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Abstract

We study the Borel reducibility of isomorphism relations in the generalized Baire space «*. In the
main result we show for inaccessible «, that if T is a classifiable theory and T’ is stable with OCP, then
the isomorphism of models of T is Borel reducible to the isomorphism of models of T'.

1 Introduction

One of the main motivations behind writing [FHK14] was the possibility that Borel reducibility in gener-
alized Baire spaces can be used to measure the complexity of countable first-order theories (we concen-
trated on elementary classes with countable vocabulary, since for them there is a lot of structure theory):
We say that T is simpler than T’ if the isomorphism relation among models of T with universe x (=)
is Borel (or continuously) reducible to the isomorphism relation among the models of T’ with universe
. Here, and throughout the paper, we assume that «<* = x > N, (see [FHK14] for the discussion why
x = Ny does not work). The results reviewed in this introduction often require further assumptions on
&, but for sake of clarity the details are omitted and the reader is referred to the original papers for
the exact assumptions on x. The question when such reduction exists turned out to be harder than we
expected.

In [FHK14] the results were negative: It was shown that if T is classifiable (superstable with NOTOP and
NDOP) and shallow and T’ is not, then 27 is not Borel reducible to 21 and that at least consistently, if
T is classifiable and T’ is not, then = is not Borel reducible to =7.

In [HK14], some positive results were obtained: If V = L, then all the Z% equivalence relations are
reducible to =prp, where DLO is the theory of dense linear orderings without end points (in [FS89] it
was proved for x = w that =pj is Borel complete, and the proof in [HK14] is similar). Also it was
shown that consistently the same is true for T, (see below). Obviously, there are theories for which
this holds trivially e.g. graphs (even random graphs with a bit more work). Also it was shown that if a
theory T’ has this property and V = L, then >/ is £l-complete.

Finally, by combining Corollary 15 from [FHK] and the proof of Theorem 16 from [HK14], it follows that
if T is classifiable and shallow, then =7 is reducible to =7, .

In this paper we improve two of the results mentioned above. We start by showing that if T is clas-
sifiable, then =7 is Borel reducible to =t (again, see below) and that if V = L, then =7, is Z% -complete.



And then under heavy assumptions on x, we generalize a lot: We show that if T is classifiable and T is
stable with OCP (see below), then =t is continuously reducible to = and if in addition V = L, then
>~ is 1-complete. The property OCP implies that T’ is unsuperstable and it is common among stable
unsuperstable theories. E.g. both T, and T+, mentioned above have it. It is also easy to find complete
theories of abelian groups (or more generally elementary theories of ultrametric spaces) that have the
property. What does not seem to be easy, is to find a strictly stable theory that does not have the property.

We are going to work on the generalised Baire space x* with the following topology. For every { € x<¥,
we call the set

(6] ={n ex*IC Cn}

a basic open set. Then the open sets are of the form |J X where X is a collection of basic open sets. The
x-Borel space of «* is the smallest set, which contains the basic open sets, and is closed under unions
and intersections, both of length x. A Borel set, is any element of the x-Borel space. Suppose X and Y
are subsets of x*, a function f : X — Y is a Borel function, if for every open set A C Y, f~![A] is a Borel
set in X of x*.

Suppose X and Y are subsets of «*, let E; and E; be equivalent relations on X and Y respectively.
If a function f : X — Y satisfies E1(x,y) < Ex(f(x), f(y)), we say that f is a reduction of E; to Ep. If
there exists a Borel function that is a reduction, we say that E; is Borel reducible to E; and we denote
it by E; <p E,. If there exists a continuous function that is a reduction, we say that E; is continuously
reducible to E; and we denote it by E; <. E».

For every regular cardinal p < x, we say that a set A C « is a y-club if it is unbounded and closed
under p-limits. Clearly the intersection of two y-clubs is also a y-club and every p-club is stationary.

On the space *, we say that f,¢ € «* are E}_;, equivalent (f E}_,, &) if the set {o < x|f(a) = g(a)}

contains a p-club.

2 Classifiable Theories

Let us fix a countable relation vocabulary £ = {R, ,,)|n,m € w\{0}}, where R(, ,, is an n-ary relation.
Fix a bijection g : w\{0} x w\{0} — w, define Py(, ;) := R(y,,) and rewrite £ = {Py[n < w}. Denote

¢ (a) by (g7 '(«), g5 (). When we describe a complete theory T in a vocabulary L C £, we think it
as a complete L-theory T U {Vx—P,(%)|P, € L\L}. We can code L-structures with domain « as follows.

Definition 2.1. Fix 7t a bijection between k= and x. For every 11 € x* define the structure A, with domain x
as follows.
For every tuple (ay,ay,...,a,) in k"

A, _
(a1,ap,...,an) € Py & n =g 1(m) and y(t(m,aq,a,...,a,)) > 0.
This defines a map from x* onto the set of L-structures with domain x.

Definition 2.2. (The isomorphism relation) Assume T a complete first order theory in a countable vocabulary and
1,¢ € k*, we define =t as the relation

{0, ONA =T As BT, Ay = Ag) or (Ay = T, Az = T)}



The following game is the usual Ehrenfeucht-Fraissé game with structures of domain x and moves coded
by ordinals. The Ehrenfeucht-Fraissé game will be useful for the study of =7 when T is classifiable.
Shelah proved [She90] that when T is classifiable, two models A and B are isomorphic if and only if the
second player has a winning strategy in the Ehrenfeucht-Fraissé game EF¥ (A, B).

We will show that the existence of a winning strategy depends on the existence of a club on x. We can
study the isomorphism relation by studying the relation E;_ .-

Definition 2.3. (Ehrenfeucht-Fraissé game) Fix { X, },<x an enumeration of the elements of Py (x) and { f, }y<x
an enumeration of all the functions with domain in Py (x) and range in Py (x). For every pair of structures A and
B with domain x, the EF}, (A, B) is a game played by the players I and II as follows.

In the n-th move, first 1 chooses an ordinal B, < x such that X,Bn—l C X,Bn’ and then II an ordinal 0,, < x such
that Xg, C dom(fe,) Nrang(fe,) and fo, | C fo, (ifn =0then Xg | = Q@and fo | = Q).

The game finishes after w moves. The player Il wins if U;, fo, : A — B is a partial isomorphism, otherwise the
player I wins.

For every a < k we can define the restricted game EF¥, (A [, B [4) for structures A and B with domain
x, as follows.

In the n-th move, first I choose an ordinal B, < « such that Xﬁn Cua, X/;YH cX Bus and then II an ordinal
0n < a such that dom(fy, ), rang(fe,) C &, Xp, C dom(fe,) Nrang(fy,) and fo, | C fo, (if n = 0 then
Xg, , =@ and fg, , = D). The game finishes after w moves. The player II wins if Uj. fg, : A [a— B [«
is a partial isomorphism, otherwise the player I wins.

Notice that now wining strategies are functions from «<* to .

We will write I T EFS, (A [, B [4) when I has a winning strategy in the game EF{, (A [4, B [4), similarly
we write II T EFY (A [, B [«) when II has a winning strategy.

