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Abstract. We study the 𝜅-Borel-reducibility of isomorphism relations of com-

plete first order theories by using coloured trees. Under some cardinality as-
sumptions, we show the following: For all theories T and T’, if T is classifiable

and T’ is unsuperstable, then the isomorphism of models of T’ is strictly above

the isomorphism of models of T with respect to 𝜅-Borel-reducibility.

1. Introduction

The interaction between Generalized Descriptive Set Theory (GDST) and Clas-
sification theory has been one of the biggest motivation to study the Borel reducibil-
ity in the Generalized Baire spaces. One of the main questions is to determined
if there is a counterpart of Shelah’s Main Gap Theorem in the Generalized Baire
Spaces (provable in ZFC). In [9] Mangraviti and Motto Ros study this for classifi-
able shallow theories. In [6] Hyttinen, Weinstein (né Kulikov)1, and Moreno showed
the consistency of a counterpart of Shelah’s Main Gap Theorem in the Borel re-
ducibility hierarchy of the isomorphism relations (see preliminaries), indeed it can
be forced.

Fact 1.1 (Hyttinen-Kulikov-Moreno, [6] Theorem 7). Suppose that 𝜅 = 𝜅<𝜅 = 𝜆+,
2𝜆 > 2𝜔 and 𝜆<𝜆 = 𝜆. There is a forcing notion P which forces the following
statement:

“If 𝑇1 is a classifiable theory and 𝑇2 is not, then the isomorphism relation of 𝑇1

is Borel reducible to the isomorphism relation of 𝑇2, and there are 2𝜅 equivalence
relations strictly between them”

In the same article the authors proved the following in ZFC.

Fact 1.2 (Hyttinen-Kulikov-Moreno, [6] Corollary 2). Suppose that 𝜅 = 𝜅<𝜅 = 𝜆+

and 𝜆𝜔 = 𝜆. If 𝑇1 is classifiable and 𝑇2 is stable unsuperstable, then the isomor-
phism relation of 𝑇1 is Borel reducible to the isomorphism relation of 𝑇2.

In this article we will extend Fact 1.2 to unsuperstable theories, i.e. the unstable
case.

Theorem A. Suppose that 𝜅 = 𝜅<𝜅 = 𝜆+ is such that 𝜆𝜔 = 𝜆. If 𝑇1 is classifiable
and 𝑇2 is unsuperstable, then the isomorphism relation of 𝑇1 is Borel reducible to
the isomorphism relation of 𝑇2.

To prove Theorem A we will use the coloured trees tools developed in [5] by Hyt-
tinen and Weinstein (né Kulikov), and the tools used by Shelah in [12], to construct
models of unsuperstable theories. In [5] Hyttinen and Weinstein (né Kulikov) used
the coloured trees to construct models of an already fixed stable unsuperstable the-
ory in the context of the Generalized Baire spaces. In [12] Shelah used ordered trees
with 𝜔 + 1 levels to construct non-isomorphic models of unsuperstable theories.

The objective of Hyttinen and Weinstein (né Kulikov) was to use elements of
𝜅𝜅 to construct models of the theory 𝑇𝜔+𝜔, which is a stable unsuperstable theory.
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The difficulties with this construction appear when we want to apply it to unstable
theories. Hyttinen and Weinstein (né Kulikov) constructed coloured trees for all
the elements of 𝜅𝜅, such that the classes of the isomorphism of coloured trees
is characterized by the classes of the equivalence modulo non-stationary. This
is relevant when we construct a Borel reduction. In [2], similar trees were used
to construct models of stable unsuperstable theories. In [2] the authors used the
isolation notion 𝐹 𝑓

𝜔 (see Chapter 4 [13]), which is an isolation notion stable theories.
This is a limitation for unstable theories.

On the other hand the objective of Shelah was to use stationary sets to construct
as many models as possible for unsuperstable theories. Even though for each unsu-
perstable theory, Shelah constructs 2𝜅 a models, this construction does not define
a Borel reduction. The problem comes when the ordered trees are constructed.

In Section 3 we will combiane Hyttinen-Kulikov’s construction with Shela’s con-
truction. We use coloured trees to construct ordered trees, by doing this we ensure
that the construction of the models will define a continuous reduction. To con-
struct the ordered trees from coloured trees we will use similar ideas to ones used
by Abraham in [1] to construct a rigid Aronszajn tree.

In [4] Fernandes, Moreno, and Rinot showed that the isomorphism relation of
unsuperstable theories can be forced to be analytically complete for 𝜅 a successor
cardinal. We will extend this result to inaccessible cardinals.

Theorem B. Suppose that 𝜅 = 𝜅<𝜅 is an inaccessible cardinal. There exists a < 𝜅-
closed 𝜅+-cc forcing extension in which: If 𝑇 is unsuperstable, then the isomorphism
relation of 𝑇 is analytically complete.

1.1. Organization of this paper. In Section 2 we recall the notion of ordered
trees of Shelah, [12], and the notion of a (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠)-nice linear order.
The notion of colorable orders is introduced and its properties are studied. The
notion of colorable linear orders is introduced to construct ordered trees in Section 3.
In this section we prove the existence of a (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠)-nice 𝜅-colorable
linear order, which is crucial for constructing ordered trees from the coloured trees
of Hyttinen-Kulikov, [5].

In Section 3 we recall the notion of coloured trees of Hyttinen-Kulikov, [5], and
use a (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠)-nice 𝜅-colorable linear order to construct an ordered
coloured tree 𝐴𝑓 , an ordered coloured tree is both, an ordered tree as in [12] and a
coloured tree as in [5]. We prove that 𝑓 =𝛽

𝜔 𝑔 holds if and only if 𝐴𝑓 ∼= 𝐴𝑔.
In Section 4 we use the ordered coloured trees to construct generalized Ehrenfeucht-

Mostowski models. In this section we prove Theorem A and Theorem B.

1.2. Preliminaries. During this paper we will work under the general assumption
that 𝜅 is a regular uncountable cardinal that satisfies 𝜅 = 𝜅<𝜅 and for all 𝛾 <
𝜅, 𝛾𝜔 < 𝜅. We will work only with first-order countable complete theories in a
countable language, unless something else is stated.

Let us recall some definitions and results on Generalized Descriptive Set Theory
(from now on GDST), for more on GDST see [2]. We will only review the definitions
and results that are relevant for the article.

The generalized Baire space is the set 𝜅𝜅 endowed with the bounded topology,
in this topology the basic open sets are of the form

[𝜁] = {𝜂 ∈ 𝜅𝜅 | 𝜁 ⊆ 𝜂}

where 𝜁 ∈ 𝜅<𝜅. The collection of 𝜅-Borel subsets of 𝜅𝜅 is the smallest set that
contains the basic open sets and is closed under union and intersection both of
length 𝜅. A 𝜅-Borel set is any set of this collection.
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A function 𝑓 : 𝜅𝜅 → 𝜅𝜅 is 𝜅-Borel, if for every open set 𝐴 ⊆ 𝜅𝜅 the inverse image
𝑓−1[𝐴] is a 𝜅-Borel subset of 𝑋. Let 𝐸1 and 𝐸2 be equivalence relations on 𝜅𝜅.
We say that 𝐸1 is 𝜅-Borel reducible to 𝐸2 if there is a 𝜅-Borel function 𝑓 : 𝜅𝜅 → 𝜅𝜅

that satisfies

(𝜂, 𝜉) ∈ 𝐸1 ⇐⇒ (𝑓(𝜂), 𝑓(𝜉)) ∈ 𝐸2.

We call 𝑓 a reduction of 𝐸1 to 𝐸2 and we denote this by 𝐸1 →˓𝐵 𝐸2. We will use
this notation instead of (≤𝐵), because we will deal with the equivalence relations

=𝛽
𝑆 (Definition 1.3) and the notation could become heavy for the reader. In case 𝑓

is continuous, we say that 𝐸1 is continuously reducible to 𝐸2 and we denote it by
𝐸1 →˓𝑐 𝐸2.

A subset 𝑋 ⊆ 𝜅𝜅 is a Σ1
1(𝜅) set of 𝜅𝜅 if there is a closed set 𝑌 ⊆ 𝜅𝜅 × 𝜅𝜅 such

that the projection pr(𝑌 ) := {𝑥 ∈ 𝜅𝜅 | ∃𝑦 ∈ 𝜅𝜅, (𝑥, 𝑦) ∈ 𝑌 } is equal to 𝑋. These
definitions also extend to the product space 𝜅𝜅 × 𝜅𝜅. An equivalence relation 𝐸
is Σ1

1-complete if 𝐸 is a Σ1
1(𝜅) set and every Σ1

1(𝜅) equivalence relation 𝑅 is Borel
reducible to 𝐸.

The generalized Cantor space is the subspace 2𝜅. Since in this article we will
only work with 𝜅-Borel and Σ1

1(𝜅) sets, we will omit 𝜅, and refer to them as Borel
and Σ1

1.

Definition 1.3. Given 𝑆 ⊆ 𝜅 and 𝛽 ≤ 𝜅, we define the equivalence relation

=𝛽
𝑆 ⊆ 𝛽𝜅 × 𝛽𝜅, as follows

𝜂 =𝛽
𝑆 𝜉 ⇐⇒ {𝛼 < 𝜅 | 𝜂(𝛼) ̸= 𝜉(𝛼)} ∩ 𝑆 is non-stationary.

We will denote by =𝛽
𝜇 the relation =𝛽

𝑆 when 𝑆 = {𝛼 < 𝜅 | 𝑐𝑓(𝛼) = 𝜇}. Let us

denote by 𝐶𝑈𝐵 the club filter on 𝜅 and =𝛽
𝐶𝑈𝐵 the relation =𝛽

𝑆 when 𝑆 = 𝜅.

Definition 1.4. Let ℒ = {𝑄𝑚 | 𝑚 ∈ 𝜔} be a countable relational language. Fix
a bijection 𝜋 between 𝜅<𝜔 and 𝜅. For every 𝜂 ∈ 𝜅𝜅 define the structure 𝒜𝜂 with
domain 𝜅 as follows. For every tuple (𝑎1, 𝑎2, . . . , 𝑎𝑛) in 𝜅𝑛

(𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝑄𝒜𝜂
𝑚 ⇔ 𝑄𝑚 has arity 𝑛 and 𝜂(𝜋(𝑚, 𝑎1, 𝑎2, . . . , 𝑎𝑛)) > 0.

Definition 1.5. Assuming 𝑇 is a first-order theory in a relational countable lan-
guage, we define the isomorphism relation, ∼=𝑇 ⊆ 𝜅𝜅 × 𝜅𝜅, as the relation

{(𝜂, 𝜉)|(𝒜𝜂 |= 𝑇,𝒜𝜉 |= 𝑇,𝒜𝜂
∼= 𝒜𝜉) or (𝒜𝜂 ̸|= 𝑇,𝒜𝜉 ̸|= 𝑇 )}

2. Ordered trees

2.1. Background. In [12], Shelah used ordered trees to construct non-isomorphic
models. That construction was focused on obtaining non-isomorphic models. This
is the reason why we have to modify the trees to adapt the construction to the
generalized Cantor space and such that for all 𝑓, 𝑔 ∈ 2𝜅, 𝑓 and 𝑔 are =2

𝜔-equivalent
if and only if the constructed models are isomorphic. Let us start by reviewing the
trees used by Shelah.

Let 𝛾 be a countable ordinal, we will denote by 𝐾𝛾
𝑡𝑟 the class of ordered trees

with 𝛾 + 1 levels.

Definition 2.1. Let 𝐾𝛾
𝑡𝑟 be the class of models (𝐴,≺, (𝑃𝑛)𝑛≤𝛾 , <, ℎ), where:

(1) there is a linear order (𝐼,<𝐼) such that 𝐴 ⊆ 𝐼≤𝛾 ;
(2) 𝐴 is closed under initial segment;
(3) ≺ is the initial segment relation;
(4) ℎ(𝜂, 𝜉) is the maximal common initial segment of 𝜂 and 𝜉;
(5) let 𝑙𝑔(𝜂) be the length of 𝜂 (i.e. the domain of 𝜂) and 𝑃𝑛 = {𝜂 ∈ 𝐴 |

𝑙𝑔(𝜂) = 𝑛} for 𝑛 ≤ 𝛾;
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(6) for every 𝜂 ∈ 𝐴 define 𝑆𝑢𝑐𝐴(𝜂) as {𝜉 ∈ 𝐴 | 𝜂 ≺ 𝜉 ∧ 𝑙𝑔(𝜉) = 𝑙𝑔(𝜂) + 1}.
< is

⋃︀
𝜂∈𝐴(< �𝑆𝑢𝑐𝐴(𝜂)), i.e. if 𝜉 < 𝜁, then there is 𝜂 ∈ 𝐴 such that

𝜉, 𝜁 ∈ 𝑆𝑢𝑐𝐴(𝜂);
(7) for every 𝜂 ∈ 𝐴∖𝑃𝛾 , < �𝑆𝑢𝑐𝐴(𝜂) is the induced linear order from 𝐼, i.e.

𝜂⌢⟨𝑥⟩ < 𝜂⌢⟨𝑦⟩ ⇔ 𝑥 <𝐼 𝑦;

(8) If 𝜂 and 𝜉 have no immediate predecessor and {𝜁 ∈ 𝐴 | 𝜁 ≺ 𝜂} = {𝜁 ∈ 𝐴 |
𝜁 ≺ 𝜉}, then 𝜂 = 𝜉.

To construct the models of unsuperstable theories, Shelah study the types of the
ordered trees. To do this study, the notions of 𝜅-representation and 𝐶𝑈𝐵-invariant
are crucial.

Definition 2.2 (𝜅-representation). Let 𝐴 be an arbitrary set of size at most 𝜅.
The sequence A = ⟨𝐴𝛼 | 𝛼 < 𝜅⟩ is a 𝜅-representation of 𝐴, if ⟨𝐴𝛼 | 𝛼 < 𝜅⟩ is
an increasing continuous sequence of subsets of 𝐴, for all 𝛼 < 𝜅, |𝐴𝛼| < 𝜅, and⋃︀

𝛼<𝜅 𝐴𝛼 = 𝐴.

Definition 2.3 (𝐶𝑈𝐵-invariant). A function ℋ is 𝐶𝑈𝐵-invariant if the following
holds:

∙ The domain of ℋ is the class of 𝜅-representations of the models of some
model class 𝐾, where 𝐾 contains only models of size at most 𝜅.

∙ If I1 and I2 are 𝜅-representations of ℐ1, ℐ2 ∈ 𝐾, respectively, and ℐ1 ∼= ℐ2,
then ℋ(I1) =2

𝐶𝑈𝐵 ℋ(I2).

Let us define for every ℋ 𝐶𝑈𝐵-invariant and 𝐴 ∈ 𝐾𝜔
𝑡𝑟, ℋ(𝐴) as the =2

𝐶𝑈𝐵-
equivalence class of any A, 𝜅-representation, i.e. [ℋ(A)]=2

𝐶𝑈𝐵
.

We will use some properties of formulas and types. For any ℒ-structure 𝒜 we
denote by at the set of atomic formulas of ℒ and by bs the set of basic formulas
of ℒ (atomic formulas and negation of atomic formulas). For all ℒ-structures 𝒜,
𝑎 ∈ 𝒜, and 𝐵 ⊆ 𝒜 we define

𝑡𝑝𝑏𝑠(𝑎,𝐵,𝒜) = {𝜙(𝑥, 𝑏) | 𝒜 |= 𝜙(𝑎, 𝑏), 𝜙 ∈ 𝑏𝑠, 𝑏 ∈ 𝐵}.

In the same way 𝑡𝑝𝑎𝑡(𝑎,𝐵,𝒜) is defined.

Definition 2.4. Let 𝒜 be a model, 𝑎 ∈ 𝒜, 𝐵,𝐷 ⊆ 𝒜. We say that 𝑡𝑝𝑏𝑠(𝑎,𝐵,𝒜)
(bs,bs)-splits over 𝐷 ⊆ 𝒜 if there are 𝑏1, 𝑏2 ∈ 𝐵 such that 𝑡𝑝𝑏𝑠(𝑏1, 𝐷,𝒜) = 𝑡𝑝𝑏𝑠(𝑏2, 𝐷,𝒜)
but 𝑡𝑝𝑏𝑠(𝑎

⌢𝑏1, 𝐷,𝒜) ̸= 𝑡𝑝𝑏𝑠(𝑎
⌢𝑏2, 𝐷,𝒜).

