
ABOUT PARAMETERS ON THE SIRD MODEL

MIGUEL MORENO

1. Introduction

In this notebook we use Python to simulate a model of epidemiology, the model
that we will use is a simplification of the SIRD model with vaccine. The goal of this
notebook is to show how small changes in the parameters may produce big changes
in the simulation.

This notebook is to show an example of how mathematics is applied to other
fields. It is not a notebook about epidemiology.

2. Acknowledgment

This notebook is based on the implementation of the SIR model made by Fran-
cisco Camacho in Platzi.

3. The Model

We will work with a SIRD model with vaccination. We will use the following
functions in our model:

∙ 𝑆(𝑡) the susceptible people at the time 𝑡;
∙ 𝐼(𝑡) the infected people at the time 𝑡;
∙ 𝑅(𝑡) the recovered people at the time 𝑡;
∙ 𝐷(𝑡) the dead people at the time 𝑡;
∙ 𝑉 (𝑡) the vaccinated people at the time 𝑡.

The model will have the following parameters:

∙ 𝑁 the size of the population;
∙ 𝛽 the infection rate;
∙ 𝜇 the recovery rate;
∙ 𝛿 the mortality rate;
∙ 𝜈 the vaccinating rate.

The model is described by the following equations:

∙ The variation of 𝑆(𝑡) is given by the contact between infected and suscep-
tible people, and the vaccinated people:

𝑑𝑆

𝑑𝑡
= −𝛽

𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜈𝑆(𝑡).

∙ The variation of 𝐼(𝑡) is given by the contact between infected and suscep-
tible people, the recovered people, and the death people:

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝐼(𝑡) − 𝛿𝐼(𝑡).
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∙ The variation of 𝑅(𝑡) is given by 𝜇:

𝑑𝑅

𝑑𝑡
= 𝜇𝐼(𝑡).

∙ The variation of 𝐷(𝑡) is given by 𝛿:

𝑑𝐷

𝑑𝑡
= 𝛿𝐼(𝑡).

∙ The variation of 𝑉 (𝑡) is given by 𝜈:

𝑑𝑉

𝑑𝑡
= 𝜈𝑆(𝑡).

We will study the variation of the parameters of the models. The aim with this
study is to understand that the information such as mortality rate of an infectious
illness may not be enough to understand the possible damage that the illness may
cause.

4. A not deadly virus

Let us start by studying the parameters of a not deadly virus. In this case we can
assume 𝛿 = 𝜈 = 0. With these assumptions we can only focus on two parameters
𝛽 and 𝜇 and the relation between them.

In this case, the variation of infected people is given by

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝐼(𝑡).

Therefore, whether 𝐼(𝑡) decreases or increases depends on the whether 𝑑𝐼
𝑑𝑡 is positive,

negative or zero. So the infected people will start reducing when

𝛽
𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝐼(𝑡) < 0

since 𝐼(0) > 0 (otherwise the virus cannot infect new people), this is equivalent to

(1) 𝛽
𝑆(𝑡)

𝑁
< 𝜇.

Therefore 𝐼(𝑡) reach the biggest value when 𝑆(𝑡) = 𝜇𝑁
𝛽 . Let us take a close look to

this with a population of 𝑁 = 1000 and an initial infected individual 𝐼(0) = 1.
In Figure 1 (A) we can see the simulation of the model for the case when 𝛽 = 𝜇,

for graphical reasons we set 𝛽 = 0.3.
In this case, when 𝑡 = 2 the inequality (1) holds. We can see in Figure 1 (A)

that the number of infected people stays very close to one. Therefore, there are
very few infected people at the same time after 𝑡 = 2. This does not mean that new
infections are not appearing, what it is telling us is that people are getting infected
and recovery at a very similar rate as we can see with the blue and green line. It is
natural to ask whether the number of infected people will drop to zero before the
susceptible number reach zero. To answer this question, we will increase the time
of the simulation (see Figure 1 (B)).

As we can see in Figure 1 (B), the number of recovered people became constant
with the time before the susceptible amount reach zero. It is clear that the bigger
𝜇
𝛽 is, the faster the recovered people became constant.

In Figure 1 (C) we can see the simulation the case when 𝜇
𝛽 < 1. For graphical

reasons we set 𝛽 = 0.3 and 𝜇 = 0.05.
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It is clear from Figure 1 (C) that the smaller 𝜇
𝛽 is, then is the bigger the maximum

value of 𝐼(𝑡).
Now, by reducing 𝛽 we simulate the reduction on the contacts between infected

and susceptible individuals. In Figure 1 (D) we can see the simulation when 𝛽 is
reduced to 𝛽 = 0.2.