Lemma 2.4. If A and B are structures with domain x, then the following hold:
o II 1 EFS,(A,B) <= I1 T EF, (A [, B [2) for club-many «.
o I1EFS (A, B) <= 171EFS(A |4, B |4) for club-many a.

Proof. Let us start by, Il 1 EF, (A, B) = II 1 EFS (A [, B [4) for club-many «.

Suppose ¢ is a winning strategy for II and denote by C, the club {a < x : c[a~“] C a}. De-
fine the function H : ¥ — x by H(a) = sup(rang(fy) Udom(fy) U X,), this function defines the club
Ch == {7y <x|Va < y(H(a) <)}

For all « € C; N Cp, « satisfies c[a=“] C « and every B < a satisfies sup(rang(fg) Udom(fg)) < a. Then
the domain and range of fg are subsets of a. We conclude that ¢ [,<v is a winning strategy for II in the
restricted game EFY, (A [4, B [4). Since the intersection of clubs is a club, then there are club many «
such that IT 1 EFE (A [4, B [a).

The case I 1 EFX, (A, B) = I 1 EFS (A [, B [4) for club-many « is similar.

The two directions (from left to right) are proved in the same way, and thus we show only one. Suppose
there are club many & such that II T EFS, (A [, B [4) (denote this club by Cyp) and there is no winning
strategy for II in the game EF¥ (A, B). Since this game is a determined game, then I T EF% (A, B). We
already showed that this implies the existence of club many « such that I T EF¥, (A [, B [«) (denote this
club by Cj). Since the intersection of clubs is a club, then C; N Cyy # @. Therefore, there exists a, such
that both players have a winning strategy for the game EF¥ (A [, B [4), a contradiction. O



Corollary 2.5. For every y < x and every pair of structures A and B with domain x,

II1 T EF;,(A,B) <= 111 EF. (A [a, B [«) for u-club-many o

By Shelah’s result [She90] we know that a classifiable theory, IT 1 EF{, (A, B) implies that A and B are
isomorphic. Therefore, for all 77,¢ € x*, the player IT 1 EFj,(Ay, Az) if and only if 7 =1 ¢. We can use
the restricted games to define new relations, one relation for each «. By the previous corollary, we can
use these relations to study the isomorphism relation.

Definition 2.6. Assume T is a complete first order theory in a countable vocabulary. For every o < x and
11,¢ € k*, we write 1 Ry € if one of the following holds, Ay T T and Az ol T, 0r Ay Tol= T, Az [a= T
and 111 EF,(Ay [a, Az [a).

Notice that for each a < x, R}y is a relation on «* x x* but it is not necessarily an equivalence relation.
Fortunately there are club-many « such that R is an equivalence relation.

Lemma 2.7. For every complete first order theory T in a countable vocabulary, there are club many « such that
R%r is an equivalence relation.

Proof. Define the following functions:

e hy:kx — k, hi(a) = 7y where f, is the identity function of X,.

o ik — K, ha(a) =y where f; 1 = f,.

o h3: k% — K, hs(a, B) = Xa UXg = X,.

o hy:k — K, hy(a) = rang(fu) = X,.

o hs:k —k, hs(a) = dom(fy) = X,.

o g :k* — i, h(a, B) = ¥ where fy o fg = f,, fu o fg is defined on the set fgl[rang(fﬁ) Ndom(fy)].
Each of these functions defines a club,

o C;={y <«lVa < y(hij(a) <)} forie {1,245}

o Ci={y <x|VBa <y(ha,p)<v)}forie {36}

Denote by C the club N%_; C;. We will show that for every a € C, R} is an equivalence relation.

By definition 77 R% ¢ implies that either both .A; and Az are models of T or non of them is a model of
T. Thus R§, = R~ UR™, where R~ is the restriction of R}, to the set A = {5 € x| A, |~ T} and R" is
the restriction of R}, to the complement of A. Since R~ NR* = @, it is enough to prove that R~ and
R™ are equivalence relations.

By definition it is easy to see that R~ = A x A, therefore R™ is an equivalence relation. Now we will
prove that R™ is an equivalence relation.

Reflexivity
By the way C; was defined, for every f < a, h1(B) < « and f}, () is the identity function of Xj. There-
fore, the function o((Bo, B1, - - -, Bn)) = hi(Bu) is a winning strategy for II in the game EFf, (A [, Ay [4)-



Symmetry

Let 0 be a winning strategy for II in the game EF{, (A [, Az [4). Since & € C; and ((Bo, B1,---,Bn)) <
«, we know that hp(o((Bo, B1,--.,Bn))) < a. Notice that if U;,fs, : « — & is a partial isomorphism
from Ay [4 to Ag [a, then Uicy f,(0,) = Yicwfo, ! is a partial isomorphism from Ag o to Ay [« There-

fore, the function o’ ((Bo, B1,---,Bn)) = ha(c((Bo, B1,---,Bn))) is a winning strategy for II in the game

Transitivity
Let 07 and 0 be two winning strategies for II on the games EF}, (A [, As [«) and EF,(Ag 4, A7 Ta),
respectively.

For a given tuple (B, B1, - .., Bu) let us construct by induction the tuples (vo, Y1,--.,Vn), (B, B1s -+ Boys Bons1)s
and the functions f(; ,), g» and f(z,n)3

1. Let By = po and for i > 0, let By, be the least ordinal such that X U Xp, = X .

N

- F@i) = o (BB Bl 1By

@

. i is the ordinal such that X,, = rang( fai)-

b

gi = fUZ((7O/71/---/7i)) :
. By q is the ordinal such that Xpp,\ = dom(g;).

Q1

(o)}

- f@i) = o (BB Bl B 1)

Define the function ¢ : #<“ — & by o ((Bo, B1,---,Bn)) = On, where 0, is the ordinal such that f = g, o
(fon Ff&,ln) [dom(gn)])' It is easy to check that for every n, the tuples (o, Y1, ..., vx) and (B, By, - - -/ Boyi1)

are elements of =%, and the functions f; ,,y, n, f(24) and fy, are well defined; it is also easy to check
that o((Bo, B1,---,Bn)) is a valid move.

Let us show that Un<w fg, is a partial isomorphism. It is clear that rang(f( ) C rang(f(1,41))- By 3 and
4 in the induction, we can conclude that rang(f(, ,)) is a subset of dom(gy+1). Then rang(Un<w (f(2,n))) €

dom(Up<w(gn)), so

Un<w(gn o (f(Z,n) rf(};)[dom(gn)})) = Un<w(gn) © Un<fd(f(2,n))-
Since 07 and ¢ are winning strategies, we know that Up<w(gn) and Un<w(f(2,)) are partial isomor-

phism. Therefore U<« fg, is a partial isomorphism and ¢ is a winning strategy for II on the game

Assume T is a classifiable theory. We can conclude from the previous results that, # =7 ¢ if and only if
11 Rgp € for p-club many a. This lead us to the main result of this section, =t is continuously reducible

to EZ_ oub for any p when T is classifiable.

