembaum).

(I1) Let T be the family of well-met, X;-linked and R;-closed forcings.
Under the CH, the <N;-support iteration of forcings in I" is Ny-cc =
Consistency of FA,x, (I') := BA (Baumgartner)

(I11) Let I' be the family of well-met, Ny-stationary-cc and N;-closed
forcings with exact upper bounds. Under the CH, the <Xj-support

iteration of members of I' is Ny-stationary-cc = Consistency of
FA,x, (T') (Shelah)

(IV) Let T be the family of well-met, xT-stationary-cc, x-closed and
countably parallel closed forcing. Under k<" = &, the iteration of
<rk-supported iteration of members of I is kT -stationary-cc
Consistency of FAo«(I') (Cummings et. al)



Solve problems about singular cardinals and their successors.

Strategy

Find an analogous iteration theorem for x being a successor of a singular
cardinal.

To be continued in the next lecture