(a) 𝜇 = 𝛽 = 0.3 (b) 𝜇 = 𝛽 = 0.3 time increased

(c) 𝜇 = 0.05 and 𝛽 = 0.3 (d) 𝜇 = 0.05 and 𝛽 = 0.2

Figure 1. Simulation of a not deadly virus

As we have seen in this section, when the virus is not deadly, the value of 𝜇
𝛽

is the information that determines the highest amount of infected individuals and
when the infection of new individuals stops.

From now on we will assume that the values of 𝛽 and 𝜇 are given by 0.3 and 0.05
respectively, and 𝛽 can be reduced to 0.2 to simulate a reduction in the contacts
between infected and susceptibles individuals.

5. A deadly virus without vaccine

In this section we will study the parameters of a deadly virus, i.e. 𝛿 ̸= 0. We will
assume there is no vaccine for the virus, see next section for 𝜈 ̸= 0. In this section
we will focus on the variation of 𝛿, at first sight we could think that the higher is
𝛿, the more dangerous is the virus, i.e. the the amount of dead individuals will be
higher at the end of the simulation.
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The first thing we noticed is that the inequality (1) does not apply for the
purposes of this section. Let us determine the equivalent of this inequality for this
section.

In this case, the variation of infected people is given by

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝐼(𝑡) − 𝛿𝐼(𝑡).

Therefore, whether 𝐼(𝑡) decreases or increases depends on the whether 𝑑𝐼
𝑑𝑡 is positive,

negative or zero. So the infected people will start reducing when

𝛽
𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝐼(𝑡) − 𝛿𝐼(𝑡) < 0

since 𝐼(𝑡) > 0, this is equivalent to

(2) 𝛽
𝑆(𝑡)

𝑁
< 𝜇 + 𝛿.

Therefore 𝐼(𝑡) reach the biggest value when 𝑆(𝑡) = 𝑁(𝜇+𝛿)
𝛽 . Let us take a close look

to this with a population of 𝑁 = 1000 and an initial infected individual 𝐼(0) = 1.
In Figure 2 (A) we can see the simulation of the model for a mortality rate of

0.075.
From Figure 2 (A) we can see that at the end of the simulation the amount

of dead individuals is over 500. At first sight we can think that if we double 𝛿,
then the amount of dead individuals would increase. On the other hand, from the
inequality (2) we could conclude that if 𝛿 is double, then the amount of infected
individuals starts reducing at an smaller 𝑡. This observation can be explain by the
fact that at a higher 𝛿 infected individuals have less time to infect others. On the
other hand a smaller 𝛿 implies infected individuals have more time to infect other,
but at the same time more time to increase the possibility to recover.

As we can see, it is not clear how the amount of dead individuals changes depend-
ing on the variation of 𝛿. To get a better understanding of this relation, let us run
a simulation with 𝛿 = 0.04 and 𝛿 = 0.15 (see Figure 2 (B) and (C), respectively).

As we can see in Figure 2 (B) and (C), in both cases the amount of dead indi-
viduals at the end of the simulation is smaller than when 𝛿 = 0.75. In both cases
the amount of dead individuals at the end of the simulation is very similar. One
of the differences that we can see from Figure 2 (B) and (C) is that when 𝛿 = 0.04
more people get recovered than when 𝛿 = 0.15. This means that more individuals
got infected when 𝛿 = 0.04 and at the same time a similar amount of deaths. We
conclude that it cannot be determined which case is more dangerous.

Let us assume that the value of 𝛿 is 0.075. In Figure 2 (D) we can see the
simulation when the contacts are reduced, i.e. 𝛽 = 0.2.

As we have seen in this section, when the virus is deadly without a vaccine,
the value of 𝜇+𝛿

𝛽 is the information that determines the highest amount of infected

individuals and when the infection of new individuals stops. But not much can be
deduced from the variation of 𝛿.

From now on we will assume that the values of 𝛿 is 0.075.

6. A deadly virus with vaccination

In this section we will study the last parameter of our model, i.e. the vaccination
rate 𝜈 ̸= 0. Even though a vaccination campaign is more complicated than only one
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(a) 𝛿 = 0.075 (b) 𝛿 = 0.04

(c) 𝛿 = 0.15 (d) 𝛿 = 0.075 and 𝛽 = 0.2

Figure 2. Simulation of a deadly virus without vaccine

parameter (effectiveness of the vaccine, speed of the vaccination campaign, etc), we
will run a simplification of this by only having one parameter.