Theorem 2.8. Assume T is a classifiable theory and y < x a regular cardinal, then =1 is continuously reducible
to EZ—Club (gT <c E;Z—club)‘



Proof. Shelah proved [She90], that if T is classifiable then every two models of T that are L« x-equivalent
are isomorphic. But Ly x-equivalent is equivalent to EF} -equivalence. In other words, if T is classifiable
then II 1 EF{, (A, B) <= A = B. This game is a determined game, so I T EF{, (A, B) <= A 2 B.

Define the reduction F : ¥* — «* as follows,

fy(a) ifcf(a) = u, Ay [«}= T and REp is an equivalence relation
0 in other case

Fn)(w) = {

where f;(«) is a code in x\{0} for the R} equivalence class of A [4

First, we will show that F(7) E;-club F (&) implies 7 21 {. Assume 7 and ¢ are such that F(7) EZ-club F(&).
It is known that if A is a model of T, then the set {¢# < x : A [4}= T} contains a club. Therefore, if
there are pi-club many a such that 7 (7)(a) = 0, then A, [~ T, otherwise we will have a club disjoint to
a p-club. So, if there are p-club many w satisfying 7 (17)(a) = F(¢)(«) = 0, then A, = T and Az = T,
giving us 1 =1 C.

On the other hand, if there are y-club many « satisfying F(7)(a) = F(&)(«) # 0, then there are p-club
many « such that Ay [4}= T and A¢ [4f= T and thus A, = T and A; |= T. Since there are y-club many
a such that Ay [4}= T, Az [o}= T and II 1 EFj,(A; [, Az [2), then by Corollary 2.5, IT 1 EF{, (A, A¢)
and 17 =7 .

To show that # =t ¢ implies F (1) E;_ cub & (¢), assume that 17 and ¢ are such that 7 =7 ¢.

For the case when A, = T, it is clear that Az = T. We will show the existence of a p-club, such that
for every element & of it, f;(«x) = fg(«). Notices that A, [, and A¢ [4 are models of T for club many
a. Since I T EF},(Ay, Az) <= A, =1 Ag, by Corollary 2.5 there are p-club many a such that IT 1
EFﬁ,(.A,7 la, Az [2), what is the same as 77 Rty ¢. Therefore, by Lemma 2.7 there is a p-club, such that for
every a in it fy(a) = fe(a).

For the case when A, = T, since we assumed 1 = ¢, then Az = T. There is ¢ € T such that A, = —¢
and Az = —¢. Therefore, there are club many a such that A, .= =¢ and Az [«[= —¢, in particular
exist club many «a such that F () (a) = F(&)(x) = 0.

To show that F is continuous, let [ [4] be a basic open set and ¢ € F![[ [.]]. Let 7 be the bi-
jection in Definition 2.1, since « is regular, sup{m(a)la € w x a=“} < k. Therefore, there is f > « such
that for every v < « holds

A —
(a1,a3,...,a,) € Pmm < n =g '(m)and & [ (m(m,a1,a,...,a4)) > 0.

Then, for every { € [¢ [g] and v < «, Az [, and A; [, are isomorphic. So for every { € [ [g],
fe(v) = fz(7) for every v < a. We conclude that [§ [g] € F[[7 [4]] and F is continuous. O

3 Stable Unsuperstable Theories

A set X C «* is £} if it is the projection of a Borel set C C x* x x*, notice that k¥ x x* is homeomorphic
to k*. Let X € {A*|1 < A < «} and we think this as subspaces of k*. We say that an equivalence relation
E on X is £l-complete, if it is ] (as a subset of x* x x*) and for every £l-equivalence relation F on a
space Y € {A¥|1 < A < «}, there is a Borel reduction F <p E.



On the works [FHK], [FHK14] and [HK14], the relation E]);—club’ 1 < A < «x, has been studied on the

closed subspaces A*, with A < x and the relative subspace topology. The relation E;‘_ club ON the subspace

A¥ is defined as: we say that f,g € A are Eﬁ-club equivalent (f EZ—club Q) if the set {a < x|f(a) = g(a)}

contains a p-club. For these relations the following results are known:
Theorem. ([FHK14]) If a first order theory T is classifiable, then for all reqular y < x, Ef{—club £pT.

Theorem. ([FHK14]) Suppose that xk = At =2} and A<* = A,

o Ifx > 2% and T is a first order theory, then T is classifiable if and only if for all reqular y < x, Ei-alub £pT.

o If T is unstable then E3 ;= < 2.
Theorem. ([HK14]) Assume V = L. Suppose x > w.

e If kx = A, then for every reqular cardinal u, the equivalence relation E;_ cup 18 T1-complete.

o If x is inaccessible, then for every reqular cardinal y, the equivalence relation E;_ cup 18 Z1-complete.

Theorem. ([FHK]) Suppose T is a classifiable and shallow theory and x > 2%, then for all regular u < x,
=71 <g Ef ;.
u-club

Some of the results are specifically for some fix theory. Let a be a countable ordinal, define T, =
Th((w", Rg)p<a), where i1 Rg & holds if 17 [g= ¢ [.

Theorem. ([HK14]) Assume V = L. If xk = A" and A is regular, then Eé;-club <BETpi-
We are going to continue with this work, reducing Ef ;. to some other equivalence relations and

generalize some of these results. We will use similar ideas as the ones used on [FHK], [FHK14] and
[HK14].

Theorem 3.1. ([FHK14]) Suppose for all v < x, v < «x and T is a stable unsuperstable theory. Then
E2 . < 2.
w-clup =c=—T

Given an equivalence relation E on X it is natural to think on a A-product relation of it for any 0 < A < «.
The A-product relation IT)E, is the relation defined on X* x X* as, f IT\E g if f, E g, holds for every
7 < A, where f = (f;)y<a and § = (,),<1. We will work on the space (2*)*, with the box topology
on (2¥)*, the topology generated by the basic open sets {TT,.y O |Va < A(O, is an open set in 2¥)}.

Remark. If there exists a cardinal A < «x such that x = 2%, the relations E;_ o
bireducible.
Let G be a bijection between x and 2*. Define F : x* — ()", by F(f) = (fy)y<a, Where f,(a) =

G(f(«))(y) for every v < A and & < k. F is a reduction of E cub tO HAEi-cub' Clearly for every pair
of function f and g in «*, f(a) = g(«) implies G(f(a)) = G(g(«)) and f,(a) = g, (a) for every v < A.
Therefore, if f and g coincide in a y-club, then for all v < A, f, and g, coincide in the same p-club. For
the other direction, assume that f, and g, coincide in a p-club for every v < A. Since the intersection

of less than x p-club sets is a p-club set, then there is a y-club C, in which the functions f, and g,

2
, and H/\Ey—cub are



coincide for every v < A. Therefore G(f(a))(y) = G(g(«))(7y) for every v < A and every « € C. So
G(f(x)) = G(g(a)) for every a € C and since G is a bijection, we can conclude that f(x) = g(a) for
every a € C.

The other reduction is proved in [FHK].