Definition 2.5. Let |𝐴| ≤ 𝜅, for a 𝜅-representation A of 𝐴. Define 𝑆𝑝𝑏𝑠(A) as

𝑆𝑝𝑏𝑠(A) = {𝛿 < 𝜅 | 𝛿 a limit ordinal, ∃𝑎 ∈ 𝐴 [∀𝛽 < 𝛿 (𝑡𝑝𝑏𝑠(𝑎,𝐴𝛿, 𝐴) (bs,bs)-splits over 𝐴𝛽)]}.

Remark 2.6. The function 𝑆𝑝𝑏𝑠 is 𝐶𝑈𝐵-invariant, this was stated in [[12] Remark
1.10A] and proved in [[8] Lemma 8.6 and page 232 above Definition 8.8]. This is
generally true under the assumption that for all 𝛾 < 𝜅, 𝛾𝜔 < 𝜅, which is one of our
cardinal assumptions on 𝜅 above.

Definition 2.7. ∙ Let 𝒜 be a model of size at most 𝜅. We say that 𝐴 is
(𝜅, 𝑏𝑠, 𝑏𝑠)-nice if 𝑆𝑝𝑏𝑠(A) =2

𝐶𝑈𝐵 ∅.
∙ 𝐴 ∈ 𝐾𝜔

𝑡𝑟 of size at most 𝜅, is locally (𝜅, 𝑏𝑠, 𝑏𝑠)-nice if for every 𝜂 ∈ 𝐴∖𝑃𝐴
𝜔 ,

(𝑆𝑢𝑐𝐴(𝜂), <) is (𝜅, 𝑏𝑠, 𝑏𝑠)-nice, 𝑆𝑢𝑐𝐴(𝜂) is infinite, and there is 𝜉 ∈ 𝑃𝐴
𝜔 such

that 𝜂 ≺ 𝜉.
∙ 𝐴 ∈ 𝐾𝜔

𝑡𝑟 is (< 𝜅, 𝑏𝑠)-stable if for every 𝐵 ⊆ 𝐴 of size smaller than 𝜅,

𝜅 > |{𝑡𝑝𝑏𝑠(𝑎,𝐵,𝐴) | 𝑎 ∈ 𝐴}|.
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In [12], Shelah used (< 𝜅, 𝑏𝑠)-stable locally (𝜅, 𝑏𝑠, 𝑏𝑠)-nice ordered trees to con-
struct the models of unsuperstable theories. In [8] Hyttinen and Tuuri give a very
good example of a (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠)-nice linear order, which is crucial for
the construction of ordered trees.

Definition 2.8 (Hyttinen-Tuuri, [8] Definition3.2). Let ℛ be the set of functions
𝑓 : 𝜔 → 𝜅 for which {𝑛 ∈ 𝜔 | 𝑓(𝑛) ̸= 0} is finite. If 𝑓, 𝑔 ∈ ℛ, then 𝑓 < 𝑔 if and only
if 𝑓(𝑛) < 𝑔(𝑛), where 𝑛 is the least number such that 𝑓(𝑛) ̸= 𝑔(𝑛).

Fact 2.9 (Hyttinen-Tuuri, [8], Lemma 8.17). ∙ The linear order ℛ is (< 𝜅, 𝑏𝑠)-
stable and (𝜅, 𝑏𝑠, 𝑏𝑠)-nice.

∙ There is a 𝜅-representation ⟨𝑅𝛼 | 𝛼 < 𝜅⟩ and a club 𝐶 ⊆ 𝜅 such that for
all 𝛿 ∈ 𝐶 and 𝜈 ∈ ℛ there is 𝛽 < 𝛿 which satisfies the following:

∀𝜎 ∈ 𝑅𝛿[𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝑅𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈)]

2.2. Colorable orders. As it was mentioned in the previous subsection, the linear
order plays a crucial role when we construct the ordered trees and therefore the
models. For our purpose, construct ordered trees from coloured trees, we will need
to choose the right linear order. The linear order that we will use are the colorable
linear orders.

Definition 2.10. Let 𝐼 be a linear order of size 𝜅. We say that 𝐼 is 𝜅-colorable
if there is a function 𝐹 : 𝐼 → 𝜅 such that for all 𝐵 ⊆ 𝐼, |𝐵| < 𝜅, 𝑏 ∈ 𝐼∖𝐵,
and 𝑝 = 𝑡𝑝𝑏𝑠(𝑏, 𝐵, 𝐼) such that the following hold: For all 𝛼 ∈ 𝜅, |{𝑎 ∈ 𝐼 | 𝑎 |=
𝑝 & 𝐹 (𝑎) = 𝛼}| = 𝜅.

We say that 𝐹 is a 𝜅-coloration of 𝐼, if 𝐹 witnesses that I is a 𝜅-colorable linear
order.

Notice that 𝐼 is a 𝜅-colorable order if every type over a small set is realizable
if and only if it is realizable by 𝜅 many elements. Under the assumption 𝜅<𝜅 = 𝜅
the saturated model of DLO of size 𝜅 is 𝜅-colorable but it is not (< 𝜅, 𝑏𝑠)-stable
(DLO is unstable). Clearly 𝜅-colorable orders make us think of saturation. The
interesting 𝜅-colorable orders are those in which not all the types over small sets
are realizable.

Although the saturated model of DLO of size 𝜅 (assuming it exists due to the
cardinal assumptions) is 𝜅-colorable, we cannot use it for our purpose. We need a
(< 𝜅, 𝑏𝑠)-stable linear order. We will construct a 𝜅-colorable linear order that is
(< 𝜅, 𝑏𝑠)-stable, therefore it is not 𝜅-saturated (i.e. there are types over small sets
that are not realized).

We will modify the order of Definition 2.8 to construct a (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠)-
nice 𝜅-colorable linear order.

Definition 2.11. Let Q be the linear order of the rational numbers. Let 𝜅×Q be
ordered by the lexicographic order, 𝐼0 be the set of functions 𝑓 : 𝜔 → 𝜅 × Q such
that 𝑓(𝑛) = (𝑓1(𝑛), 𝑓2(𝑛)), for which {𝑛 ∈ 𝜔 | 𝑓1(𝑛) ̸= 0} is finite. If 𝑓, 𝑔 ∈ 𝐼0, then
𝑓 < 𝑔 if and only if 𝑓(𝑛) < 𝑔(𝑛), where 𝑛 is the least number such that 𝑓(𝑛) ̸= 𝑔(𝑛).

Lemma 2.12. There is a 𝜅-representation ⟨𝐼0𝛼 | 𝛼 < 𝜅⟩ such that for all limit
𝛿 < 𝜅 and 𝜈 ∈ 𝐼0 there is 𝛽 < 𝛿 which satisfies the following:

I.

∀𝜎 ∈ 𝐼0𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈)];

II. if 𝜈 /∈ 𝐼0𝛿 , then

∀𝜎 ∈ 𝐼0𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)].
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Proof. Let us start by defining the representation 𝜅-representation ⟨𝐼0𝛼 | 𝛼 < 𝜅⟩.
For all 𝛾 < 𝜅, let us define ⟨𝐼0𝛼 | 𝛼 < 𝜅⟩ by

𝐼0𝛾 = {𝜈 ∈ 𝐼0 | 𝜈1(𝑛) < 𝛾 for all 𝑛 < 𝜔}

it is clear that ⟨𝐼0𝛼 | 𝛼 < 𝜅⟩ is a 𝜅-representation.
Let us show item (2), i.e. 𝜈 /∈ 𝐼0𝛿 .
Suppose 𝜈 /∈ 𝐼0𝛿 . Let 𝛽 < 𝛿 be 𝑚𝑎𝑥{𝜈1(𝑖) | 𝑖 < 𝑛}, where 𝑛 is the least number

such that 𝜈1(𝑛) ≥ 𝛿.

Claim 2.12.1. 𝛽 is as wanted, i.e.

∀𝜎 ∈ 𝐼0𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)].

Proof. Let us suppose 𝜎 ∈ 𝐼0𝛿 is such that 𝜎 ≥ 𝜈. By the definition of 𝐼0, there is
𝑛 < 𝜔 such that 𝜎(𝑛) > 𝜈(𝑛) and 𝑛 is the minimum number such that 𝜎(𝑛) ̸= 𝜈(𝑛).
Since 𝜎 ∈ 𝐼0𝛿 , for all 𝑚 ≤ 𝑛, 𝜈1(𝑚) ≤ 𝜎1(𝑚) < 𝛿. Thus for all 𝑚 ≤ 𝑛, 𝜈1(𝑚) < 𝛽.

Let us divide the proof in two cases, 𝜎1(𝑛) = 𝜈1(𝑛) and 𝜎1(𝑛) > 𝜈1(𝑛).
Case 1. 𝜎1(𝑛) = 𝜈1(𝑛).
By the density of Q there is 𝑟 such that 𝜎2(𝑛) > 𝑟 > 𝜈2(𝑛). Let us define 𝜎′ by:

𝜎′(𝑚) =

⎧⎪⎨⎪⎩
𝜈(𝑚) if 𝑚 < 𝑛

(𝜈1(𝑛), 𝑟) if 𝑚 = 𝑛

0 otherwise.

Clearly 𝜎 > 𝜎′ > 𝜈. Since 𝜈1(𝑚) < 𝛽 for all 𝑚 ≤ 𝑛, 𝜎′ ∈ 𝐼0𝛽 .

Case 2. 𝜎1(𝑛) > 𝜈1(𝑛).
Let us define 𝜎′ by:

𝜎′(𝑚) =

⎧⎪⎨⎪⎩
𝜈(𝑚) if 𝑚 < 𝑛

(𝜈1(𝑛), 𝜈2(𝑛) + 1) if 𝑚 = 𝑛

0 otherwise.

Clearly 𝜎 > 𝜎′ > 𝜈. Since 𝜈1(𝑚) < 𝛽 for all 𝑚 ≤ 𝑛, 𝜎′ ∈ 𝐼0𝛽 . �

The previous claim proves item (2). From the proof of this claim we can see that
𝜎 ̸= 𝜎′.

To prove item (1), it is enough to prove the case 𝜈 ∈ 𝐼0.
Suppose 𝛿 < 𝜅 is a limit and 𝜈 ∈ 𝐼0𝛿 . It is clear that there is 𝛽 < 𝛿 such that

𝜈 ∈ 𝐼0𝛽 and the result follows.
�

Now let us used the order 𝐼0 to construct a (< 𝜅, 𝑏𝑠)-stable, (𝜅, 𝑏𝑠, 𝑏𝑠)-nice, and
𝜅-colorable linear order. Let us construct the linear orders ⟨𝐼𝑖 | 𝑖 < 𝜅⟩ by induction,
such that for all 𝑖 < 𝑗, 𝐼𝑖 ⊆ 𝐼𝑗 . Suppose 𝑖 < 𝜅 is such that 𝐼𝑖 has been defined.
For all 𝜈 ∈ 𝐼𝑖 let 𝜈𝑖+1 be such that

(1) 𝜈𝑖+1 |= 𝑡𝑝𝑏𝑠(𝜈, 𝐼
𝑖∖{𝜈}, 𝐼𝑖) ∪ {𝜈 > 𝑥}.

Notice that 𝜈𝑖+1 is a copy of 𝜈 that is smaller than 𝜈. Let 𝐼𝑖+1 = 𝐼𝑖 ∪ {𝜈𝑖+1 |
𝜈 ∈ 𝐼𝑖}.

Suppose 𝑖 < 𝜅 is a limit ordinal such that for all 𝑗 < 𝑖, 𝐼𝑗 has been defined, we
define 𝐼𝑖 by 𝐼𝑖 =

⋃︀
𝑗<𝑖 𝐼

𝑗 .

For all 𝑖 < 𝜅, let us define the 𝜅-representation ⟨𝐼𝑖𝛼 | 𝛼 < 𝜅⟩ by induction as
follows:

Suppose 𝑖 < 𝜅 is such that ⟨𝐼𝑖𝛼 | 𝛼 < 𝜅⟩ has been defined. For all 𝛼 < 𝜅,

𝐼𝑖+1
𝛼 = 𝐼𝑖𝛼 ∪ {𝜈𝑖+1 | 𝜈 ∈ 𝐼𝑖𝛼}.
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Suppose 𝑖 < 𝜅 is a limit ordinal such that for all 𝑗 < 𝑖, ⟨𝐼𝑗𝛼 | 𝛼 < 𝜅⟩ has been
defined, we define ⟨𝐼𝑖𝛼 | 𝛼 < 𝜅⟩ by

𝐼𝑖𝛼 =
⋃︁
𝑗<𝑖

𝐼𝑗𝛼.

Finally, let us define 𝐼 as

𝐼 =
⋃︁
𝑗<𝜅

𝐼𝑗

and the 𝜅-representation ⟨𝐼𝛼 | 𝛼 < 𝜅⟩ as

𝐼𝛼 = 𝐼𝛼𝛼 .

The linear order 𝐼 can be constructed in a non-inductive way. For every 𝜈 in 𝐼0

we define a linear order 𝐿𝜈 , and we use 𝐼0 to glue all these linear orders . To show
this construction in more detail (it will be useful in the proof of Lemma 2.23) and
be able to prove the main result of this section, we will need to develop the theory
of 𝐼.

Definition 2.13 (Generator). For all 𝜈 ∈ 𝐼 let us denote by 𝑜(𝜈) the least ordinal
𝛼 < 𝜅 such that 𝜈 ∈ 𝐼𝛼. Let us denote the generator of 𝜈 by 𝐺𝑒𝑛(𝜈) and define it
by induction as follows:

∙ 𝐺𝑒𝑛𝑖(𝜈) = ∅, for all 𝑖 < 𝑜(𝜈);
∙ 𝐺𝑒𝑛𝑖(𝜈) = {𝜈}, for 𝑖 = 𝑜(𝜈);
∙ for all 𝑖 ≥ 𝑜(𝜈),

𝐺𝑒𝑛𝑖+1(𝜈) = 𝐺𝑒𝑛𝑖(𝜈) ∪ {𝜎 ∈ 𝐼𝑖+1 | ∃𝜏 ∈ 𝐺𝑒𝑛𝑖(𝜈) [𝜏 𝑖+1 = 𝜎]};

∙ for all 𝑖 < 𝜅 limit,

𝐺𝑒𝑛𝑖(𝜈) =
⋃︁
𝑗<𝑖

𝐺𝑒𝑛𝑗(𝜈).

Finally, let

𝐺𝑒𝑛(𝜈) =
⋃︁
𝑖<𝜅

𝐺𝑒𝑛𝑖(𝜈).

Notice that 𝑜(𝜈) is a successor ordinal for all 𝜈. For clarity purposes let us fix
the following notation.

Notation. For all 𝑖 < 𝜅 and 𝜎 ∈ 𝐼𝑖, we have defined 𝜎𝑖+1 (see (1) above) as the
element generated by 𝜎 in 𝐼𝑖+1. We will also denote by (𝜎)𝑖+1 the element 𝜎𝑖+1.
This is to avoid a saturated notation, such as 𝜎′𝑖+1 when we work with the element
generated by 𝜎′ in 𝐼𝑖+1.

Fact 2.14. Suppose 𝜈 ∈ 𝐼. For all 𝜎 ∈ 𝐺𝑒𝑛(𝜈), 𝜎 ̸= 𝜈, there is 𝑛 < 𝜔 and a
sequence {𝜎𝑖}𝑖≤𝑛 such that the following holds:

∙ 𝜎0 = 𝜈;
∙ for all 𝑗 < 𝑛,

𝜎𝑗+1 = (𝜎𝑗)
𝑜(𝜎𝑗+1);

∙ 𝜎 = 𝜎𝑛 = (𝜎𝑛−1)𝑜(𝜎)

Proof. Let 𝜎 ̸= 𝜈 be such that 𝜎 ∈ 𝐺𝑒𝑛(𝜈). From Definition 2.13, we know that
𝜎 ∈ 𝐺𝑒𝑛𝑜(𝜎)(𝜈) and 𝐺𝑒𝑛𝑜(𝜎)(𝜈) ⊆ 𝐼𝑜(𝜎). Let us proceed by induction on 𝑜(𝜎).
Notice that 𝑜(𝜈) < 𝑜(𝜎), so the induction starts with the case 𝑜(𝜎) = 𝑜(𝜈) + 1.
Since 𝑜(𝜎) is a successor ordinal, the limit step of the induction is not required.