The first thing we noticed is that the inequality (2) applies for the purposes of
this section. This is because in our model the variation of the infected individuals
is not explicitly related to the vaccination rate, the relation between the infected
individuals and the vaccination rate comes from the variation of the susceptible
individuals. Therefore we will focus on the variation of the susceptible individuals.

In this case, the variation of susceptible people is given by

(3)
𝑑𝑆

𝑑𝑡
= −𝛽

𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜈𝑆(𝑡)

It is clear from (3) that 𝑑𝑆
𝑑𝑡 is always negative unless 𝑆(𝑡) is zero, this can be easily

seen from the fact that

−𝛽
𝑆(𝑡)𝐼(𝑡)

𝑁
is never positive and only zero when 𝑆(𝑡) or 𝐼(𝑡) is zero and

−𝜈𝑆(𝑡)

is never positive and only zero when 𝑆(𝑡). So 𝑆(𝑡) will decrease until it reach zero,
it will decrease faster than in the previous case and as a consequence the maximum
of 𝐼(𝑡) will be smaller than in the previous case.
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Let us recall the graphic when 𝛽 = 0.3, 𝜇 = 0.05, 𝛿 = 0.075, and 𝜈 = 0 (see
Figure 3 (A)). In Figure 3 (B) we can see the simulation when we set 𝜈 = 0.01.

As we can see, the reduction on the amount of dead individuals and the infected
population is notorious when 𝜈 = 0.01. Even though 𝜈 is does not appear as a
parameter in (2), a small variation on 𝜈 implies a notorious change on the maximum
of 𝐼(𝑡) and more important on the maximum of 𝐷(𝑡). Let us finish by the simulation
when the contacts are reduced, i.e. 𝛽 = 0.2 and the vaccination rate is 0.01 (see
Figure 3 (C)).

(a) Recall 𝜈 = 0 (b) 𝜈 = 0.01

(c) 𝜈 = 0.01 and 𝛽 = 0.2

Figure 3. Simulation of a deadly virus with vaccination

After running simulations with different values on the parameters, we have seen
that small changes on the parameters of the model may imply drastically changes
on the simulation. Therefore, it is not possible to make trustable conclusion based
on the variation of one parameter. In this notebook we have seen the importance
of having the right values of the parameters and trustable data.

Notice that this is a simple model in which many other parameters have been
excluded, for example the natality rate, a segmentation of the population by age,
etc.

7. Appendix: The code

The implementation of the model for the simulation was the following.
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import numpy as np
import matplotlib.pylab as plt

def rk4vec(t0, y0, dt, f):
k1 = f(t0, y0)
k2 = f(t0 + dt/2.0, y0 + dt * k1 / 2.0)
k3 = f(t0 + dt/2.0, y0 + dt * k2 / 2.0)
k4 = f(t0 + dt, y0 + dt * k3)
y = y0 + (dt/6.0)*(k1 + 2.0*k2 + 2.0*k3 + k4)
return y

class SIRDV model():

def init (self, init condition, tmin = 0., tmax = 50., n = 10000, **params):

self.tmin = tmin
self.tmax = tmax
self.n = n
self.t = np.linspace(self.tmin, self.tmax, self.n)
self.dt = self.t[1] - self.t[0]
self.S = np.zeros([self.n])
self.I = np.zeros([self.n])
self.R = np.zeros([self.n])
self.D = np.zeros([self.n])
self.V = np.zeros([self.n])
self.set params(**params)
self.init condition = init condition

def set params(self, beta, mu, delta, nu, max population):

self.beta = beta
self.mu = mu
self.delta = delta
self.nu = nu
self.max population = max population

def func(self, t, u):

self.uprime = np.zeros like(u)
self.uprime[0] = -self.beta*u[0]*u[1]/max population-self.nu*u[0]
self.uprime[1] = self.beta*u[0]*u[1]/max population-self.mu*u[1]-self.delta*u[1]
self.uprime[2] = self.mu*u[1]
self.uprime[3] = self.delta*u[1]
self.uprime[4] = self.nu*u[1]
return self.uprime

def run solver(self):

self.u0 = np.array(self.init condition)
self.u1 = np.zeros like(self.u0)
for i in range(self.n):
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self.S[i] = self.u0[0]
self.I[i] = self.u0[1]
self.R[i] = self.u0[2]
self.D[i] = self.u0[3]
self.V[i] = self.u0[4]
self.u1 = rk4vec(self.t[i], self.u0, self.dt, self.func)
self.u0 = np.copy(self.u1)

Github:Miguelwan
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