A nice example of a stable unsuperstable theory is T,,. Under the assumptions of Theorem 3.1, E? _ b e

&1, . This and the reducibility of E;_ b to Iy Ei_ cub l€ad us to our first reduction related to stable unsu-

perstable theories.

Lemma 3.2. Suppose that for all v < x, v < « and k = 2*. Then EX

w-cub <c T+

Proof. By the previous remark it is enough to prove H;\EZ}_dub <c =r7,. Let (Ag)y<p be pairwise non
isomorphic models of T,, with universe x. Let F be a continuous reduction of Ei_cub to =1,.

For every f = (fy)y<a € (2°)" we will define the model Af, with domain A x (w + 1) x «. The inter-
pretation of the relation R()‘lf is the following, (1, B1,41) R64f (72, B2, a2) if and only if 1 = 7. The
interpretation of the relations R;“f (for 0 < i) is the following, (1, B1,a1) R;“f (72, B2, 2) if and only if

71 =72, B1 = B2 and &g R ay where A = Ay, if p < w otherwise A = AF(f)-

Claim 3.3. fII\E2 = ¢ if and only if Af and AS are isomorphic.

Proof of the claim. Let f = (fy) < and § = (§y)q<r. If fTINE2 . g then f, E2 | . ¢, forevery 7 < A,
therefore for every v < A the models Ap f,) and Ap(g'y) are isomorphic. Let H, be an isomorphism

between Ap(¢ ) and Ap, ) for every v < A, define H : A — A8 by,

(7/(“)/H7(ﬁ)) ifa =w
(v,a,B) in other case.

H(%a,ﬁ):{

It is clear that H is an isomorphism between A/ and .A83.

Assume there exists an isomorphism H : Af — AS. Fix v < A, since for every B; and B, in w + 1,
and ap and «ay in , (7, B1, 1) R64f (7, B2, 2) if and only if

H(7, B1,a1) R§¥ H(v, B2 a2), then H({y} x (w+1) x k) C {a} x (w +1) x « for some a < A. Follow-
ing the same argument, we can conclude that H~!({a} x (w+1) x k) C {7} x (w + 1) x k. Therefore
A Ty qny xr @nd A [ a1y are isomorphic for some n,m € w, so A, and A, are isomorphic. By

the way Af and A$ were constructed, this only happens when ¢ = a. Then H({y} x (w+1) x ) =
{7} x (w+1) x x. Since H is an isomorphism, either H({y} x w x k) = {7} x w x k or there is
an < w such that H{{y} x {n} xx) = {v} x {w} x k. For the first case, we can conclude that
H({v} x {w} xx) = {7} x {w} x «, then A ) and Ap, ) are isomorphic. For the second case,

Af [{y}x fnyxx and A8 [{y}x{w}xx are isomorphic and there is m < w such that H({y} x{w} xx) =
{9} x {m} x k. So Af [y x{wyxx and A8 1 10, are isomorphic. By the way Af and Af were
defined, we know that A/ [ {7} {n}xx and A8 [ {7} {m}xx are isomorphic, therefore Af [{W}X{W}XK and
A3 11y x{w}xx are isomorphic (ie. Ap(; ) and A ) are isomorphic). From the way F was chosen

we can conclude that f, Eé-cub gy- And so for all v < A, f, E(zu_cub gy and finally we conclude that
2
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Let o be a bijection from A x (w+ 1) x k to «, let 7 and P, be as in Definition 2.1. We define the
reduction F : (k)" — x* by,

1 ifa = m(n,ay,ay) and A |= Py (07 (ay), 07 (az))
0 in other case.

F((fr)y<r) (@) = {

The continuity of F, can be proved as in the proof of Theorem 2.8. O

The following corollary follows from Theorem 2.8 and Lemma 3.2.

Corollary 3.4. Suppose forall v < k, v < x and x = 2", A < «. If T is a classifiable theory. Then =1 <. = .

4 Coloured trees

In this section we will define the coloured trees. These trees have high w 4+ 2 and a colouring function.
We will show a construction of a coloured tree, using an element of x* to define the colouring function.
In the end these trees are going to be isomorphic if and only if their respective elements of ¥ used to
construct them are Ef,__, related. This is Lemma 4.7, below, but notice that in section 5 we need more
information about the trees than just this lemma.

The coloured trees that we will present in this section, are a variation of the trees used in [HK14] and
[FHK14] for the reduction mentioned at the beginning of the previous section.

For every x € t we denote by ht(x) the height of x, the order type of {y € t|y < x}. Define t, = {x €
t|ht(x) = a} and denote by x [, the unique y € t such that y € t, and y < x. An a, B-tree is a tree t
in which every element has less than « immediately successors and every branch 7 has order type less
than S.

Definition 4.1. A coloured tree is a pair (t,c), with t isa k™, (w + 2)-tree and c is a map ¢ : t, — x\{0}.

Two coloured trees (t,¢) and (t,¢’) are isomorphic, if there is a trees isomorphism f : + — ' such that
for every x € ty, c(x) = ¢/ (f(x)).

Denote the set of all coloured trees by CT*. Let CTy’ C CT* be the set of coloured trees, in which every
element with finite height, has infinitely many immediate successors, every maximal branch has order
type w + 1 and the intersection of two distinct branches is finite. Notice that for every t € CTy’ and
every pair x,y € to, ¥ [w= VY [w implies x = y.

We are going to work only with elements of CTY, every time we mention a coloured tree, we mean an
element of CTY.

We can see every coloured tree as a downward closed subset of x=%.

Definition 4.2. Let (t,c) be a coloured tree, suppose (1y)u<x is a collection of subsets of t that satisfies:
o for each o < «, I is a downward closed subset of t.
o Uper I = t.
o ifa < B <« then I C Ip.
e if v is a limit ordinal, then I, = U<, In-

e for each o < «x the cardinality of I, is less than .



We call (Iy)a<x a filtration of t.

Definition 4.3. Let t be a coloured tree and T = (Iy) < a filtration of t. Define Hy ; € k* as follows.
Fix o < x. Let B, be the set of all x € t,, that are not in I, but x [,€ I, forall n < w.

e If B, is non-empty and there is B such that for all x € By, ¢(x) = P, then let Hz;(a) = B
e Otherwise let H y(a) =0

We will call a filtration good if for every &, By # @ implies that c is constant on B,.

Lemma 4.4. Suppose (to,co) and (t1,c1) are isomorphic coloured trees, and T = (Iy)a<ic and J = (Ju)a<x are
good filtrations of (to,co) and (t1,cq) respectively. Then Hr s Ef .0 Ha 1

Proof. Let F : (tp,co) — (t1,c1) be a coloured tree isomorphism. Define FZ = (F[Iy])a<«. It is easy to see
that F[I,] is a downward closed subset of ;. Clearly F[I,] C F[Ig] when a < f and for 7 a limit ordinal,
Ua<yFlla] = F[I,]. If x € t; then there exists y € tp and & < x such that F(y) = x and y € I, therefore
x € F[Iy] and Uy F[Iy] = t;. Since F is an isomorphism, |F[I;]| = |I.| < « for every a < k. So FZ is a
filtration of £;.