For the case 𝑜(𝜎) = 𝑜(𝜈)+1 it is easy to see from Definition 2.13 that 𝜎 = 𝜈𝑜(𝜈)+1.
Thus 𝜎0 = 𝜈 and 𝜎 = 𝜎1 = (𝜎0)𝑜(𝜎1) is the desire sequence, and 𝑛 = 1.

Let 𝑜(𝜎) = 𝑖 + 1 > 𝑜(𝜈) + 1 be such that for any 𝜏 ∈ 𝐺𝑒𝑛𝑖(𝜈) there are 𝑛 < 𝜔
and a sequence {𝜏𝑗}𝑗≤𝑛 such that the following holds:
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∙ 𝜏0 = 𝜈;
∙ for all 𝑗 < 𝑛,

𝜏𝑗+1 = (𝜏𝑗)
𝑜(𝜏𝑗+1);

∙ 𝜏 = 𝜏𝑛 = (𝜏𝑛−1)𝑜(𝜏).

We know that 𝜎 ∈ 𝐺𝑒𝑛𝑜(𝜎)(𝜈) = 𝐺𝑒𝑛𝑖+1(𝜈). By Definition 2.13, there is 𝜏 ∈
𝐺𝑒𝑛𝑖(𝜈) such that 𝜏 𝑖+1 = 𝜎. We conclude that 𝑛 + 1 < 𝜔 and the sequence
{𝜎𝑖}𝑖≤𝑛+1 defined by:

∙ 𝜎0 = 𝜏0 = 𝜈;
∙ for all 𝑗 ≤ 𝑛, 𝜎𝑗 = 𝜏𝑗 ;
∙ 𝜎 = 𝜎𝑛+1 = (𝜏𝑛)𝑖+1

are as wanted.
�

For every 𝜈 ∈ 𝐼, 𝜎 ∈ 𝐺𝑒𝑛(𝜈), and 𝜎 ̸= 𝜈, we call the sequence {𝜎𝑖}𝑖≤𝑛 of the
previous fact, the road from 𝜈 to 𝜎. It is clear that for all 𝜈 ∈ 𝐼∖𝐼0, there is 𝜈′ ∈ 𝐼0

such that 𝜈 ∈ 𝐺𝑒𝑛(𝜈′). Notice that for all 𝜈 ∈ 𝐼, if 𝜎 ∈ 𝐺𝑒𝑛(𝜈), then 𝜈 and 𝜎 have
the same type of basic formulas over 𝐼𝑜(𝜈)∖{𝜈}. Even more, if {𝜎𝑖}𝑖≤𝑛 is the road
from 𝜈 to 𝜎, then for all 𝑖 < 𝑛, 𝜎𝑖 and 𝜎 have the same type of basic formulas over
𝐼𝛾∖{𝜎𝑖}, where 𝑜(𝜎𝑖+1) = 𝛾 + 1. Let us define the road from 𝜈 to 𝜈 by {𝜈}.

It is clear that 𝐼 is the orders 𝐺𝑒𝑛(𝜈), for 𝜈 ∈ 𝐼0, glued by 𝐼0. Let us show the
non-inductive construction of 𝐼 in more detail.

Let us fix 𝜈 ∈ 𝐼0, 𝜎 ∈ 𝐺𝑒𝑛(𝜈), and let {𝜈𝑖}𝑖≤𝑛 be the road from 𝜈 to 𝜎. Let us
define 𝑓𝜎 : 𝜔 → 𝜅 by

𝑓𝜎(𝑖) =

{︃
𝑜(𝜈𝑖) if 𝑖 ≤ 𝑛

0 otherwise.

Notice that for all 𝜎, 𝜎′ ∈ 𝐺𝑒𝑛(𝜈), 𝑓𝜎 and 𝑓𝜎′ are equal if and only if the road from
𝜈 to 𝜎 is the same road from 𝜈 to 𝜎′. Thus 𝑓𝜎 = 𝑓𝜎′ if and only if 𝜎 = 𝜎′. Since
the road from 𝜈 to 𝜎 is finite, {𝑖 < 𝜔 | 𝑓𝜎(𝑖) ̸= 0} is finite.

Let 𝜎, 𝜎′ ∈ 𝐺𝑒𝑛(𝜈), and 𝑖 the least number such that 𝑓𝜎(𝑖) ̸= 𝑓𝜎′(𝑖). By the
construction of 𝐼, 𝜎 > 𝜎′ holds if and only if one of the following holds:

∙ 𝑓𝜎(𝑖) = 0,
∙ 𝑓𝜎(𝑖) > 𝑓𝜎′(𝑖).

From the previous discussion on the functions 𝑓𝜎, we can conclude that for all
𝜈, 𝜈′ ∈ 𝐼0, the orders and (𝐺𝑒𝑛(𝜈′), <) are isomorphic. Even more, this holds for
all 𝜎, 𝜎′ ∈ 𝐼.

Definition 2.15 (Generator Order). Let 𝐺𝑒𝑛 be the set of functions 𝑓 : 𝜔 → 𝜅
such that the following holds:

∙ 𝑓(0) = 0
∙ for all 𝑛 < 𝜔, 𝑓(𝑛) is either 0 or a successor ordinal;
∙ there is 𝑛 < 𝜔 such that for all 𝑚 > 𝑛, 𝑓(𝑚) = 0;
∙ 𝑓 � 𝑛 + 1∖{0} is strictly increasing.

Let 𝑓, 𝑔 ∈ 𝐺𝑒𝑛 and 𝑖 the least number such that 𝑓(𝑖) ̸= 𝑔(𝑖). Let us define <𝐺𝑒𝑛

as follows 𝑔 <𝐺𝑒𝑛 𝑓 if and only if one of the following holds:

∙ 𝑓(𝑖) = 0,
∙ 𝑔(𝑖) < 𝑓(𝑖).

From the discussion above, it is clear that for all 𝜈 ∈ 𝐼0, (𝐺𝑒𝑛(𝜈), <) and
𝐺𝑒𝑛,<𝐺𝑒𝑛 are isomorphic. Therefore 𝐼 is isomorphic to 𝐼0 × 𝐺𝑒𝑛 with the lex-
icographic order. Notice that 𝐼 is the orders 𝐿𝜈 = {𝜈} × 𝐺𝑒𝑛 glued by 𝐼0, in
particular 𝐿𝜈 and 𝐺𝑒𝑛(𝜈) are isomorphic.
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Now we proceed with the study of other properties of 𝐼. All the properties of 𝐼
that we will prove, can be proved using 𝐼0 × 𝐺𝑒𝑛. Never the less, we will use the
inductive construction in the proofs, to provide an intuitive point of view.

Fact 2.16. Let 𝑖, 𝛿, 𝜈 be such that 𝜈 ∈ 𝐼𝑖𝛿. Then for all 𝜎 ∈ 𝐺𝑒𝑛(𝜈), 𝜎 ∈ 𝐼
𝑜(𝜎)
𝛿 . In

particular for all 𝑗 < 𝜅

𝜎 /∈ 𝐼𝑗𝛿 ⇒ 𝜎 /∈ 𝐼𝑗 .

Proof. It follows from the construction of 𝐼𝑜(𝜎) and the 𝜅-representation ⟨𝐼𝑜(𝜎)𝛼 |
𝛼 < 𝜅⟩. �

Fact 2.17. For all 𝜈, 𝜎 ∈ 𝐼, 𝜎 ∈ 𝐺𝑒𝑛(𝜈), if 𝜎′ ∈ 𝐼 is such that 𝜈 ≥ 𝜎′ ≥ 𝜎, then
𝜎′ ∈ 𝐺𝑒𝑛(𝜈).

Proof. If 𝜈 = 𝜎, the result follows. Thus we only need to prove the case 𝜈 ̸= 𝜎. Let
us suppose towards contradiction that 𝜎′ /∈ 𝐺𝑒𝑛(𝜈).

Case 𝑜(𝜈) = 𝑜(𝜎′). Since 𝜈 and 𝜎 have the same type of basic formulas over

𝐼𝑜(𝜈)∖{𝜈}, 𝜈 and 𝜎 have the same type of basic formulas over 𝐼𝑜(𝜎
′)∖{𝜈}. Since

𝜈 ≥ 𝜎′ ≥ 𝜎, 𝜈 = 𝜎′ a contradiction.
Case 𝑜(𝜎′) < 𝑜(𝜈). Since 𝜈 ≥ 𝜎′, there is 𝜈′ ̸= 𝜎′ such that 𝜈′ > 𝜈, 𝑜(𝜈′) = 𝑜(𝜎′)

and 𝜈 ∈ 𝐺𝑒𝑛(𝜈′). Thus 𝜈′, 𝜎′, and 𝜎 satisfy 𝜈′ ≥ 𝜎′ ≥ 𝜎, 𝑜(𝜈′) = 𝑜(𝜎′), and
𝜎 ∈ 𝐺𝑒𝑛(𝜈′). The result follows from the previous case.

Case 𝑜(𝜈) < 𝑜(𝜎′). There is 𝜎0 ∈ 𝐼 such that 𝜎0 > 𝜎′, 𝑜(𝜎0) = 𝑜(𝜈) and
𝜎′ ∈ 𝐺𝑒𝑛(𝜎0). If 𝜈 ≥ 𝜎0 ≥ 𝜎, then the result follows from the previous cases.
Therefore, we are only missing the case 𝜎0 ≥ 𝜈 ≥ 𝜎′ ≥ 𝜎. Since 𝜎0 and 𝜎′ have

the same type of basic formulas of basic formulas over 𝐼𝑜(𝜎
0)∖{𝜎0}, 𝜎0 = 𝜈 and

𝜎′ ∈ 𝐺𝑒𝑛(𝜈) a contradiction. �

From the previous fact we can conclude that for all 𝜈, 𝜎 ∈ 𝐼 such that 𝜎 ∈ 𝐺𝑒𝑛(𝜈),
𝜈 and 𝜎 have the same type of basic formulas over 𝐼∖𝐺𝑒𝑛(𝜈).

Lemma 2.18. For all 𝑖 < 𝜅, 𝛿 < 𝜅 a limit ordinal, and 𝜈 ∈ 𝐼𝑖, there is 𝛽 < 𝛿 that
satisfies the following:

(2) ∀𝜎 ∈ 𝐼𝑖𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼𝑖𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈)].

In particular, for all 𝑖 < 𝜅, 𝛿 < 𝜅 a limit ordinal, and 𝜈 ∈ 𝐼𝑖∖𝐼𝑖𝛿, there is 𝛽 < 𝛿 that
satisfies the following:

(3) ∀𝜎 ∈ 𝐼𝑖𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)].

Proof. Notice that if 𝜈 ∈ 𝐼𝑖𝛿, then there is 𝜃 < 𝛿 such that 𝜈 ∈ 𝐼𝑖𝜃 and the result
follows for 𝛽 = 𝜃. So we only have to prove the lemma when 𝜈 ∈ 𝐼𝑖∖𝐼𝑖𝛿 (the second
part of the lemma).

We will proceed by induction over 𝑖. The case 𝑖 = 0 is precisely Lemma 2.12 II.
Let us suppose 𝑖 < 𝜅 is such that for all limit ordinal 𝛿 < 𝜅 and 𝜈 ∈ 𝐼𝑖∖𝐼𝑖𝛿, there is

𝛽 < 𝛿 that satisfies (3). Let 𝛿 < 𝜅 be a limit ordinal and 𝜈 ∈ 𝐼𝑖+1∖𝐼𝑖+1
𝛿 . We have

two cases, 𝜈 ∈ 𝐼𝑖 and 𝜈 ∈ 𝐼𝑖+1∖𝐼𝑖.
Case 𝜈 ∈ 𝐼𝑖. By the induction hypothesis, we know that there is 𝛽 < 𝛿 such

that (3) holds. Let us prove that this 𝛽 is the one we are looking for. Let 𝜎 ∈ 𝐼𝑖+1
𝛿

be such that 𝜎 > 𝜈. The subcase 𝜎 ∈ 𝐼𝑖𝛿 follows from the way 𝛽 was chosen.

Subcase 𝜎 ∈ 𝐼𝑖+1
𝛿 ∖𝐼𝑖𝛿. By the construction of 𝐼𝑖+1, there is 𝜎0 ∈ 𝐼𝑖𝛿 such that

𝜎 = (𝜎0)𝑖+1 (so 𝜎0 > 𝜎). Thus 𝜎0 > 𝜎 > 𝜈, and by the way 𝛽 was chosen, there is
𝜎′ ∈ 𝐼0𝛽 such that 𝜎0 > 𝜎′ > 𝜈. Since 𝜎0 and 𝜎 have the same type of basic formulas

over 𝐼𝑖∖{𝜎0}, 𝜎 > 𝜎′ > 𝜈 as we wanted.
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Case 𝜈 ∈ 𝐼𝑖+1∖𝐼𝑖. By the construction of 𝐼𝑖+1, there is 𝜈0 ∈ 𝐼𝑖 such that
(𝜈0)𝑖+1 = 𝜈. Since 𝜈 ∈ 𝐺𝑒𝑛(𝜈0) and 𝜈 ∈ 𝐼𝑖+1∖𝐼𝑖+1

𝛿 , by Fact 2.16 𝜈0 ∈ 𝐼𝑖∖𝐼𝑖𝛿. Thus,

by the previous case, there is 𝛽 < 𝛿 such that for all 𝜎 ∈ 𝐼𝑖+1
𝛿 :

𝜎 > 𝜈0 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈0).

Let us show that this 𝛽 is as wanted.

Claim 2.18.1. If 𝜎 ∈ 𝐼𝑖+1
𝛿 is such that 𝜎 > 𝜈, then 𝜎 > 𝜈0.

Proof. Let us suppose, towards contradiction, that there is 𝜎 ∈ 𝐼𝑖+1
𝛿 such that

𝜈0 > 𝜎 > 𝜈. Since 𝜈0 and 𝜈 have the same type of basic formulas over 𝐼𝑖∖{𝜈0},
𝜎 ∈ 𝐼𝑖+1

𝛿 ∖𝐼𝑖. Therefore, there is 𝜎0 ∈ 𝐼𝑖 such that (𝜎0)𝑖+1 = 𝜎. Since 𝜎 ∈ 𝐺𝑒𝑛(𝜎0)

and 𝜎 ∈ 𝐼𝑖+1
𝛿 , 𝜎0 ∈ 𝐼𝑖𝛿. We conclude that 𝜎0 ̸= 𝜈0. Finally, 𝜎0 and 𝜎 have

the same type of basic formulas over 𝐼𝑖∖{𝜎0}, which implies 𝜈0 > 𝜎0 > 𝜎 > 𝜈.
This contradicts the fact that 𝜈0 and 𝜈 have the same type of basic formulas over
𝐼𝑖∖{𝜈0}. �

From the previous claim, we know that for all 𝜎 ∈ 𝐼𝑖+1
𝛿 , 𝜎 > 𝜈 implies 𝜎 > 𝜈0.

By the way 𝛽 was chosen we conclude that for all 𝜎 ∈ 𝐼𝑖+1
𝛿 , 𝜎 > 𝜈 implies the

existence of 𝜎′ ∈ 𝐼0𝛽 such that 𝜎 > 𝜎′ > 𝜈0 > 𝜈, as we wanted.
Let us proceed with the limit case. Suppose 𝑖 < 𝜅 is a limit ordinal such that

for all 𝑗 < 𝑖, for all limit ordinal 𝛿 < 𝜅, and 𝜈 ∈ 𝐼𝑗∖𝐼𝑗𝛿 , there is 𝛽 < 𝛿 such that (3)
holds for 𝑗. Let 𝛿 < 𝜅 be a limit ordinal and 𝜈 ∈ 𝐼𝑖∖𝐼𝑖𝛿. Since 𝑖 is a limit, 𝑜(𝜈) < 𝑖,
by the induction hypothesis, there is 𝛽 such that (3) holds for 𝑜(𝜈).

Claim 2.18.2. 𝛽 is as wanted.

Proof. Let 𝜎 ∈ 𝐼𝑖𝛿 be such that 𝜎 > 𝜈.