For every «, B% # @ implies that Bffz # @. On the other hand, 7 is a good filtration, then when B% #Q,
co is constant on BZ. Since F is colour preserving, c; is constant on B5Z, we conclude that FZ is a good
filtration and Hz,(«) = Hpzy, ().

Notice that F[I;] = ], implies Hz (a) = Hy, («). Therefore it is enough to show that C = {«a|F[I;] =
Ju} is an w-club. By the definition of a filtration, for every sequence (;);<g in C, cofinal to vy, ], =
Ui<e Jo; = U< F[ls;] = F[I,], so C is closed. To show that C is unbounded, choose a < k. Define
the succession (;);<, by induction. For i = 0, a9 = a. When n is odd let a, 1 be the least ordinal
bigger than «, such that F[I,,] C Ja, , (such ordinal exists because « is regular, and J and FZ are
filtrations, specially |F[Iy,]| < k). When # is even let a,, 11 be the least ordinal bigger than «, such that
Ja, C Flla, ] (such ordinal exists because « is regular, and J and FZ are filtrations, specially |]s,| < x).
Clearly Ui« Ja; = Uicw FllIy;] and Ui, € C. O

Now we can construct the coloured trees that we need for the reduction. This construction is in essential
the same used in [HK14]. The only difference between them is that in [HK14] the construction was made
for successor cardinals, here we do it for inaccessible cardinals. These trees are useful for the study of
the relation E}, _ .
Order the set w X k X k X k X k lexicographically, (a1,a2, a3, a4, 05) > (B1, B2, B3, Ba, B5) if for some
1 <k <5, a > B and for every i < k, ¢; = B;. Order the set (w X k X k X k X k)=¢ as a tree by
inclusion.

Define the tree (I7,dy) as, I the set of all strictly increasing functions from some 7 < w to x and for
each 17 with domain w, ds() = f(sup(rang(1))).

For every pair of ordinals &« and 8, « < B < x and i < w define

R(a,B,i) = |J {n:[i,j) = [ )|y strictly increasing}.

i<j<w

Definition 4.5. Assume «x is an inaccessible cardinal. If & < p < x and a, B,y # 0, let {P,D;”sh < K} be an
enumeration of all downward closed subtrees of R(w, B,1) for all i, in such a way that each possible coloured tree

appears cofinally often in the enumeration. And the tree P(()),O is (Ig,dy).
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This enumeration is possible because « is inaccessible; there are at most

| Uicw P(R(a, B,1))| < w x k = k downward closed coloured subtrees, and at most « x k<" = « coloured
trees.

Denote by Q(P; ) the unique natural number i such that P, e R(w, B, ).

Definition 4.6. Assume x is an inaccessible cardinal. Define for each f € x* the coloured tree (J¢,cs) by the
following construction.

For every f € x* define Jr = (Js,cs) as the tree of all 17 : s — w X x*, where s < w, ordered by extension, and
such that the following conditions hold for all i,j < s:

Denote by n;, 1 < i <5, the functions from s to « that satisfies, §(n) = (11(n),n2(n),n3(n),na(n),ys(n)).
1. 17 [n€ Jg foralln <s.

2. 1 is strictly increasing with respect to the lexicographical order on w x x*.

3. m(i) <m(i+1) <n(i)+1.

4. m (i) = 0 implies 52(i) = n3(i) = n4(i) = 0.

5. 11(i) < n1(i+1) implies na(i + 1) > n3(i) + n4(i).

6. n1(i) = n1(i + 1) implies ni (i) = ni(i + 1) for k € {2,3,4}.
7. If for some k < w, [i,j) = 1y *{k}, then

'7()'7()
I5 r[u)epz() ’

Note that 7 implies Q(ng((ii))’%(i)) =i
8. If s = w, then either
(a) there exists a natural number m such that y1(m — 1) < n1(m), for every k > m 1 (k) = n1(k+1),

and the color of 1 is determined by P”Z(%) A3(m).
cr (1) = (15 Tmw))

where c is the colouring function of ng((;")) s(m)

or
(b) there is no such m and then c¢(n) = f(sup(rang(1s))).
Lemma 4.7. Assume x is an inaccessible cardinal, then for every f,g € «* the following holds
f EZ}—cluh g ]f = Ig
Proof. By Lemma 4.4, it is enough to prove the following properties of J¢

1. There is a good filtration Z of J¢, such that Hz | . E}, b f-

2. I fEf b & then Jr = Jo.
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Notice that for any k € rang(n1) if 15 [}; ;)€ ng(i)’%(i), when [i,j) = 5 '{k} and if i +1 < j, then

i) (i)

15 I[ij) is strictly increasing. If 771(i) < #1(i + 1), by Definition 4.6 item 5, 72(i + 1) > n3(i) + 74(i), so
n5(i) < n3(i) < ma(i+1) < y5(i +1). Thus 55 is strictly increasing. If 7 [,€ J for every n, then 7 € Jy.
Clearly every maximal branch has order type w + 1, every chain r7 [1{C # [oC # [3C --- has a unique
limit in the tree, and every element in a finite level has an infinite number of successors (at most x),
therefore J; € CTY.

For each & < x define ]}‘ as

J§ = {n € Jslrang(n) C w x (B)* for some B < a}.

Suppose rang(11) = w. As it was mentioned before, 775 is increasing and sup(rang(nz)) > sup(rang(ys)) >
sup(rang(n2)). By Definition 4.6 sup(rang(nz)) > sup(rang(ys)) and sup(rang(nz)) > sup(rang(ys)),

this lead us to

sup(rang(ns)) < sup(rang(i13)) = sup(rang(yjs)) = sup(rang(iz2))- M

When 7 [x€ J§ holds for every k € w, can be concluded that sup(rang(ys)) < a, if in addition 1 ¢ J§:
then
sup(rang(1s)) = a. @

Claim 4.8. Suppose ¢ € ]J’f and 1y € Jg. If dom($) < w, ¢ C 1 and for every k in dom(i7)\dom(g), n1(k) =
&1(max(dom(g))) and n1(k) > 0. Then n € J§-

Proof of the claim. Assume &, 11 € ] are as in the assumption. Let f; = &;(max(dom(¢))), for i € {2,3,4}.
Since ¢ € ]J’}‘, then there exists § < & such that 83,83, 84 < B. By Definition 4.6 item 6 for every

k € dom(n)\dom(g), n;i(k) = B; for i € {2,3,4}. Therefore, by Definition 4.6 item 7 and the definition of
ng’ﬁ?’, we conclude 775(k) < B3 < B, so 1 € J}.

UClaim 4.8

Claim 4.9. |J¢| =x, J = (]?)KK is a good filtration of Jr and Hy,j EF_ ., f

Proof of the claim. Clearly J; = U,X<K]}‘, ]j’é is a downward closed subset of J¢, and ]J‘}‘ C ]’f8 when a < B.
Since « is inaccessible, we conclude | ]}‘| < x and |J¢| = . Finally, when v is a limit ordinal

;= {n€Jf3B < v(rang(y) C w x (B)*)}
= {n€JflFn < 7,3 <a(rang(n) C w x (B)*)}
= sz<'y ]}C

Suppose a has cofinality w, and 7 € J¢\ ]? satisfies # [, € ]J’}‘ for every k < w. By the previous claim, %
satisfies Definition 4.6 item 8 (a) only if #1 (1) = 0 for every n € w. So #1, 172, 173 and 74 are constant zero,
and cs(7) = df(15), where dy is the colouring function of PS’O = Iy, cg(n7) = f(sup(rang(ns))). When n
satisfies Definition 4.6 item 8 (b), c¢(17) = f(sup(rang(1s))).

In both cases, cf(17) = f(a). Therefore, if B, # @ then cy is constant on By and 7 is a good filtration.
By Definition 4.3 and since J is a good filtration, Hy ; (a) = f(«).

Uclaim 4.9

Claim 4.10. If f Ef ., & then Jf = Jq.
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Proof of the claim. Let C' C {a < x|f(a) = g(a)} a w-club testifying f Ef . g and let C O C’ be the
closure of C" under limits. By induction we are going to construct an isomorphism between J¢ and Jg.

We define continuous increasing sequences («;);<, of ordinals and (Fy,);<x of partial isomorphism from
Jf to Jg such that:

a) If i is a successor, then «; is a successor ordinal and there exists § € C such that a; 1 < 8 < &; and
thus if i is a limit, «; € C.

b) Suppose that i = v + 1, where 7 is a limit ordinal or 0, and n < w is even. Then dom(Fy;) = ?i.

c) Suppose that i = 7y 4 1, where 7 is a limit ordinal or 0, and n < w is odd. Then rang(F,,) = ]gi.
d) If dom(¢) < w, & € dom(Fy;), 0 [gom(z)= & and for every k > dom(§)

m(k) = ¢1(max(dom(¢))) and 1 (k) > 0
then 7 € dom(F,,). Similar for rang(Fy,).
e) If { € dom(Fy,) and k < dom(¢), then ¢ [r€ dom(F,,).
f) For all y € dom(Fy,;), dom(17) = dom(Fy,(17)).

For every ordinal a« denote by M(«) the ordinal that is order isomorphic to the lexicographic order of
4
w X .

First step (i=0).

Let 9 = B+ 1 for some € C. Let v be an ordinal such that there is a coloured tree isomorphism
h: PA?'M(‘B ) I}KO and Q(PS’M(’g )) = 0. It is easy to see that such 7 exists, by the way our enumeration
was chosen.

Since Pg’M(ﬁ ) and ]}‘0 are closed under initial segments, then |dom(h~1(57))| = |dom(n)|. Also both do-

mains are intervals containing zero, therefore dom(h~1(1)) = dom(n).
Define Fy,(17) for 17 € ]}‘0 as follows, let Fy,(17) be the function ¢ with dom (&) = dom(s), and for all
Kk < dom(&)

o Gi(k)=1
o 5o(k)=0
o &3(k) = M(B)
o Cu(k) =1

o &5(k) =h~"(n)(k)
To check that ¢ € ], we will check every item of Definition 4.6. Since rang(Fy,) = {1} x {0} x {M(B)} x

{7} x PS’M(/} ), ¢ satisfies 1. Also &5 = h~1(y) € PS’M(ﬁ ), by definition of PP, we now that s is strictly
increasing with respect to the lexicographic order, then ¢ satisfies item 2. Notice that { is constant in
every component except for {5, therefore ¢ satisfies the items 3, 5, 6, 8 (a). Clearly 7 (i) # 0, so ¢ satisfies
item 4. Notice that [0,w) = ¢ 1(1) but ng((:))’é3 k) = Pg’M(ﬂ ) for every k, therefore {5 € ng((((]))),@(o) and ¢
satisfies 7.
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Let us show that the conditions a)-f) are satisfied, the conditions a) and c) are clearly satisfied. By
the way F,, was defined, dom(F,,) = }‘0 and dom(1n7) = dom(Fy,(17)), these are the conditions b), e)

and f). Since dom(F,,) = ];(0, the Claim 4.8 implies d) for dom(F,,). For d) with rang(Fy,), suppose

¢ € rang(Fy,) and 1 € J, are as in the assumption. Then 71 (k) = &1 (k) = 1 for every k < dom(7), by 6 in
J¢ we have that 3(k) = &2(k) = 0, n3(k) = &3(k) = M(B) and n4(k) = Ca(k) = -y for every k < dom().
By 7in Jg, 115 € Pg'M(ﬁ) and since rang(Fy,) = {1} x {0} x {M(B)} x {7} x Pg’M(ﬁ), we can conclude
that 7 € rang(Fy,).

Odd successor step.
Suppose that j < k is a successor ordinal such that j = ; + n; for some limit ordinal (or 0) ; and an
odd integer n;. Assume a; and Fy, are defined for every | < j satisfying the conditions a)-f).

Let aj = p+1 where g € C is such that p > «; 1 and rang(Fy ;) C ]5, such a f exists because
[rang(Fy; )| < 21411 and « is strongly inaccessible.
When 71 € rang(Fy, ,) has finite domain m, define

W) = {gldom(¢) = [m,s),m < s < w,y™ (m,{(m)) ¢ rang(Fy,_,) and ¢ € Jg'}

with the color function cyy(,)(8) = cg(n™¢) for every { € W(y7) with s = w. Denote ¢’ = Fojj}l(iy),
a = gy(m—1)+gy(m—1) and 6 = a + M(«;). Now choose an ordinal 7, such that Q(Pﬂ‘;‘f) =m
and there is an isomorphism h,, : Pf;‘,’f — W(#). We will define F; by defining its inverse such that
rang(Fy;) = ]gj.

Each 7 € ]gj satisfies one of the followings:

(*) 1 € rang(Fy ;).
(*) 3m < dom(n)(n Ime m”g(FaH) A Ty & rang(FaH)).
(***) Vm < dom(ﬂ)(ﬂ r(m+1)€ rang(Faj—l) A n ¢ rang(Faj—l))'

We define ¢ = Fﬂjj (1) as follows. There are the three cases:

Case 7 satisfies ().
Define &(n) = F;j}l(iy)(n) for all n < dom(n).

Case 7 satisfies (xx).
Let m witnesses (**) for 7. For every n < dom({)

o If n < m, then ¢(n) = F,;]El(q Tm)(n).

e For every n > m. Let

- ¢1(n) =& (m—1)+1

= Ga(n) = ¢a(m —1) + Ga(m — 1)
- G3(n) = & (m) + M(a;)

- &a(n) = vy,
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- ¢s5(n) = h;;(lm (1 r[m,dom(r])))(n)

Note that, 77 [[;; jom(y)) is an element of W(n [m), this makes possible the definition of {s.