Case 𝜎 ∈ 𝐼
𝑜(𝜈)
𝛿 . This case follows from the way 𝛽 was chosen.

Case 𝜎 ∈ 𝐼𝑖𝛿∖𝐼
𝑜(𝜈)
𝛿 . There is 𝜎0 ∈ 𝐼

𝑜(𝜈)
𝛿 such that 𝜎 ∈ 𝐺𝑒𝑛(𝜎0), with road to 𝜎

equal to {𝜎𝑖}𝑖≤𝑛 such that 𝜎1 /∈ 𝐼𝑜(𝜈). Therefore 𝜎0 and 𝜎 have the same type of
basic formulas over 𝐼𝛾∖{𝜎0}, where 𝑜(𝜎1) = 𝛾 + 1. In particular 𝜎0 and 𝜎 have the
same type of basic formulas over 𝐼𝑜(𝜈)∖{𝜎0}. By the way 𝛽 was chosen, there is

𝜎′ ∈ 𝐼0𝛽 ⊆ 𝐼
𝑜(𝜈)
𝛽 such that 𝜎0 > 𝜎′ > 𝜈. Since 𝜎0 and 𝜎 have the same type of basic

formulas over 𝐼𝑜(𝜈)∖{𝜎0}, 𝜎 > 𝜎′ > 𝜈 as wanted. �

�

As it can be seen in the previous lemma, the witness 𝜎′ can be chosen in 𝐼0𝛽 ,

when 𝜈 /∈ 𝐼𝑖𝛿.

Lemma 2.19. For all 𝛿 < 𝜅 limit, and 𝜈 ∈ 𝐼, there is 𝛽 < 𝛿 that satisfies the
following:

(4) ∀𝜎 ∈ 𝐼𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈)]

Proof. Let 𝛿 < 𝜅 be a limit ordinal, and 𝜈 ∈ 𝐼. We have three different cases:

𝜈 ∈ 𝐼𝛿, 𝜈 ∈ 𝐼
𝑜(𝜈)
𝛿 ∖𝐼𝛿, and 𝜈 /∈ 𝐼

𝑜(𝜈)
𝛿 .

Case 𝜈 ∈ 𝐼𝛿. Since 𝛿 is a limit, 𝑜(𝜈) < 𝛿 and there is 𝜃 < 𝛿 such that 𝜈 ∈ 𝐼
𝑜(𝜈)
𝜃 .

Let 𝛽 = 𝑚𝑎𝑥{𝑜(𝜈), 𝜃}, it is clear that 𝛽 is as wanted.

Case 𝜈 ∈ 𝐼
𝑜(𝜈)
𝛿 ∖𝐼𝛿. Recall 𝐼𝛿 = 𝐼𝛿𝛿 , clearly 𝛿 < 𝑜(𝜈). There is 𝜈0 ∈ 𝐼𝛿, such that

𝜈 ∈ 𝐺𝑒𝑛(𝜈0), with the road to 𝜈 equal to {𝜈𝑖}𝑖≤𝑛, and 𝜈1 /∈ 𝐼𝛿. Since 𝜈0 ∈ 𝐼𝛿𝛿 and 𝛿

is a limit, 𝑜(𝜈0) < 𝛿 and there is 𝜃 < 𝛿 such that 𝜈0 ∈ 𝐼
𝑜(𝜈0)
𝜃 . Let 𝛽 = 𝑚𝑎𝑥{𝑜(𝜈0), 𝜃}.

Claim 2.19.1. 𝛽 is as wanted.
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Proof. Let 𝜎 ∈ 𝐼𝛿𝛿 be such that 𝜎 > 𝜈. Since 𝜈1 /∈ 𝐼𝛿, 𝑜(𝜈1) = 𝛾 + 1 > 𝛿, and 𝜈0
and 𝜈 have the same type of basic formulas over 𝐼𝛾∖{𝜈0}. In particular 𝜈0 and 𝜈

have the same type of basic formulas over 𝐼𝛿∖{𝜈0}, so 𝜎 > 𝜈0 > 𝜈. Since 𝜈0 ∈ 𝐼𝛽𝛽 ,

𝜎′ = 𝜈0 is as wanted. �

Case 𝜈 /∈ 𝐼
𝑜(𝜈)
𝛿 . Let 𝜃 = 𝑚𝑎𝑥{𝑜(𝜈), 𝛿}, thus 𝜈 ∈ 𝐼𝜃 (notice that we are talking

about the order 𝐼𝜃 and not the element 𝐼𝜃 of the 𝜅-representation ⟨𝐼𝛼 | 𝛼 < 𝜅⟩)
and by Lemma 2.18 there is 𝛽 < 𝛿 which satisfies the following:

∀𝜎 ∈ 𝐼𝜃𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)].

Claim 2.19.2. 𝛽 is as wanted.

Proof. Let 𝜎 ∈ 𝐼𝛿𝛿 be such that 𝜎 > 𝜈. Since 𝛿 ≤ 𝜃, 𝜎 ∈ 𝐼𝜃𝛿 . Therefore, there is

𝜎′ ∈ 𝐼0𝛽 such that 𝜎 > 𝜎′ > 𝜈. The claim follows from 𝐼0𝛽 ⊆ 𝐼𝛽𝛽 = 𝐼𝛽 . �

�

Fact 2.20 (Hyttinen-Tuuri, [8] Lemma 8.12). Let 𝐴 be a linear order of size 𝜅 and
⟨𝐴𝛼 | 𝛼 < 𝜅⟩ a 𝜅-representation. Then the following are equivalent:

(1) 𝐴 is (𝜅, 𝑏𝑠, 𝑏𝑠)-nice.
(2) There is a club 𝐶 ⊆ 𝜅, such that for all limit 𝛿 ∈ 𝐶, for all 𝑥 ∈ 𝐴 there is

𝛽 < 𝛿 such that one of the following holds:
∙ ∀𝜎 ∈ 𝐴𝛿[𝜎 ≥ 𝑥 ⇒ ∃𝜎′ ∈ 𝐴𝛽 (𝜎 ≥ 𝜎′ ≥ 𝑥)]
∙ ∀𝜎 ∈ 𝐴𝛿[𝜎 ≤ 𝑥 ⇒ ∃𝜎′ ∈ 𝐴𝛽 (𝜎 ≤ 𝜎′ ≤ 𝑥)]

The previous fact is stated as it is in [8]. Due to Lemma 2.19, the second bullet
point of item (2) is not needed for our purposes. The following corollary follows
from Lemma 2.19.

Corollary 2.21. 𝐼 is (𝜅, 𝑏𝑠, 𝑏𝑠)-nice.

Notice that if 𝜅 is inaccessible, 𝐼 is (< 𝜅, 𝑏𝑠)-stable. This can be generalize to
successors 𝜅.

Lemma 2.22. Suppose 𝜅 = 𝜆+. 𝐼0 is (< 𝜅, 𝑏𝑠)-stable.

Proof. Recall the linear order ℛ from Definition 2.8. From the general assumption
on 𝜅, we know that 𝜆𝜔 = 𝜆.

For all 𝐴 ⊆ 𝐼0 define 𝑃𝑟(𝐴) as the set {𝑓1 | 𝑓 ∈ 𝐴}. Let 𝐴 ⊆ 𝐼0 be such
that |𝐴| < 𝜅. Since |Q| = 𝜔, |{𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼0) | 𝑎 ∈ 𝐼0}| ≤ |{𝑡𝑝𝑏𝑠(𝑎, 𝑃𝑟(𝐴),ℛ) |
𝑎 ∈ ℛ} × 2𝜔|. By Fact 2.9 and since 𝜆𝜔 = 𝜆, |{𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼0) | 𝑎 ∈ 𝐼}| < 𝜅. �

Lemma 2.23. Suppose 𝜅 = 𝜆+. 𝐼 is (< 𝜅, 𝑏𝑠)-stable.

Proof. Let us fix 𝐴 ⊂ 𝐼 such that |𝐴| < 𝜅. From Fact 2.17, for all 𝑎 ∈ 𝐼 and 𝜈 ∈ 𝐼0

such that 𝑎 ∈ 𝐺𝑒𝑛(𝜈) the following holds:

𝑏 |= 𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) ⇔ 𝑏 |= 𝑡𝑝𝑏𝑠(𝜈,𝐴∖𝐺𝑒𝑛(𝜈), 𝐼) ∪ 𝑡𝑝𝑏𝑠(𝑎,𝐴 ∩𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)).

Thus for all 𝑎 ∈ 𝐼 and 𝜈 ∈ 𝐼0 with 𝑎 ∈ 𝐺𝑒𝑛(𝜈), the type of 𝑎 is determined by
𝑡𝑝𝑏𝑠(𝜈,𝐴∖𝐺𝑒𝑛(𝜈), 𝐼) and 𝑡𝑝𝑏𝑠(𝑎,𝐴∩𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)). Let 𝐴′ ⊆ 𝐼0 be such that the
following hold:

∙ for all 𝑥 ∈ 𝐴 there is 𝑦 ∈ 𝐴′, 𝑥 ∈ 𝐺𝑒𝑛(𝑦);
∙ for all 𝑦 ∈ 𝐴′ there is 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐺𝑒𝑛(𝑦).

Clearly |𝐴′| ≤ |𝐴|, and by Fact 2.17, for all 𝜈 ∈ 𝐼0, 𝑡𝑝𝑏𝑠(𝜈,𝐴∖𝐺𝑒𝑛(𝜈), 𝐼) is
determined by 𝑡𝑝𝑏𝑠(𝜈,𝐴

′∖{𝜈}, 𝐼0). So for all 𝑎 ∈ 𝐼 and 𝜈 ∈ 𝐼0 with 𝑎 ∈ 𝐺𝑒𝑛(𝜈),
𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) is determined by 𝑡𝑝𝑏𝑠(𝜈,𝐴

′∖{𝜈}, 𝐼0) and 𝑡𝑝𝑏𝑠(𝑎,𝐴 ∩ 𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)).
Therefore |{𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) | 𝑎 ∈ 𝐼}| is bounded by

|{𝑡𝑝𝑏𝑠(𝜈,𝐴′, 𝐼0) | 𝜈 ∈ 𝐼0}| × 𝑆𝑢𝑝({𝛼𝜈 | 𝜈 ∈ 𝐼0})
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where

𝛼𝜈 = |{𝑡𝑝𝑏𝑠(𝑎,𝐴 ∩𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)) | 𝑎 ∈ 𝐺𝑒𝑛(𝜈)}|.

Claim 2.23.1. For all 𝜈 ∈ 𝐼0, 𝐺𝑒𝑛(𝜈) with the induced order is (< 𝜅, 𝑏𝑠)-stable.

Proof. Recall the order (𝐺𝑒𝑛,<𝐺𝑒𝑛). By the non-inductive construction of 𝐼, it is
enough to show that (𝐺𝑒𝑛,<𝐺𝑒𝑛) is (< 𝜅, 𝑏𝑠)-stable.

Let 𝐷 ⊆ 𝐺𝑒𝑛 be such that |𝐷| < 𝜅, and let

𝛽 = 𝑠𝑢𝑝{𝑓(𝑛) + 1 | 𝑓 ∈ 𝐷 & 𝑛 < 𝜔}.

Since for all 𝑓 ∈ 𝐴, 𝑓 is constant to 0 starting at some 𝑚, 𝛽 < 𝜅. On the other
hand, for all 𝑓, 𝑔 ∈ 𝐺𝑒𝑛, 𝑓 and 𝑔 eventually become constants to 0, and the order
𝑓 <𝐺𝑒𝑛 𝑔 (or 𝑔 <𝐺𝑒𝑛 𝑓) is determined by the values of 𝑓(𝑖) and 𝑔(𝑖), where 𝑖 is the
least ordinal such that𝑓(𝑖) ̸= 𝑔(𝑖). Therefore, for all 𝑓 ∈ 𝐺𝑒𝑛, 𝑡𝑝𝑏𝑠(𝑓,𝐷,𝐺𝑒𝑛) is
entirely determined by the coordinates 𝑛 of 𝑓 in which 𝑓(𝑛) is smaller than 𝛽 + 1.
Since 𝜆𝜔 = 𝜆, and 𝛽 < 𝜅

|{𝑡𝑝𝑏𝑠(𝑓,𝐷,𝐺𝑒𝑛) | 𝑓 ∈ 𝐺𝑒𝑛}| ≤ |𝛽<𝜔| ≤ 𝜆 < 𝜅.

�

From the previous claim, we conclude that for all 𝜈 ∈ 𝐼0, 𝛼𝜈 < 𝜅. Since 𝜅 = 𝜆+,
𝑆𝑢𝑝({𝛼𝜈 | 𝜈 ∈ 𝐼0}) ≤ 𝜆. From Lemma 2.22 we know that |{𝑡𝑝𝑏𝑠(𝜈,𝐴′, 𝐼0) |
𝜈 ∈ 𝐼0}| < 𝜅, so |{𝑡𝑝𝑏𝑠(𝜈,𝐴′, 𝐼0) | 𝜈 ∈ 𝐼0}| ≤ 𝜆. We conclude |{𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) |
𝑎 ∈ 𝐼}| < 𝜅. �

Theorem 2.24. There is a (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠)-nice 𝜅-colorable linear order.

Proof. From Corollary 2.21 and Lemma 2.23, we only need to show that 𝐼 is 𝜅-
colorable. For all 𝜈 ∈ 𝐼 let us define 𝑆𝑢𝑐𝑐𝐼(𝜈) as follows:

𝑆𝑢𝑐𝑐𝐼(𝜈) = {𝜎 ∈ 𝐼 | 𝜎 = 𝜈𝑜(𝜎)}.

We use the same notation of ordered trees because 𝐼 can be seen as an ordered tree.
Notice that for all 𝜈 ∈ 𝐼, |𝑆𝑢𝑐𝑐𝐼(𝜈)| = 𝜅 and either 𝑜(𝜈) = 0, or there is a unique
𝜈′ ∈ 𝐼 such that 𝜈 = (𝜈′)𝑜(𝜈) (i.e. 𝜈 ∈ 𝑆𝑢𝑐𝑐𝐼(𝜈′)).

Let us fix 𝐺 : 𝜅 → 𝜅 × 𝜅 a bijection, and 𝐺1, 𝐺2 be the functions such that
𝐺(𝛼) = (𝐺1(𝛼), 𝐺2(𝛼)). For all 𝜈 ∈ 𝐼 let us fix a bijection 𝑔𝜈 : 𝑆𝑢𝑐𝑐𝐼(𝜈) → 𝜅. Let
us define 𝐹 : 𝐼 → 𝜅 by

𝐹 (𝜈) =

{︃
0 if 𝑜(𝜈) = 0

𝐺1(𝑔𝜈′(𝜈)) where (𝜈′)𝑜(𝜈) = 𝜈.

Claim 2.24.1. 𝐹 is a 𝜅-coloration of 𝐼.

Proof. Let 𝐵 ⊆ 𝐼, |𝐵| < 𝜅, 𝑏 ∈ 𝐼∖𝐵, and 𝑝 = 𝑡𝑝𝑏𝑠(𝑏, 𝐵, 𝐼). Since |𝐵| < 𝜅, there
is 𝛾 < 𝜅 such that 𝐵 ⊂ 𝐼𝛾 . Let 𝜃 = max{𝑜(𝑏), 𝛾}, so for all 𝜈 ∈ {𝑎 ∈ 𝑆𝑢𝑐𝑐𝐼(𝑏) |
𝑜(𝑎) > 𝜃}, 𝑏 and 𝜈 have the same type of basic formulas over 𝐼𝜃∖{𝑏}. In particular
for all 𝜈 ∈ {𝑎 ∈ 𝑆𝑢𝑐𝑐𝐼(𝑏) | 𝑜(𝑎) > 𝜃}, 𝜈 |= 𝑝. By the way 𝐹 was defined, we
conclude that for any 𝛼 < 𝜅, |{𝑎 ∈ 𝑆𝑢𝑐𝑐𝐼(𝑏) | 𝑜(𝑎) > 𝜃 & 𝐹 (𝑎) = 𝛼}| = 𝜅. Which
implies that for any 𝛼 < 𝜅, |{𝑎 ∈ 𝑆𝑢𝑐𝑐𝐼(𝑏) | 𝑎 |= 𝑝 & 𝐹 (𝑎) = 𝛼}| = 𝜅 �

�
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3. Ordered Coloured Trees

3.1. Coloured trees. We will use the 𝜅-colorable linear order 𝐼 to construct trees
with 𝜔 + 1 levels, 𝐴𝑓 (𝐼), for every 𝑓 ∈ 𝜅𝜅 with the property 𝐴𝑓 (𝐼) ∼= 𝐴𝑔(𝐼) if and
only if 𝑓 =𝜅

𝜔 𝑔. These tress will be a mix of coloured tree and ordered trees.
For clarity and to avoid misunderstandings, in this section we will denote trees by
(𝑇,≺). Later on we will see that ≺ is the initial segment relation of the trees that
we construct. The coloured trees that we will use in this section, are essentially the
same trees used by Hyttinen and Weinstein (né Kulikov) in [5] and by Hyttinen
and Moreno in [7].