Let us check the items of Definition 4.6 to see that § € J;. Clearly item 1 is satisfied. By induction
hypothesis, ¢ [, is increasing, ¢1(m) = ¢1(m —1) +1so {(m —1) < &(m), and ¢ is constant on [m, w)
for k € {1,2,3,4},since h,;rlm (n) € P,”y‘;f, then (5 is increasing, and we conclude that ¢ is increasing respect
to the lexicographic order, so ¢ satisfies item 2. Also we conclude &1(i) < &(i+1) < &1(i)+1,s0¢
satisfies item 3. For every i < w, ¢1(i) = 0 implies i < m, so {(i) = F,;]El (7 Im)(i) and by the induction
hypothesis ¢ satisfies item 4. By the induction hypothesis, for every i +1 < m, ¢1(i) < {1(i + 1) implies
&a(i+1) > &3(i) + €4(i), on the other hand &; (i) = &1(i + 1) implies & (i) = k(i + 1) for k € {2,3,4},
clearly ¢p(m) > ¢3(m — 1) + &4(m — 1) and & (i) = Cx(i+ 1) for i > m and k € {2,3,4}, then { satisfies
items 5 and 6.

Suppose [i,j) = & '(k) for some k in rang(Z). Either j < m or m = i. If j < m, by the induction

hypothesis & [;j,€ P25, it [ij) = [, dom (), then & 1= It (17 Tpnaomey) € P2,

¢ thus satisfies item 7. Since ¢ is constant on [m,w), ¢ satisfies 8 (a). Finally by item 8 (a) when

dom({) = w, ¢f(§) = (5 Imw)), where c is the color of ng((;”))’é(m). Since G5 [{y,w)= h,;flm(ﬂ m,0))r

cr(¢) = c(h;rlm(q [[m,w))) and since /1 is an isomorphism, c¢(&) = cW(,”m)(n f[m,w)) = cq(n).

Case 7 satisfies (* * x).

Clearly dom(y) = w, by the induction hypothesis and condition d), rang(y) = w, otherwise 1 €
rang(Fy; ). Let F;jl (n)=¢= Un<wF,;j}1 (1 ), by the induction hypothesis, ¢ is well defined. Since for
every n < w, § [n€ Jf, then ¢ € J;. Let us check that c¢(§) = c4 (7). First note that ¢ ¢ ];jfl, otherwise
by the induction hypothesis f),

Fa]-,1(§) = U Fa];](é [n) = U N In=n

n<w n<w
giving us 7 € rang(Fy; ;). By the equation (2), sup(rang(s)) = a;j—1 and ¢ satisfies item 8 b) in Jf,
therefore c((¢) = f(aj_1). Also by the definition of ]} and since ¢ [,€ ];j ! for every n < w, aj_1isa
limit ordinal and by condition a), j — 1 is a limit ordinal and ajq €C. The conditions b) and c) ensure
rang(Fy; ;) = ];"'*1. This implies, 17 ¢ ];"71. By the equation (2), sup(rang(ns)) = aj_1. Therefore a; 4
has cofinality w, ;1 € C' and f(a;_1) = g(aj_1). By item 8 b) in J¢, co(17) = g(aj—1) = f(aj_1) = c¢(E)-

Next we show that F,, is a color preserving partial isomorphism. We already showed that F,, preserve
the colors, so we only need to show that

nCee F Ny CENE). 3)

From left to right.

When 7,¢ € rang(F,, ,), the induction hypothesis implies (3) from left to right. If # € rang(F,, ,) and
¢ & rang(Fy, ), the construction implies (3) from left to right. Let us assume 1, & rang(Fy, ,), theny,¢
satisfy (**). Let m1 and my be the respective natural numbers that witness (**) for # and ¢, respectively.
Notice that m, < dom(1), otherwise, y € rang(Fy, ). If my < my, clearly y € rang(F,, ,) what is not
the case. A similar argument shows that my < my cannot hold. We conclude that m; = my and by the
construction of Fy,, F,.'(17) € F.'(Z).
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From right to left.

When 7, ¢ € rang(Fy, ), the induction hypothesis implies (3) from right to left. If 7 € rang(F,, ,) and
¢ ¢ rang(Fy, ,), the construction implies (3) from right left. Let us assume 7, ¢ rang(Fy, ), then 1,¢
satisfy (**). Let m1 and my be the respective natural numbers that witness (**) for # and ¢, respectively.
Notice that my < dom(1), otherwise, Fa_l_l(iy) = Fa_l_}l () and n € rang(F,, ). If my < my, then

Fol(n(my—1) = (F NE) lmy)1(mp —1)
< F M8 Tmp)1(ma—1) +1
= Fail(ﬂ)l(mZ)
= F,'(n)i(my—1)

This cannot hold. A similar argument shows that m; < mj cannot hold. We conclude that m; = m,.
By the induction hypothesis F,.* (77 [m,) = Fy.', (€ m,) implies 57 [, = & [m, (also implies oty = het,)-

i1

Since Ft,;ll (1 Tmy)(n) = Fl;l,l (17)(n) for all n < my, we only need to prove that 7 [, dom(y))E G [ my,dom(c))-
But /;},, is an isomorphism and F,1(n)s(n) = F;1(&)s(n) for every n > my, so hviflml (1 1y dom(n)

)(1’1) = hg_ﬁnz (6 r[mz,dom(é)))(n)' Therefore i r[m],dom(q))g ¢ r[mz,dom(é))'

Let us check that this three constructions satisfy the conditions a)-f).
When i is a successor we have ;1 < B < a; = B+ 1 for some € C, this is the condition a). Clearly

the three cases satisfy b). We defined F, 1 according to (*), (**), or (***); since every 1 € ]g]' satisfies one

of these, we conclude rang(Fy,) = ]gj which is the condition c).

Let us show that the Fy; satisfy condition d). Let ¢ and B be as in the assumptions of condition d)
for domain. Notice that if § € dom(F,, ;) then the induction hypothesis and Claim 4.8, ensure that
n € dom(Fy,). Suppose ¢ & dom(Fy, ), then Fy,(§) ¢ rang(Fy, ). Since dom(¢) < w, so Fy,({) satisfies
(**). Let m be the number witnessing it. Clearly ¢ € ];‘i, by Claim 4.8 17 € ];‘i . By item 6 in ];‘i, 1k is

constant on [m,dom(y)) for k € {2,3,4}, now by Definition 4.6 numeral 7 in ]}“", 15 1m,dom(n)) € PP

Telm*
Let { = hcﬂm (ﬂ[m,dom(r])))f then 7 = Fugl (Fﬂéi (g fm)”@) and 77 € dom(Fﬂéi)'
The condition d) for range follows from Claim 4.8.
For the conditions e) and f), notice that ¢ was constructed such that dom(¢) = dom(n) and ¢ [r€ dom(F,,)
which are these conditions.

Even successor step.
Suppose that j < k is a successor ordinal such that j = B; + n; for some limit ordinal (or 0) B; and an
even integer 7;. Assume &; and Fy, are defined for every I < j satisfying conditions a)-f).