Let 𝑡 be a tree, for every 𝑥 ∈ 𝑡 we denote by ℎ𝑡(𝑥) the height of 𝑥, the order
type of {𝑦 ∈ 𝑡|𝑦 ≺ 𝑥}. Define (𝑡)𝛼 = {𝑥 ∈ 𝑡|ℎ𝑡(𝑥) = 𝛼} and (𝑡)<𝛼 = ∪𝛽<𝛼(𝑡)𝛽 ,
denote by 𝑥 � 𝛼 the unique 𝑦 ∈ 𝑡 such that 𝑦 ∈ (𝑡)𝛼 and 𝑦 ≺ 𝑥. If 𝑥, 𝑦 ∈ 𝑡 and
{𝑧 ∈ 𝑡|𝑧 ≺ 𝑥} = {𝑧 ∈ 𝑡|𝑧 ≺ 𝑦}, then we say that 𝑥 and 𝑦 are ∼-related, 𝑥 ∼ 𝑦, and
we denote by [𝑥] the equivalence class of 𝑥 for ∼.
An 𝛼, 𝛽-tree is a tree 𝑡 with the following properties:

∙ |[𝑥]| < 𝛼 for every 𝑥 ∈ 𝑡.
∙ All the branches have order type less than 𝛽 in 𝑡.
∙ 𝑡 has a unique root.
∙ If 𝑥, 𝑦 ∈ 𝑡, 𝑥 and 𝑦 have no immediate predecessors and 𝑥 ∼ 𝑦, then 𝑥 = 𝑦.

Definition 3.1. Let 𝜆 be a cardinal smaller than 𝜅, and 𝛽 a cardinal smaller or
equal to 𝜅. A coloured tree with 𝛽 colors is a pair (𝑡, 𝑐), where 𝑡 is a 𝜅+, (𝜆+2)-tree
and 𝑐 is a map 𝑐 : (𝑡)𝜆 → 𝛽 (the color function).

Two coloured trees (𝑡, 𝑐) and (𝑡′, 𝑐′) are isomorphic, if there is a trees isomorphism
𝑓 : 𝑡 → 𝑡′ such that for every 𝑥 ∈ (𝑡)𝜆, 𝑐(𝑥) = 𝑐′(𝑓(𝑥)). We will denote by ∼=𝑐𝑡 the
isomorphism of coloured trees

We will only consider trees in which every element with height less than 𝜆, has
infinitely many immediate successors, every maximal branch has order type 𝜆 + 1.
Notice that the intersection of two distinct branches has order type less than 𝜆. We
can see every coloured tree as a downward closed subset of 𝜅≤𝜆. In this section all
the coloured trees have 𝜆 = 𝜔.

An ordered coloured tree with 𝛽 colors, 𝛽 ≤ 𝜅, is a tree 𝑇 ∈ 𝐾𝜔
𝑡𝑟 with a color

function 𝑐 : (𝑡)𝜔 → 𝛽.
We will follow the construction used [5] and [7].
Let us start from coloured trees which are subsets of (𝜔 × 𝜅4)≤𝜔, let us make

some preparation before the actual construction. Order the set 𝜔 × 𝜅× 𝜅× 𝜅× 𝜅
lexicographically, (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5) > (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) if for some 1 ≤ 𝑘 ≤ 5,
𝛼𝑘 > 𝜃𝑘 and for every 𝑖 < 𝑘, 𝛼𝑖 = 𝜃𝑖. Order the set (𝜔× 𝜅× 𝜅× 𝜅× 𝜅)≤𝜔 as a tree
by initial segments.

For all 𝑓 ∈ 𝛽𝜅, define the tree (𝑅𝑓 , 𝑟𝑓 ) as, 𝑅𝑓 the set of all strictly increasing
functions from some 𝑛 ≤ 𝜔 to 𝜅 and 𝑟𝑓 is the color function such that for each 𝜂
with domain 𝜔, 𝑟𝑓 (𝜂) = 𝑓(𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂))).

For every pair of ordinals 𝛼 and 𝜃, 𝛼 < 𝜃 < 𝜅 and 𝑖 < 𝜔 define

𝑅(𝛼, 𝜃, 𝑖) =
⋃︁

𝑖<𝑗≤𝜔

{𝜂 : [𝑖, 𝑗) → [𝛼, 𝜃) | 𝜂 strictly increasing}.

Definition 3.2. If 𝛼 < 𝜃 < 𝜅 and 𝛼, 𝜃, 𝛾 ̸= 0, let {𝑍𝛼,𝜃
𝛾 |𝛾 < 𝜅} be an enumeration

of all downward closed subtrees of 𝑅(𝛼, 𝜃, 𝑖) for all 𝑖, in such a way that each

possible coloured tree appears cofinally often in the enumeration. Let 𝑍0,0
0 be the

tree (𝑅𝑓 , 𝑟𝑓 ).
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This enumeration is possible because there are at most
|
⋃︀

𝑖<𝜔 𝒫(𝑅(𝛼, 𝜃, 𝑖))| ≤ 𝜔 × 𝜅 = 𝜅 downward closed coloured subtrees. Since for all
𝜃 < 𝜅, |𝑅(𝛼, 𝜃, 𝑖)| < 𝜅 there are at most 𝜅× 𝜅<𝜅 = 𝜅 coloured trees.

Definition 3.3. Let 𝛽 ≤ 𝜅 be a cardinal. Define for every 𝑓 ∈ 𝛽𝜅 the coloured
tree (𝐽𝑓 , 𝑐𝑓 ) with 𝛽 colors, by the following construction. Let 𝐽𝑓 = (𝐽𝑓 , 𝑐𝑓 ) as the
tree of all 𝜂 : 𝑠 → 𝜔×𝜅4, where 𝑠 ≤ 𝜔, ordered by endextension, and such that the
following conditions hold for all 𝑖, 𝑗 < 𝑠:
Denote by 𝜂𝑖, 1 < 𝑖 < 5, the functions from 𝑠 to 𝜅 that satisfies,

𝜂(𝑛) = (𝜂1(𝑛), 𝜂2(𝑛), 𝜂3(𝑛), 𝜂4(𝑛), 𝜂5(𝑛)).

(1) 𝜂�𝑛 ∈ 𝐽𝑓 for all 𝑛 < 𝑠.
(2) 𝜂 is strictly increasing with respect to the lexicographical order on 𝜔 × 𝜅4.
(3) 𝜂1(𝑖) ≤ 𝜂1(𝑖 + 1) ≤ 𝜂1(𝑖) + 1.
(4) 𝜂1(𝑖) = 0 implies 𝜂2(𝑖) = 𝜂3(𝑖) = 𝜂4(𝑖) = 0.
(5) 𝜂1(𝑖) < 𝜂1(𝑖 + 1) implies 𝜂2(𝑖 + 1) ≥ 𝜂3(𝑖) + 𝜂4(𝑖).
(6) 𝜂1(𝑖) = 𝜂1(𝑖 + 1) implies 𝜂𝑘(𝑖) = 𝜂𝑘(𝑖 + 1) for 𝑘 ∈ {2, 3, 4}.
(7) If for some 𝑘 < 𝜔, [𝑖, 𝑗) = 𝜂−1

1 {𝑘}, then

𝜂5�[𝑖,𝑗) ∈ 𝑍
𝜂2(𝑖),𝜂3(𝑖)
𝜂4(𝑖)

.

Note that 7 implies 𝑍
𝜂2(𝑖),𝜂3(𝑖)
𝜂4(𝑖)

⊂ 𝑅(𝛼, 𝜃, 𝑖)

(8) If 𝑠 = 𝜔, then either
(a) there exists a natural number 𝑚 such that 𝜂1(𝑚 − 1) < 𝜂1(𝑚), for

every 𝑘 ≥ 𝑚 𝜂1(𝑘) = 𝜂1(𝑘 + 1), and the color of 𝜂 is determined by

𝑍
𝜂2(𝑚),𝜂3(𝑚)
𝜂4(𝑚) :

𝑐𝑓 (𝜂) = 𝑐(𝜂5�[𝑚,𝜔))

where 𝑐 is the coloring function of 𝑍
𝜂2(𝑚),𝜂3(𝑚)
𝜂4(𝑚) .

or
(b) there is no such 𝑚 and then 𝑐𝑓 (𝜂) = 𝑓(𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂5))).

Notice that for every 𝑓 ∈ 𝛽𝜅 and 𝛿 < 𝜅 with 𝑐𝑓(𝛿) = 𝜔, there is 𝜂 ∈ 𝐽𝑓 such
that 𝑟𝑛𝑔(𝜂1) = 𝜔 and 𝜂5 is cofinal to 𝛿. This 𝜂 can be constructed by taking ⟨𝜉(𝑖) |
𝑖 < 𝜔⟩ a cofinal sequence to 𝛿, let 𝜂1 = 𝑖𝑑; let 𝜂2, 𝜂3, and 𝜂4 be such that for every

𝑖 < 𝜔, 𝜉 � {𝑖} ∈ 𝑍
𝜂2(𝑖),𝜂3(𝑖)
𝜂4(𝑖)

. Finally let 𝜂5 � {𝑖} = 𝜉 � {𝑖}. It is clear that 𝜂 ∈ 𝐽𝑓 ,

𝑟𝑛𝑔(𝜂1) = 𝜔, and 𝜂5 is cofinal to 𝛿. In particular this 𝜂 satisfies 𝑐𝑓 (𝜂) = 𝑓(𝛿).

Fact 3.4 (Hyttinen-Kulikov, [5] Lemma 2.5; Hyttinen-Moreno, [7] Lemma 4.7).
Suppose 𝜅 is such that for all 𝛾 < 𝜅, 𝛾𝜔 < 𝜅. For every 𝑓, 𝑔 ∈ 𝛽𝜅 the following
holds

𝑓 =𝛽
𝜔 𝑔 ⇔ 𝐽𝑓 ∼=𝑐𝑡 𝐽𝑔

where ∼=𝑐𝑡 is the isomorphism of coloured trees.

The previous fact is an important step in [5] and in [7] to construct a reductions
from =2

𝜔 to the isomorphism relation of different stable unsuperstable theories.
We will use the coloured trees 𝐽𝑓 to construct ordered coloured trees. Before we
start with the construction of the ordered coloured trees, let us prove an important
property of the coloured trees.

Lemma 3.5. For every 𝑓 ∈ 𝛽𝜅, 𝜃 < 𝛽, and 𝜂 ∈ (𝐽𝑓 )<𝜔, there is 𝜉 ∈ (𝐽𝑓 )𝜔 such
that 𝜂 ≺ 𝜉 and 𝑐𝑓 (𝜉) = 𝜃.

Proof. Let 𝑓 ∈ 𝛽𝜅, such that 𝜂 ∈ (𝐽𝑔)<𝜔, and 𝑛 = 𝑑𝑜𝑚(𝜂).
Let us construct 𝜉, 𝜂 ≺ 𝜉 and 𝑐𝑓 (𝜉) = 𝜃.
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∙ 𝜉 � 𝑛 = 𝜂;
∙ if 𝑛 ≤ 𝑚 < 𝜔,

– 𝜉1(𝑚) = 𝜉1(𝑛− 1) + 1.
– 𝜉2(𝑚) = 𝜉3(𝑛− 1) + 𝜉4(𝑛− 1).
– 𝜉3(𝑚) = 𝜉2(𝑛) + 𝜔.

– let 𝛾 and 𝜁 be such that 𝑑𝑜𝑚(𝜁) = [𝑛, 𝜔), 𝜁 ∈ 𝑍
𝜉2(𝑛),𝜉3(𝑛)
𝛾 with 𝑐(𝜁) = 𝜃.

Such 𝛾 and 𝜁 exist by Definition 3.2.
– 𝜉4(𝑚) = 𝛾.
– 𝜉5�[𝑛,𝜔) = 𝜁.

By the way we defined 𝜉, we know that 𝜉 ∈ 𝐽𝑓 and 𝜂 ≺ 𝜉. By the item (8) (a)
on the construction of 𝐽𝑓 , we know that 𝑐𝑓 (𝜉) = 𝑐(𝜉5�[𝑛,𝜔)) = 𝜃.

�

Notice that for any 𝑓, 𝑔 ∈ 𝛽𝜅, 𝐽𝑓 and 𝐽𝑔 are isomorphic as trees but not as
coloured trees. This is because 𝑓 is only used to define the color function of 𝐽𝑓 .

3.2. Construction of ordered coloured trees. For each 𝑓 ∈ 𝛽𝜅 we will use the
coloured trees 𝐽𝑓 to construct ordered coloured trees, which will be the base for the
construction of the models in Section 4.

Let us define the following subtrees

𝐽𝛼
𝑓 = {𝜂 ∈ 𝐽𝑓 | ∃𝜃 < 𝛼 (𝑟𝑛𝑔(𝜂) ⊂ 𝜔 × 𝜃4)}.

Notice that 𝐽0
𝑓 = {∅} and 𝑑𝑜𝑚(∅) = 0. Let us denote by acc(𝜅) = {𝛼 < 𝜅 |

𝛼 = 0 or 𝛼 is a limit ordinal}. For all 𝛼 ∈ acc(𝜅) and 𝜂 ∈ 𝐽𝛼
𝑓 with 𝑑𝑜𝑚(𝜂) = 𝑚 < 𝜔

define

𝑊𝛼
𝜂 = {𝜁 | 𝑑𝑜𝑚(𝜁) = [𝑚, 𝑠),𝑚 ≤ 𝑠 ≤ 𝜔, 𝜂⌢𝜁 ∈ 𝐽𝛼+𝜔

𝑓 , 𝜂⌢(𝜁 � {𝑚}) /∈ 𝐽𝛼
𝑓 }.

Notice that by the way 𝐽𝑓 was constructed, for every 𝜂 ∈ 𝐽𝑓 with finite domain
and 𝛼 < 𝜅, the set

{(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) ∈ (𝜔 × 𝜅4)∖(𝜔 × 𝛼4) | 𝜂⌢(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) ∈ 𝐽𝛼+𝜔
𝑓 }

is either empty or has size 𝜔. Let 𝜎𝛼
𝜂 be an enumeration of this set, when this set

is not empty.
Let us denote by 𝒯 = (𝜅× 𝜔 × acc(𝜅) × 𝜔 × 𝜅× 𝜅× 𝜅× 𝜅)≤𝜔. For every 𝜉 ∈ 𝒯

there are functions {𝜉𝑖 ∈ 𝜅≤𝜔 | 0 < 𝑖 ≤ 8} such that for all 𝑖 ≤ 8, 𝑑𝑜𝑚(𝜉𝑖) = 𝑑𝑜𝑚(𝜉)
and for all 𝑛 ∈ 𝑑𝑜𝑚(𝜉), 𝜉(𝑛) = (𝜉1(𝑛), 𝜉2(𝑛), 𝜉3(𝑛), 𝜉4(𝑛), 𝜉5(𝑛), 𝜉6(𝑛), 𝜉7(𝑛), 𝜉8(𝑛)).
For every 𝜉 ∈ 𝒯 let us denote (𝜉4, 𝜉5, 𝜉6, 𝜉7, 𝜉8) by 𝜉.

Definition 3.6. For all 𝛼 ∈ acc(𝜅) and 𝜂 ∈ 𝒯 with 𝜂 ∈ 𝐽𝑓 , 𝑑𝑜𝑚(𝜂) = 𝑚 < 𝜔
define Γ𝛼

𝜂 as follows:
If 𝜂 ∈ 𝐽𝛼

𝑓 , then Γ𝛼
𝜂 is the set of elements 𝜉 of 𝒯 such that:

(1) 𝜉 �𝑚 = 𝜂,
(2) 𝜉 � 𝑑𝑜𝑚(𝜉)∖𝑚 ∈ 𝑊𝛼

𝜂 ,
(3) 𝜉3 is constant on 𝑑𝑜𝑚(𝜉)∖𝑚,
(4) 𝜉3(𝑚) = 𝛼,
(5) for all 𝑛 ∈ 𝑑𝑜𝑚(𝜉)∖𝑚, let 𝜉2(𝑛) be the unique 𝑟 < 𝜔 such that 𝜎𝛼

𝜁 (𝑟) = 𝜉(𝑛),

where 𝜁 = 𝜉 � 𝑛.

If 𝜂 /∈ 𝐽𝛼
𝑓 , then Γ𝛼

𝜂 = ∅.

Notice that 𝜉2(𝑛) and 𝜉3(𝑛) can be calculated from 𝜉(𝑛) and 𝜂.
For 𝜂 ∈ 𝒯 with 𝜂 ∈ 𝐽𝑓 , 𝑑𝑜𝑚(𝜂) = 𝑚 < 𝜔 define

Γ(𝜂) =
⋃︁

𝛼∈acc(𝜅)

Γ𝛼
𝜂 .
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Finally we can define 𝐴𝑓 by induction. Let 𝑇𝑓 (0) = {∅} and for all 𝑛 < 𝜔,

𝑇𝑓 (𝑛 + 1) = 𝑇𝑓 (𝑛) ∪
⋃︁

𝜂∈𝑇𝑓 (𝑛) 𝑑𝑜𝑚(𝜂)=𝑛

Γ(𝜂),

for 𝑛 = 𝜔,

𝑇𝑓 (𝜔) =
⋃︁
𝑛<𝜔

𝑇𝑓 (𝑛).

For 0 < 𝑖 ≤ 8 let us denote by 𝑠𝑖(𝜂) = 𝑠𝑢𝑝{𝜂𝑖(𝑛) | 𝑛 < 𝜔} and 𝑠𝜔(𝜂) =
𝑠𝑢𝑝{𝑠𝑖(𝜂) | 𝑖 ≤ 8}, finally

𝐴𝑓 = 𝑇𝑓 (𝜔) ∪ {𝜂 ∈ 𝒯 | 𝑑𝑜𝑚(𝜂) = 𝜔,∀𝑚 < 𝜔(𝜂 �𝑚 ∈ 𝑇𝑓 (𝜔))}.
Define the color function 𝑑𝑓 by

(5) 𝑑𝑓 (𝜂) =

{︃
𝑐𝑓 (𝜂) if 𝑠1(𝜂) < 𝑠𝜔(𝜂)

𝑓(𝑠1(𝜂)) if 𝑠1(𝜂) = 𝑠𝜔(𝜂).

It is clear that 𝐴𝑓 is closed under initial segments, indeed the relations ≺,
(𝑃𝑛)𝑛≤𝜔, and ℎ of Definition 2.1 have a canonical interpretation in 𝐴𝑓 .

Now we finish the construction of 𝐴𝑓 by using the 𝜅-colorable linear order 𝐼.
We only have to define < �𝑆𝑢𝑐𝐴𝑓 (𝜂) for all 𝜂 ∈ 𝐴𝑓 with finite domain. Properly
speaking, 𝐴𝑓 will not be an ordered coloured tree as in Definition 2.1, but it will
be isomorphic to an ordered coloured tree as in Definition 2.1.

Let us proceed to define < �𝑆𝑢𝑐𝐴𝑓 (𝜂). Let 𝐹 : 𝐼 → 𝜅 be a 𝜅-coloration of 𝐼.
For any 𝜂 ∈ 𝐴𝑓 with domain 𝑚 < 𝜔, we will define the order < �𝑆𝑢𝑐𝐴𝑓 (𝜂) such

that it is isomorphic to 𝐼 and satisfies the following:
(*) For any set 𝐵 ⊂ 𝑆𝑢𝑐𝐴𝑓 (𝜂) of size less than 𝜅, 𝑝(𝑥) a type of basic for-

mulas over 𝐵 in the variable 𝑥, and any tuple (𝜃2, 𝜃3) ∈ 𝜔 × acc(𝜅) with 𝜃3 ≥
𝜂3(𝑚 − 1), if 𝑝(𝑥) is realized in 𝑆𝑢𝑐𝐴𝑓 (𝜂), then there are 𝜅 many 𝛾 < 𝜅 such that

𝜂⌢(𝛾, 𝜃2, 𝜃3, 𝜎
𝜃3
𝜂 (𝜃2)) |= 𝑝(𝑥).

By the construction of 𝐴𝑓 , an isomorphism between {(𝜃1, 𝜃2, 𝜃3) ∈ 𝜅×𝜔×acc(𝜅) |
𝜃3 ≥ 𝜂3(𝑚− 1)} and 𝐼, induces an order in 𝑆𝑢𝑐𝐴𝑓 (𝜂).

Definition 3.7. Recall the coloration 𝐹 of 𝐼 in Theorem 2.24. For all 𝜃, 𝛼 < 𝜅,
let fix bijections �̃�𝜃 : {(𝜃2, 𝜃3) ∈ 𝜔 × acc(𝜅) | 𝜃3 ≥ 𝜃} → 𝜅 and �̃�𝛼 : 𝐹−1[𝛼] → 𝜅.
Notice that these functions exist because 𝐹 is a 𝜅-coloration of 𝐼 and there are 𝜅
tuples (𝜃2, 𝜃3) of this form.

Let us define 𝒢𝜃 : {(𝜃1, 𝜃2, 𝜃3) ∈ 𝜅×𝜔×acc(𝜅) | 𝜃3 ≥ 𝜃} → 𝐼, by 𝒢𝜃((𝜃1, 𝜃2, 𝜃3)) =
𝑎 where 𝑎 and 𝛼 are the unique elements that satisfy:

∙ �̃�𝜃((𝜃2, 𝜃3)) = 𝛼;

∙ �̃�𝛼(𝑎) = 𝜃1.

For any 𝜂 ∈ 𝐴𝑓 with domain 𝑚 < 𝜔 and 𝜂3(𝑚 − 1) = 𝜃, the isomorphism 𝒢𝜃

induces an order in 𝑆𝑢𝑐𝐴𝑓 (𝜂). Let us define < �𝑆𝑢𝑐𝐴𝑓 (𝜂) as the induced order

given by 𝒢𝜃.

Fact 3.8. Suppose 𝜂 ∈ 𝐴𝑓 has domain 𝑚 < 𝜔 and 𝜂3(𝑚− 1) = 𝜃. Then
< �𝑆𝑢𝑐𝐴𝑓 (𝜂) satisfies (*).

Proof. Let 𝑏 ∈ 𝑆𝑢𝑐𝐴𝑓 (𝜂), (𝜃2, 𝜃2) ∈ 𝜔 × acc(𝜅) such that 𝜃3 ≥ 𝜂3(𝑚 − 1) = 𝜃, and

𝐵 ⊆ 𝑆𝑢𝑐𝐴𝑓 (𝜂) have size less than 𝜅. Let us denote by 𝑞 the type 𝑡𝑝𝑏𝑠(𝒢𝜃(𝑏1, 𝑏2, 𝑏3),𝒢𝜃(𝐵∩
(𝜅× 𝜔 × acc(𝜅))), 𝐼). By the construction of �̃�𝜃, since 𝐹 is a 𝜅-coloration of 𝐼,

|{𝑎 ∈ 𝐼 | 𝑎 |= 𝑞 & 𝐹 (𝑎) = �̃�𝜃(𝜃2, 𝜃3)}| = 𝜅.

Therefore for all 𝑎 such that 𝑎 |= 𝑞 and 𝐹 (𝑎) = �̃�𝜃(𝜃2, 𝜃3),

𝜂⌢(�̃��̃�𝜃((𝜃2,𝜃3))
(𝑎), 𝜃2, 𝜃3, 𝜎

𝜃3
𝜂 (𝜃2)) |= 𝑝
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It is clear that (𝐴𝑓 ,≺, (𝑃𝑛)𝑛≤𝜔, <, ℎ) is isomorphic to a subtree of 𝐼≤𝜔 in the
sense of Definition 2.1.

Remark 3.9. Notice that for any 𝜂 ∈ 𝐴𝑓 , < �𝑆𝑢𝑐𝐴𝑓 (𝜂) is isomorphic to 𝐼. Therefore
for any 𝜁, 𝜂 ∈ 𝐴𝑓 , < �𝑆𝑢𝑐𝐴𝑓 (𝜁) and < �𝑆𝑢𝑐𝐴𝑓 (𝜂) are isomorphic. Even more, the
construction of < �𝑆𝑢𝑐𝐴𝑓 (𝜂) only depends on 𝜂3(𝑚−1), where 𝑚 < 𝜔 is the domain
of 𝜂.

Notice that the only property we used from 𝐼 to construct the ordered coloured
trees was that it is a 𝜅-colorable linear order. Therefore the construction can be
done with any 𝜅-colorable linear order.

Theorem 3.10. Suppose 𝑓, 𝑔 ∈ 𝛽𝜅, then 𝑓 =𝛽
𝜔 𝑔 if and only if 𝐴𝑓 ∼= 𝐴𝑔 (as

ordered coloured trees).

Proof. For every 𝑓 ∈ 𝛽𝜅 let us define the 𝜅-representation A𝑓 = ⟨𝐴𝑓
𝛼 | 𝛼 < 𝜅⟩ of

𝐴𝑓 ,
𝐴𝑓

𝛼 = {𝜂 ∈ 𝐴𝑓 | 𝑟𝑛𝑔(𝜂) ⊆ 𝜃 × 𝜔 × 𝜃 × 𝜔 × 𝜃4 for some 𝜃 < 𝛼}.
Let 𝑓 and 𝑔 be such that 𝑓 =𝛽

𝜔 𝑔, there is 𝐺 a coloured trees isomorphism
between 𝐽𝑓 and 𝐽𝑔. Let 𝐶 ⊆ 𝜅 be a club such that {𝛼 ∈ 𝐶 | 𝑐𝑓(𝛼) = 𝜔} ⊆ {𝛼 < 𝜅 |
𝑓(𝛼) = 𝑔(𝛼)}. We will show that there are sequences {𝛼𝑖}𝑖<𝜅 and {𝐹𝑖}𝑖<𝜅 with
the following properties:

∙ {𝛼𝑖}𝑖<𝜅 is a club;
∙ if 𝑖 is a successor, then there is 𝜃 ∈ 𝐶 such that 𝛼𝑖−1 < 𝜃 < 𝛼𝑖;
∙ if 𝑖 = 𝛾 + 𝑛 and 𝑛 is odd, 𝐹𝑖 is a partial isomorphism between 𝐴𝑓 and 𝐴𝑔,

and 𝐴𝑓
𝛼𝑖

⊆ 𝑑𝑜𝑚(𝐹𝑖);

∙ if 𝑖 = 𝛾 + 𝑛 and 𝑛 is even, 𝐹𝑖 is a partial isomorphism between 𝐴𝑓 and 𝐴𝑔,
and 𝐴𝑔

𝛼𝑖
⊆ 𝑟𝑛𝑔(𝐹𝑖);

∙ if 𝑖 is limit, then 𝐹𝑖 : 𝐴𝑓
𝛼𝑖

→ 𝐴𝑔
𝛼𝑖

;
∙ if 𝑖 < 𝑗, then 𝐹𝑖 ⊆ 𝐹𝑗 ;

∙ for all 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝑖), 𝐺(𝜂) = 𝐹𝑖(𝜂).

We will proceed by induction over 𝑖, for the case 𝑖 = 0, let 𝛼0 = 0 and 𝐹0(∅) = ∅.
Suppose 𝑖 = 𝛾 + 𝑛 with 𝑛 even is such that 𝐹𝑖 is a partial isomorphism, 𝐴𝑔

𝛼𝑖
⊆

𝑟𝑛𝑔(𝐹𝑖) for all 𝑗 < 𝑖, 𝐹𝑗 ⊆ 𝐹𝑖, and 𝐺(𝜂) = 𝐹𝑖(𝜂) for all 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝑖).
Let us choose 𝛼𝑖+1 to be a successor ordinal such that 𝛼𝑖 < 𝜃 < 𝛼𝑖+1 holds for

some 𝜃 ∈ 𝐶 and enumerate 𝐴𝑓
𝛼𝑖

by {𝜂𝑗 | 𝑗 < Ω} for some Ω < 𝜅. Denote by 𝐵𝑗 the

set {𝑥 ∈ 𝐴𝑓
𝛼𝑖+1

∖𝑑𝑜𝑚(𝐹𝑖) | 𝜂𝑗 ≺ 𝑥}.

By the induction hypothesis, we know that for all 𝑗 < Ω, 𝑥 ∈ 𝐵𝑗 , 𝐹𝑖(𝜂𝑗) ≺ 𝐺(𝑥).
By Remark 3.9, for all 𝜂 ∈ 𝐴𝑓 and 𝜉 ∈ 𝐴𝑔, < �𝑆𝑢𝑐𝐴𝑓 (𝜂) and < �𝑆𝑢𝑐𝐴𝑔 (𝜉) are
isomorphic. Thus, since |𝐴𝑓

𝛼𝑖
|, |𝐵0| < 𝜅, by (*) there is an embedding 𝐹 0

𝑖 from

(𝐴𝑓
𝛼𝑖

∪ 𝐵0,≺, <) to (𝐴𝑔,≺, <) that extends 𝐹𝑖 and for all 𝜂 ∈ 𝑑𝑜𝑚(𝐹 0
𝑖 ), 𝐹 0

𝑖 (𝜂) =
𝐺(𝜂).

For the case 𝐵𝑗 for 𝑗 > 0, let us suppose that 𝑡 < Ω is such that the following
hold:

∙ there is a sequence of embeddings {𝐹 𝑗
𝑖 | 𝑗 < 𝑡}, where 𝐹 𝑗

𝑖 is an embedding
from (𝐴𝑓

𝛼𝑖
∪
⋃︀

𝑙≤𝑗 𝐵𝑙,≺, <) into 𝐴𝑔,

∙ 𝐹 𝑙
𝑖 ⊆ 𝐹 𝑗

𝑖 holds for all 𝑙 < 𝑗 < 𝑡,

∙ for all 𝜂 ∈ 𝑑𝑜𝑚(𝐹 𝑗
𝑖 ), 𝐹 𝑗

𝑖 (𝜂) = 𝐺(𝜂).

Since |𝐴𝑓
𝛼𝑖

∪
⋃︀

𝑗<𝑡 𝐵𝑗 |, |𝐵𝑡| < 𝜅, by (*) there is an embedding 𝐹 𝑡
𝑖 from (𝐴𝑓

𝛼𝑖
∪⋃︀

𝑗≤𝑡 𝐵𝑗 ,≺, <) to (𝐴𝑔,≺, <) that extends
⋃︀

𝑗<𝑡 𝐹
𝑗
𝑖 and for all 𝜂 ∈ 𝑑𝑜𝑚(𝐹 𝑡

𝑖 ), 𝐹 𝑡
𝑖 (𝜂) =

𝐺(𝜂).
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Finally 𝐹𝑖+1 =
⋃︀

𝑗<Ω 𝐹 𝑗
𝑖 is as wanted.

The case 𝑖 = 𝛾 + 𝑛 with 𝑛 odd is similar. For 𝑖 limit, we define 𝛼𝑖 =
⋃︀

𝑗<𝑖 𝛼𝑗

and 𝐹𝛼𝑖 =
⋃︀

𝑗<𝑖 𝐹𝑗 .

It is clear that 𝐹 =
⋃︀

𝑗<𝜅 𝐹𝑗 witnesses that 𝐴𝑓 and 𝐴𝑔 are isomorphic as ordered

trees. Let us show that 𝑑𝑓 (𝜂) = 𝑑𝑔(𝐹 (𝜂)), suppose 𝜂 ∈ 𝐴𝑓 is a leaf. Let 𝑙 be the
least ordinal such that 𝜂 ∈ 𝐴𝑓

𝛼𝑙
. If there is 𝑛 < 𝜔 such that for all 𝑗 < 𝑙, 𝜂 �𝑛 /∈ 𝐴𝑓

𝛼𝑗
,

then by the way 𝐹 was constructed, 𝑑𝑓 (𝜂) = 𝑑𝑔(𝐹 (𝜂)). On the other hand, if for
all 𝑛 < 𝜔 there is 𝑗 < 𝑙 such that 𝜂 � 𝑛 ∈ 𝐴𝑓

𝛼𝑗
, then there is an 𝜔-cofinal ordinal 𝑖

such that 𝑠𝜔(𝜂) = 𝛼𝑖 and 𝑖 + 1 = 𝑙.
By the construction of 𝐴𝑓 (recall equation (5)) we know that

𝑑𝑓 (𝜂) =

{︃
𝑐𝑓 (𝜂) if 𝑠1(𝜂) < 𝑠𝜔(𝜂)

𝑓(𝑠1(𝜂)) if 𝑠1(𝜂) = 𝑠𝜔(𝜂).

Since 𝑠𝜔(𝜂) = 𝛼𝑖, either 𝑑𝑓 (𝜂) = 𝑓(𝑠1(𝜂)) (if 𝑠1(𝜂) = 𝛼𝑖) or 𝑑𝑓 (𝜂) = 𝑐𝑓 (𝜂) (if
𝑠1(𝜂) < 𝛼𝑖).

Therefore, if 𝑠1(𝜂) = 𝛼𝑖, then 𝑑𝑓 (𝜂) = 𝑓(𝛼𝑖).
Let us calculate 𝑑𝑓 (𝜂), when 𝑠1(𝜂) < 𝑠𝜔(𝜂). Notice that 𝜂 ∈ 𝐽𝑗 , so there is

𝜁 = (𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5) such that 𝜂 = 𝜁 ∈ 𝐽𝑗 .
From Definition 3.3 items (5) and (7), since 𝜁 ∈ (𝐽𝑓 )𝜔∖𝐽𝛼𝑖

𝑓 and for all 𝑛 < 𝜔,

𝜁 � 𝑛 ∈ 𝐽𝛼𝑖

𝑓 holds,

𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁4)) ≤ 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁2)) = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁3)) = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁5)).

Since 𝜂 = 𝜁,

𝑠7(𝜂) ≤ 𝑠8(𝜂) = 𝑠6(𝜂) = 𝑠8(𝜂) = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁5).

It is easy to see that 𝑠2(𝜂), 𝑠3(𝜂), 𝑠4(𝜂) ≤ 𝑠5(𝜂).
We conclude that 𝑠𝜔(𝜂) = 𝑠8(𝜂) = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁5) and 𝛼𝑖 = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁5). From

Definition 3.3 (8),

𝑐𝑓 (𝜂) = 𝑐𝑓 (𝜁) = 𝑓(𝑠𝑢𝑝(𝑟𝑛𝑔(𝜁5)) = 𝑓(𝛼𝑖).

Therefore 𝑑𝑓 (𝜂) = 𝑓(𝛼𝑖) in both cases (𝑠1(𝜂) = 𝑠𝜔(𝜂) and 𝑠1(𝜂) < 𝑠𝜔(𝜂)).
By the same argument and using the definition of 𝐹 , we can conclude that

𝑑𝑔(𝐹 (𝜂)) = 𝑔(𝛼𝑖). Finally since 𝑖 is a limit ordinal with cofinality 𝜔, 𝛼𝑖 is an
𝜔-limit of 𝐶. Thus 𝑑𝑓 (𝜂) = 𝑓(𝛼𝑖) = 𝑔(𝛼𝑖) = 𝑑𝑔(𝐹 (𝜂)) and 𝐹 is a coloured tree
isomorphism.

Now let us prove that if 𝐴𝑓 and 𝐴𝑔 are isomorphic ordered coloured trees, then
𝑓 =𝛽

𝜔 𝑔.
Let us start by defining the following function 𝐻𝑓 ∈ 𝛽𝜅. For every 𝛼 ∈ 𝜅 with

cofinality 𝜔, define 𝐵𝛼 = {𝜂 ∈ 𝐴𝑓∖𝐴𝑓
𝛼 | 𝑑𝑜𝑚(𝜂) = 𝜔 ∧ ∀𝑛 < 𝜔 (𝜂 � 𝑛 ∈ 𝐴𝑓

𝛼)}.
Notice that by the construction of 𝐴𝑓 and the definition of 𝐴𝑓

𝛼, for all 𝜂 ∈ 𝐵𝛼 we
have 𝑑𝑓 (𝜂) = 𝑓(𝑠𝜔(𝜂)) = 𝑓(𝛼). Therefore, the value of 𝑓(𝛼) can be obtained from
𝐵𝛼 and 𝑑𝑓 , and we can define the function 𝐻𝑓 ∈ 𝛽𝜅 as :

𝐻𝑓 (𝛼) =

{︃
𝑓(𝛼) if 𝑐𝑓(𝛼) = 𝜔

0 otherwise.

This function can be obtained from the 𝜅-representation {𝐴𝑓
𝛼}𝛼<𝜅 and 𝑑𝑓 . It is

clear that 𝑓 =𝛽
𝜔 𝐻𝑓 .

Claim 3.10.1. If 𝐴𝑓 and 𝐴𝑔 are isomorphic ordered coloured trees, then 𝐻𝑓 =𝛽
𝜔 𝐻𝑔.

Proof. Let 𝐹 be an ordered coloured tree isomorphism. It is easy to see that
{𝐹 [𝐴𝑓

𝛼]}𝛼<𝜅 is a 𝜅-representation. Define 𝐶 = {𝛼 < 𝜅 | 𝐹 [𝐴𝑓
𝛼] = 𝐴𝑔

𝛼}. Since 𝐹 is
an isomorphism, for all 𝛼 ∈ 𝐶, 𝐻𝑓 (𝛼) = 𝐻𝑔(𝛼). Therefore it is enough to show that
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𝐶 is 𝜔-closed and unbounded. By the definition of 𝜅-representation, if (𝛼𝑛)𝑛<𝜔 is
a sequence of elements of 𝐶 cofinal to 𝛾, then 𝐴𝑔

𝛾 =
⋃︀

𝑛<𝜔 𝐴𝑔
𝛼𝑛

=
⋃︀

𝑛<𝜔 𝐹 [𝐴𝑓
𝛼𝑛

] =

𝐹 [𝐴𝑓
𝛾 ]. We conclude that 𝐶 is 𝜔-closed.

Let us finish by showing that 𝐶 is unbounded. Fix an ordinal 𝛼 < 𝜅, let us
construct a sequence (𝛼𝑛)𝑛≤𝜔 such that 𝛼𝜔 ∈ 𝐶 and 𝛼𝜔 > 𝛼. Define 𝛼0 = 𝛼. For
every odd 𝑛, define 𝛼𝑛+1 to be the least ordinal bigger than 𝛼𝑛 such that 𝐹 [𝐴𝑓

𝛼𝑛
] ⊆

𝐴𝑔
𝛼+1. For every even 𝑛, define 𝛼𝑛+1 to be the least ordinal bigger than 𝛼𝑛 such

that 𝐴𝑔
𝛼𝑛

⊆ 𝐹 [𝐴𝑓
𝛼+1]. Define 𝛼𝜔 =

⋃︀
𝑛<𝜔 𝛼𝑛. Clearly

⋃︀
𝑖<𝜔 𝐹 [𝐴𝑓

𝛼2𝑖
] =

⋃︀
𝑖<𝜔 𝐴𝑔

𝛼2𝑖+1
.

We conclude that 𝛼𝜔 ∈ 𝐶 �

�

Remark 3.11. Same as in the construction of the coloured trees 𝐽𝑓 , the function𝑓 ∈
𝛽𝜅 is only used to define the color function in the construction of 𝐴𝑓 . So if 𝑓, 𝑔 ∈ 𝛽𝜅

and 𝛼 are such that 𝑓 � 𝛼 = 𝑔 � 𝛼, then 𝐽𝛼
𝑓 = 𝐽𝛼

𝑔 . As a consequence 𝑓 � 𝛼 = 𝑔 � 𝛼
implies that 𝐴𝑓

𝛼 = 𝐴𝑔
𝛼.

Notice that the only property of < �𝑆𝑢𝑐𝐴𝑓 (𝜂) that we used in the previous the-
orem was (*). Therefore, the previous theorem can be generalized to the following
corollary.

Corollary 3.12. Suppose 𝑙 is a 𝜅-colorable linear order and 𝛽 ≤ 𝜅. Then for any
𝑓 ∈ 𝛽𝜅, there is an ordered coloured tree 𝐴𝑓 (𝑙) that satisfies: For all 𝑓, 𝑔 ∈ 𝛽𝜅,

𝑓 =𝛽
𝜔 𝑔 ⇔ 𝐴𝑓 (𝑙) ∼= 𝐴𝑔(𝑙).

4. The Models

4.1. Generalized Ehrenfeucht-Mostowski models. In this section we will use
the generalized Ehrenfeucht-Mostowski models (see [13] Chapter VII. 2 or [8] Sec-
tion 8) to construct the models of unsuperstable theories, we will use the previous
constructed ordered coloured trees (from 𝐼) as the skeleton of the construction.

Definition 4.1 (Generalized Ehrenfeucht-Mostowski models). We say that a func-
tion Φ is proper for 𝐾𝛾

𝑡𝑟, if there is a vocabulary ℒ1 and for each 𝐴 ∈ 𝐾𝛾
𝑡𝑟, there is

a model ℳ1 and tuples 𝑎𝑠, 𝑠 ∈ 𝐴, of elements of ℳ1 such that the following two
hold:

∙ every element of ℳ1 is an interpretation of some 𝜇(𝑎𝑠), where 𝜇 is a ℒ1-
term;

∙ 𝑡𝑝𝑎𝑡(𝑎𝑠, ∅,ℳ1) = Φ(𝑡𝑝𝑎𝑡(𝑠, ∅, 𝐴)).

Notice that for each 𝐴, the previous conditions determine ℳ1 up to isomor-
phism. We may assume ℳ1, 𝑎𝑠, 𝑠 ∈ 𝐴, are unique for each 𝐴. We denote ℳ1 by
𝐸𝑀1(𝐴,Φ). We call 𝐸𝑀1(𝐴,Φ) an Ehrenfeucht-Mostowski model.

Suppose 𝑇 is a countable complete theory in a countable vocabulary ℒ, ℒ1 a
Skolemization of ℒ, and 𝑇 1 the Skolemization of 𝑇 by ℒ1. If there is Φ a proper
function for 𝐾𝜆

𝑡𝑟, then for every 𝐴 ∈ 𝐾𝛾
𝑡𝑟, we will denote by EM(𝐴,Φ) the ℒ-

reduction of 𝐸𝑀1(𝐴,Φ). The following result ensure the existence of a proper
function Φ for unsuperstable theories 𝑇 and 𝛾 = 𝜔.

Fact 4.2 (Shelah, [12] Theorem 1.3, proof in [13] Chapter VII 3). Suppose ℒ ⊆ ℒ1

are vocabularies, 𝑇 is a complete first order theory in ℒ, 𝑇 1 is a complete theory
in ℒ1 extending 𝑇 and with Skolem-functions. Suppose 𝑇 is unsuperstable and
{𝜑𝑛(𝑥, 𝑦𝑛) | 𝑛 < 𝜔} witnesses this. Then there is a proper function Φ such that for
all 𝐴 ∈ 𝐾𝜔

𝑡𝑟, 𝐸𝑀1(𝐴,Φ) is a model of 𝑇 1, and for 𝑠 ∈ 𝑃𝐴
𝑛 , 𝑡 ∈ 𝑃𝐴

𝜔 , 𝐸𝑀1(𝐴,Φ) |=
𝜑𝑛(𝑎𝑡, 𝑎𝑠) if and only if 𝐴 |= 𝑠 ≺ 𝑡.

The models that we will construct are of the form 𝐸𝑀(𝐴,Φ).
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4.2. Reduction of the Isomorphism Relation. Before we deal with the con-
struction of the models and the reduction, we need to do some preparations.

Definition 4.3. For any 𝐴 ∈ 𝐾𝜔
𝑡𝑟 with size 𝜅 and A a 𝜅-representation of 𝐴, we

define 𝑆(A) as the set

{𝛿 < 𝜅 | 𝛿 a limit ordinal, ∃𝜂 ∈ 𝑃𝐴
𝜔 , {𝜂�𝑛 | 𝑛 < 𝜔} ⊆ 𝐴𝛿 ∧ ∀𝛼 < 𝛿({𝜂�𝑛 | 𝑛 < 𝜔} ̸⊆ 𝐴𝛼)}

Fact 4.4 (Shelah, [12] Fact 2.3, Hyttinen-Tuuri, [8] Lemma 8.6,). 𝑆 is a 𝐶𝑈𝐵-
invariant function.

This fact allows us to define 𝑆(𝐴) for 𝐴 ∈ 𝐾𝜔
𝑡𝑟 as

[︀
𝑆(A)

]︀
=2

𝐶𝑈𝐵

for any A 𝜅-

representation of 𝐴.
Notice that for a given 𝑓 ∈ 𝜅𝜅 and A = ⟨𝐴𝑓

𝛼 | 𝛼 < 𝜅⟩, the 𝜅-representation
from Theorem 3.10, 𝑆(𝐴𝑓 ) is the set of 𝜔-cofinal ordinals 𝛿 for which there is

𝜂 ∈ (𝐴𝑓 )𝜔∖𝐴𝑓
𝛿 such that for all 𝑛 < 𝜔, 𝜂 � 𝑛 ∈ 𝐴𝑓

𝛿 . Thus, 𝑆(𝐴𝑓 ) does not depend
on the color function. This can be fixed by restricting ourselves to the generalized
Cantor space 𝑓 ∈ 2𝜅 and making a small modification to the trees 𝐴𝑓 .

Definition 4.5. Let 𝐼 be the (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠)-nice 𝜅-colorable linear
order from Section 2. For every 𝑓 ∈ 2𝜅, let 𝐴𝑓 be the tree constructed in Section
3. Define the tree 𝐴𝑓 ⊆ 𝐴𝑓 by: 𝑥 ∈ 𝐴𝑓 if and only if 𝑥 is not a leaf of 𝐴𝑓 or 𝑥 is a
leaf such that 𝑑𝑓 (𝑥) = 1. Denote by 𝒜𝑓 the model EM(𝐴𝑓 ,Φ).

Notice that for all 𝜂 ∈ 𝐴𝑓 such that 𝜂 /∈ 𝑃
𝐴𝑓
𝜔 , 𝑆𝑢𝑐𝐴𝑓

(𝜂) is infinite. On the

other hand by Lemma 3.5, there is 𝜉 ∈ 𝑃
𝐴𝑓
𝜔 such that 𝜂 ≺ 𝜉. Therefore, since 𝐼 is

(𝜅, 𝑏𝑠, 𝑏𝑠)-nice, by Fact 3.8 the trees 𝐴𝑓 are locally (𝜅, 𝑏𝑠, 𝑏𝑠)-nice. Notice that since
the branches of the trees 𝐴𝑓 have length at most 𝜔 + 1 and 𝐼 is (< 𝜅, 𝑏𝑠)-stable,
then the trees 𝐴𝑓 are (< 𝜅, 𝑏𝑠)-stable.

By the way the models EM(𝐴,Φ) were defined, we know that if 𝐴,𝐴′ ∈ 𝐾𝜔
𝑡𝑟 are

isomorphic, then EM(𝐴,Φ) and EM(𝐴′,Φ) are isomorphic. Thus if 𝐴𝑓 and 𝐴𝑔 are
isomorphic, then 𝒜𝑓 and 𝒜𝑔 are isomorphic.

Notice that since we are working under the assumption 𝜅 is an uncountable
cardinal satisfying 𝜅<𝜅 = 𝜅, 𝜅 > |ℒ1|.

From Theorem 3.10 we know that for all 𝑓, 𝑔 ∈ 𝛽𝜅,

𝑓 =2
𝜔 𝑔 ⇔ 𝐴𝑓 ∼= 𝐴𝑔.

By using Fact 4.4 we can obtain a similar characterization of =2
𝜔, with the operator

𝑆. The following lemma states this characterization and relays essentially on Fact
4.4.

Lemma 4.6. For every 𝑓, 𝑔 ∈ 2𝜅:

𝑓 =2
𝜔 𝑔 if and only if 𝑆(𝐴𝑓 ) = 𝑆(𝐴𝑔).

Proof. By Fact 4.4, 𝑆 is 𝐶𝑈𝐵-invariant, therefore it is enough to find a 𝜅-representation
A𝑓 of 𝐴𝑓 for every 𝑓 ∈ 2𝜅, such that for all 𝑓, 𝑔 ∈ 2𝜅, 𝑓 =2

𝜔 𝑔 if and only
A𝑓 =2

𝐶𝑈𝐵 A𝑔.
Similar as in the proof of Theorem 3.10, for all 𝑓 ∈ 2𝜅 let us define the 𝜅-

representation A𝑓 = ⟨𝐴𝑓,𝛼 | 𝛼 < 𝜅⟩ by

𝐴𝑓,𝛼 = {𝜂 ∈ 𝐴𝑓 | 𝑟𝑛𝑔(𝜂) ⊆ 𝜃 × 𝜔 × 𝜃 × 𝜔 × 𝜃4 for some 𝜃 < 𝛼}.
By definition

𝑆(A𝑓 ) = {𝛿 < 𝜅 | ∃𝜂 ∈ 𝑃
𝐴𝑓
𝜔 , {𝜂�𝑛 | 𝑛 < 𝜔} ⊆ (𝐴𝑓,𝛿 & ∀𝛼 < 𝛿({𝜂�𝑛 | 𝑛 < 𝜔} ̸⊆ 𝐴𝑓,𝛼)}.



ON UNSUPERSTABLE THEORIES IN GDST 21

Claim 4.6.1. 𝛿 ∈ 𝑆(A𝑓 ) if and only if 𝑐𝑓(𝛿) = 𝜔 and there is 𝜂 ∈ 𝑃
𝐴𝑓
𝜔 with

𝑚𝑎𝑥({𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂𝑖)) | 𝑖 ≤ 8}) = 𝛿 .

Proof. The direction from right to left follows from Definition 4.3. The other di-
rection follows from the definition of 𝑆(A𝑓 ) and 𝐴𝑓,𝛼. �

By the way 𝐴𝑓 was constructed, 𝜂 ∈ 𝑃
𝐴𝑓
𝜔 if and only if 𝜂 ∈ 𝑃𝐴𝑓

𝜔 and 𝑑𝑓 (𝜂) = 1.

By the previous Claim we know that if 𝛿 ∈ 𝑆(A𝑓 ) and 𝜂 ∈ 𝑃
𝐴𝑓
𝜔 witnesses it, then

𝜂 ∈ 𝑃𝐴𝑓

𝜔 and 1 = 𝑑𝑓 (𝜂). In the same way as in the proof of Theorem 3.10, we can
conclude that 𝑑𝑓 (𝜂) = 𝑓(𝑚𝑎𝑥{𝑠1(𝜂), 𝑠8(𝜂)}), so

1 = 𝑓(𝑚𝑎𝑥{𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂1)), 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂8))}).

Recall from the proof of Theorem 3.10 that

𝑚𝑎𝑥({𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂𝑖)) | 𝑖 ≤ 8}) = 𝑚𝑎𝑥{𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂1)), 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂8))}.
We conclude that 1 = 𝑓(𝛿).

Therefore we can rewrite 𝑆(A𝑓 ) as

𝑆(A𝑓 ) = {𝛿 < 𝜅 | 𝑐𝑓(𝛿) = 𝜔 ∧ 𝑓(𝛿) = 1}.
It follows that 𝑆(A𝑓 ) =2

𝐶𝑈𝐵 𝑆(A𝑔) holds if and only if 𝑓 =2
𝜔 𝑔. �

Now we proceed to prove that the models 𝒜𝑓 are as wanted, i.e. 𝑓 =2
𝜔 𝑔 if and

only if 𝒜𝑓 ∼=𝑇 𝒜𝑔.

Fact 4.7 (Shelah, [12] Theorem 2.4). Suppose 𝑇 is a countable complete unsu-
perstable theory in a countable vocabulary. If 𝜅 is a regular uncountable cardinal,
𝐴1, 𝐴2 ∈ 𝐾𝜔

𝑡𝑟 have size 𝜅, 𝐴1, 𝐴2 are locally (𝜅, 𝑏𝑠, 𝑏𝑠)-nice and (< 𝜅, 𝑏𝑠)-stable,
EM(𝐴1,Φ) is isomorphic to EM(𝐴2,Φ), then 𝑆(𝐴1) = 𝑆(𝐴2).

Lemma 4.8. If 𝑇 is a countable complete unsuperstable theory over a countable
vocabulary, then for all 𝑓, 𝑔 ∈ 2𝜅, 𝑓 =2

𝜔 𝑔 if and only if 𝒜𝑓 and 𝒜𝑔 are isomorphic.

Proof. From left to right. Suppose 𝑓, 𝑔 ∈ 2𝜅 are such that 𝑓 =2
𝜔 𝑔. By Theorem

3.10 and Definition 4.5 we know that 𝑓 =2
𝜔 𝑔 if and only if 𝐴𝑓

∼= 𝐴𝑔. Finally
𝐴𝑓

∼= 𝐴𝑔 implies that 𝒜𝑓 and 𝒜𝑔 are isomorphic.
From right to left. Suppose 𝑓, 𝑔 ∈ 2𝜅 are such that 𝒜𝑓 and 𝒜𝑔 are isomorphic.

By Definition 4.5 and Fact 4.7, 𝑆(𝐴𝑓 ) = 𝑆(𝐴𝑔). From Lemma 4.6 we conclude
𝑓 =2

𝜔 𝑔. �

Theorem 4.9. If 𝑇 is a countable complete unsuperstable theory over a countable
vocabulary, ℒ, then =2

𝜔 →˓𝑐
∼=𝑇 .

Proof. Let us construct a continuous function 𝐺 : 2𝜅 → 2𝜅 with 𝒜𝐺(𝑓)
∼= 𝐸𝑀(𝐴𝑓 ,Φ).

By Remark 3.11, Definition 4.5, and the definition of 𝐴𝑓,𝛼,

𝑓 � 𝛼 = 𝑔 � 𝛼 ⇔ 𝐴𝑓,𝛼 = 𝐴𝑔,𝛼.

Let us denote by 𝑆𝐻(𝑋) the Skolem-hull of 𝑋, i.e. {𝜇(𝑎) | 𝑎 ∈ 𝑋,𝜇 an ℒ1-term}.
For all 𝛼, 𝐴 ∈ 𝐾𝜔

𝑡𝑟, and a 𝜅-representation A = ⟨𝐴𝛼 | 𝛼 < 𝜅⟩ of 𝐴, let us denote by

𝐴𝛼 the set {𝑎𝑠 | 𝑠 ∈ 𝐴𝛼} (recall the construction of 𝐸𝑀1(𝐴,Φ) in Definition 4.1).
Since for all 𝛼 < 𝜅,

𝐴𝑓,𝛼 = 𝐴𝑔,𝛼 ⇔ 𝑆𝐻(𝐴𝑓,𝛼) = 𝑆𝐻(𝐴𝑔,𝛼).

Thus
𝑓 � 𝛼 = 𝑔 � 𝛼 ⇔ 𝑆𝐻(𝐴𝑓,𝛼) � ℒ = 𝑆𝐻(𝐴𝑔,𝛼) � ℒ.

For every 𝑓 ∈ 2𝜅 there is a bijection 𝐸𝑓 : 𝑑𝑜𝑚(𝐸𝑀(𝐴𝑓 ,Φ)) → 𝜅, such that for
every 𝑓, 𝑔 ∈ 2𝜅 and 𝛼 < 𝜅 it holds that: If 𝑓 � 𝛼 = 𝑔 � 𝛼, then

𝐸𝑓 � 𝑑𝑜𝑚(𝑆𝐻(𝐴𝑓,𝛼) � ℒ) = 𝐸𝑔 � 𝑑𝑜𝑚(𝑆𝐻(𝐴𝑔,𝛼) � ℒ)
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(see [10]).
Let 𝜋 be the bijection in Definition 1.4, define the function 𝐺 by:

𝐺(𝑓)(𝛼) =

⎧⎪⎨⎪⎩
1 if 𝛼 = 𝜋(𝑚, 𝑎1, 𝑎2, . . . , 𝑎𝑛) and

𝐸𝑀(𝐴𝑓 ,Φ) |= 𝑄𝑚(𝐸−1
𝑓 (𝑎1), 𝐸−1

𝑓 (𝑎2), . . . , 𝐸−1
𝑓 (𝑎𝑛))

0 otherwise.

Clearly 𝒜𝐺(𝑓)
∼= 𝐸𝑀(𝐴𝑓 ,Φ).

To show that 𝐺 : 2𝜅 → 2𝜅 is continuous, let [𝜁 � 𝛼] be a basic open set and
𝜉 ∈ 𝐺−1[[𝜁 � 𝛼]]. There is 𝛽 < 𝜅 such that for all 𝛾 < 𝛼, if 𝛾 = 𝜋(𝑚, 𝑎1, . . . , 𝑎𝑛),

then 𝐸−1
𝜉 (𝑎𝑖) ∈ 𝑑𝑜𝑚(𝑆𝐻(𝐴𝜉,𝛽)�ℒ) holds for all 𝑖 ≤ 𝑛. Since for all 𝜂 ∈ [𝜉�𝛽] it holds

that 𝑆𝐻(𝐴𝜂,𝛽)�ℒ = 𝑆𝐻(𝐴𝜉,𝛽)�ℒ, for any 𝛾 < 𝛼 that satisfies 𝛾 = 𝜋(𝑚, 𝑎1, . . . , 𝑎𝑛)

𝐸𝑀(𝐴𝜂,Φ) |= 𝑄𝑚(𝐸−1
𝜂 (𝑎1), 𝐸−1

𝜂 (𝑎2), . . . , 𝐸−1
𝜂 (𝑎𝑛))

if and only if

𝐸𝑀(𝐴𝜉,Φ) |= 𝑄𝑚(𝐸−1
𝜉 (𝑎1), 𝐸−1

𝜉 (𝑎2), . . . , 𝐸−1
𝜉 (𝑎𝑛)).

We conclude that 𝐺 is continuous. �

4.3. Corollaries. In this section we will prove Theorem A and Theorem B. For
any stationary set 𝑋 ⊆ 𝜅, let us denote by ♢𝑋 the following principle:

There is a sequence {𝐷𝛼 ⊂ 𝛼 | 𝛼 ∈ 𝑋} such that for all 𝐵 ⊆ 𝜅, the set {𝛼 ∈ 𝑋 |
𝐷𝛼 = 𝐵 ∩ 𝛼} is stationary.

Let us denote by ♢𝜔 the diamond principle ♢𝑋 when 𝑋 = {𝛼 < 𝜅 | 𝑐𝑓(𝛼) = 𝜔}.

Fact 4.10 (Hyttinen-Kulikov-Moreno, [6] Lemma 2). Assume 𝑇 is a countable
complete classifiable theory over a countable vocabulary. If ♢𝜔 holds, then ∼=𝑇 →˓𝑐

=2
𝜔.

Fact 4.11 (Friedman-Hyttinen-Kulikov, [2] Theorem 77). If a first order countable
complete theory over a countable vocabulary 𝑇 is classifiable, then =2

𝜔 ̸ →˓𝑐
∼=𝑇 .

Corollary 4.12. Suppose 𝜅 = 𝜆+ = 2𝜆 and 𝜆𝜔 = 𝜆. If 𝑇1 is a countable complete
classifiable theory, and 𝑇2 is a countable complete unsuperstable theory, then ∼=𝑇1

→˓𝑐
∼=𝑇2

and ∼=𝑇2
̸ →˓𝑐

∼=𝑇1
.

Proof. Since 𝜆𝜔 = 𝜆, 𝑐𝑓(𝜆) > 𝜔. By [11] we know that if 𝜅 = 𝜆+ = 2𝜆 and
𝑐𝑓(𝜆) > 𝜔, then ♢𝜔 holds. The proof follows from Theorem 4.9, Fact 4.10, and
Fact 4.11. �

We will finish this section with a corollary about Σ1
1-completeness. Before we

state the corollary we need to recall some definitions from [4] in particular the
definition of Dl*𝑆(Π1

2). For more on Dl*𝑆(Π1
2) see [4].

A Π1
2-sentence 𝜑 is a formula of the form ∀𝑋∃𝑌 𝜙 where 𝜙 is a first-order sentence

over a relational language ℒ as follows:

∙ ℒ has a predicate symbol 𝜖 of arity 2;
∙ ℒ has a predicate symbol X of arity 𝑚(X);
∙ ℒ has a predicate symbol Y of arity 𝑚(Y);
∙ ℒ has infinitely many predicate symbols (B𝑛)𝑛∈𝜔, each B𝑛 is of arity 𝑚(B𝑛).

Definition 4.13. For sets 𝑁 and 𝑥, we say that 𝑁 sees 𝑥 iff 𝑁 is transitive,
p.r.-closed, and 𝑥 ∪ {𝑥} ⊆ 𝑁 .

Suppose that a set 𝑁 sees an ordinal 𝛼, and that 𝜑 = ∀𝑋∃𝑌 𝜙 is a Π1
2-sentence,

where 𝜙 is a first-order sentence in the above-mentioned language ℒ. For every
sequence (𝐵𝑛)𝑛∈𝜔 such that, for all 𝑛 ∈ 𝜔, 𝐵𝑛 ⊆ 𝛼𝑚(B𝑛), we write

⟨𝛼,∈, (𝐵𝑛)𝑛∈𝜔⟩ |=𝑁 𝜑
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to express that the two hold:

(1) (𝐵𝑛)𝑛∈𝜔 ∈ 𝑁 ;
(2) ⟨𝑁,∈⟩ |= (∀𝑋 ⊆ 𝛼𝑚(X))(∃𝑌 ⊆ 𝛼𝑚(Y))[⟨𝛼,∈, 𝑋, 𝑌, (𝐵𝑛)𝑛∈𝜔⟩ |= 𝜙], where:

∙ ∈ is the interpretation of 𝜖;
∙ 𝑋 is the interpretation of X;
∙ 𝑌 is the interpretation of Y, and
∙ for all 𝑛 ∈ 𝜔, 𝐵𝑛 is the interpretation of B𝑛.

Definition 4.14. Let 𝜅 be a regular and uncountable cardinal, and 𝑆 ⊆ 𝜅 station-
ary.

Dl*𝑆(Π1
2) asserts the existence of a sequence �⃗� = ⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ satisfying the

following:

(1) for every 𝛼 ∈ 𝑆, 𝑁𝛼 is a set of cardinality < 𝜅 that sees 𝛼;
(2) for every 𝑋 ⊆ 𝜅, there exists a club 𝐶 ⊆ 𝜅 such that, for all 𝛼 ∈ 𝐶 ∩ 𝑆,

𝑋 ∩ 𝛼 ∈ 𝑁𝛼;
(3) whenever ⟨𝜅,∈, (𝐵𝑛)𝑛∈𝜔⟩ |= 𝜑, with 𝜑 a Π1

2-sentence, there are stationarily
many 𝛼 ∈ 𝑆 such that |𝑁𝛼| = |𝛼| and ⟨𝛼,∈, (𝐵𝑛 ∩ (𝛼𝑚(B𝑛)))𝑛∈𝜔⟩ |=𝑁𝛼

𝜑.

Fact 4.15 (Fernandes-Moreno-Rinot, [4] Theorem C). If Dl*𝑆(Π1
2) holds for 𝑆 =

{𝛼 < 𝜅 | 𝑐𝑓(𝛼) = 𝜔}, then =2
𝜔 is Σ1

1-complete.

Corollary 4.16. If Dl*𝑆(Π1
2) holds for 𝑆 = {𝛼 < 𝜅 | 𝑐𝑓(𝛼) = 𝜔}, and 𝑇 is a

countable complete unsuperstable theory, then ∼=𝑇 is Σ1
1-complete.

Proof. It follows from Fact 4.15 and Theorem 4.9. �

Fact 4.17 (Fernandes-Moreno-Rinot, [3] Lemma 4.10 and Proposition 4.14). There
exists a < 𝜅-closed 𝜅+-cc forcing extension in which Dl*𝑆(Π1

2) holds.

Corollary 4.18. There exists a < 𝜅-closed 𝜅+-cc forcing extension in which for
all countable complete unsuperstable theory 𝑇 , ∼=𝑇 is Σ1

1-complete.
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