Let «j = B+ 1 where p € C such that B > a;; and dom(F ,) C ]}S, such a B exists because

[dom(Fy; )| < 21411 and « is strongly inaccessible. The construction of Fy; such that dom(Fy;) = }“'

follows as in the odd successor step, with the equivalent definitions for dom(Fy;) and ]J'fi. Notice that for

every 17 € ];j , there are only the following cases:
(*) n € dom(Fy, ,).

(*) Im < dom(n)(n Im€ dom(Fu; ) A1 Ipsr)& dom(Fy; ).
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Limit step.
Assume j is a limit ordinal. Let a; = Ujcja; and Fy; = UjcjFy, clearly F; : ];’ — Jo and satisfies
condition ¢). Since for i successor, «; is the successor of an ordinal in C, then a; € Cand satisfies the

condition a). Also F,x]. is a partial isomorphism. Remember that U, ]-]}" = ];j , the same for J,. By the
induction hypothesis and the conditions b) and c) for i < j, we have dom(F,Xj) = ];fj (this is the condi-

tion b)) and rang(Fy;) = ];j . This and Claim 4.8 ensure that condition d) is satisfied. By the induction
hypothesis, for every i < j, F,, satisfies conditions e) and f), then F, J satisfies conditions e) and f). o, .,

Define F = UjFy;, clearly, it is an isomorphism between J; and J,. O

From now on x will be an inaccessible cardinal. Let us take a look to the sets rang(f) and rang(cy),
more specific to the set {a < x|f(a) € rang(cs)}.

Remark. Assume f € x* and let J; be the respective coloured tree obtained by Definition 4.6. If
n € Jr satisfies Definition 4.6 item 8 b), then clearly exists a < x such that c¢(y) = f(a). It is

possible that not for every a < «, there is 1 € ]}“H such that cf(n7) = f(a). Nevertheless the set
C={a<x|3¢ € ]J'}‘H such that ¢y = idy +1and c¢f(¢) = f(a)} is an w-club. C is unbounded: For
every B < k we can construct the function 7 € Jf by Bo = B, 11 = idw + 1, m2(i) = Bi, 13(i) = i +1,
174(i) = 7; and 15 = 172, where 7; is the least ordinal such that Pii,"ﬁ"ﬂ ={¢:[ii+1) — [Bi,pi+1)}
and B;;1 = B; + 1+ 1;; since « is inaccessible, 17 € ]}UKWﬁ")H and U;,B; € C. C is closed: Let {&;};<w
be a succession of elements of C, for every i < w let ¢’ be an element of J; such that ¢} = id, +1 and
rang() = a;, define ny = 0 and for every i < w, n;;1 as the least natural number bigger than n; such

Uicwti)+1

that «; < é;+1<ni+l). The function ¢ define by & [, u,, )= &' l[n;n;,,) i an element of ]J(( such

that ¢y = idy + 1 and rang(gs) = Ui<ua;, therefore f(U;<wu;) = cf($) and U e € C.

5 The Orthogonal Chain Property

In this section we will construct a model of T from an element of x¥*. Before this, let us fix some notation
and make some general assumptions. From now on T is going to be a stable theory. Denote by A(T) the
least cardinal such that T is A-stable, A,(T) the least regular cardinal A bigger or equal than A(T). And
« will be bigger than A,(T).

For every | C =% closed under initial segments, order I = P,(]) by < as, for every u,v € I we
say u < v if for every 1 € u exists § € v such that # is an initial segment of ¢. Let us denote by (1, ¢)
the longest element in | that is an initial segment of both, and u N* v the largest set that satisfies:

e un*v C{r(n, &)y €u,gco}
e ifTcun*v, n€u, ¢ cvand 7 is an initial segment of r(1,&) then T = r(y,{)

Definition 5.1. Assume | C k=% is closed under initial segments and 1 = Py, (]). We say that an indexed
family £ = {A,|u € I} is strongly independent if:

o For every u,v € I, u < vimplies Ay, C Ay.
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o ifu,u; € I fori < nand B C Ui, Ay, has power less than A,(T), then there is an automorphism of the

monster model f = fuzj;g,._,unfl, such that f [(Bna,)= idpna, and f(BN Ay;) C Aurru;.

We will construct models using an isolation notion. In [HS98] Shelah gives an axiomatic approach for
isolation notion and defines F-constructible, F-primary and F-atomic where F is an isolation notion.

Definition 5.2. Denote by F;,(T) the set of pairs (p, A) with |A| < A,(T), such that for some B D A, p € S(B),
and p [aF p.

F)SW(T) is the isolation notion we are going to use. Instead of write F} (T)—Constructible, F)S\V(T)—primary
and F} (T)—atomic we will write s-constructible, s-primary and s-atomic.

Now we can state in detail the lemma that leads us to the construction of A/ from the coloured tree | f-
The proof of this lemma can be found in [HS98] (Theorem 4 and Claim (I)).

Lemma 5.3. Assume that © = {A,|u € 1}, I = P,(]) is strongly independent. Then there are subsets of the
monster model, Ay for u € I, such that

(a) forall u,v € I, u < vimplies A, C Ay

(b) forall u € I, Ay is s-primary over A,; in fact it is s-primary over Uy<y, Ay, (see the proof of Theorem 4 in
[HS98])

(c) U,er Ay is a model

(d) if v < u, then A, is s-atomic over U,7€]fA,7 and s-primary over A, U Ay, in fact for all a € A, there is
B C A, of power less than A,(T), such that t(a, B) - t(a, Une]fAry) (see the proof of Theorem 4 in [HS98])

(e) if J' C ] is closed under initial segments and u € Py (]'), then Uyep, (Ao is s-constructible over
Au U Uyepw(]/) A‘U

(f) the family { A, |u € I} is strongly independent (see Claim (1) in the proof of Theorem 4 in [HS98])

In [HS98] the models for Lemma 5.3 above, are constructed as follow: Let {u;|i < B} be an enumeration
of I such that u; < u; and u; f u; implies i < j. Choose &, 7; < a for i < B, a, and By for v < «, and
s:a — I so that

1. 70 =0 and (7;);<p is increasing and continuous,
2. if 7 <y < 7iy1, thens(y) = u;,

3. forall ¥ < &, |B,| < A and if we write for v < a, A} = A, U{as|6 < v,s(6) < u}, then B, C AZ(W),

4. for all v < a, if we write AY = U, c; A}, then t(a,, B,) s-isolates t(a,, A7),

5. foralli < B, there arenoa ¢ A, "' and B C A;;"*! of power less than A such that #(a, B) s-isolates
t(a/ Avi+l )/

6. if as € B,, then Bs C B,.
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Forallu eI, A, = Af.
By 3 and 4, A, is s-constructible over Uy« Ay.

At this point it is clear that our intention is to use Lemma 5.3 with I = Py (Jf). We only need to
find the appropriate sets A, for us. We will use the orthogonal chain property to construct a strongly
independent family ¥ = {A,|u € I} with some properties useful for us. The orthogonal chain property
implies that T is unsuperstable, as we will see later.

Definition 5.4. T has the orthogonal chain property (OCP), if there exist A,(T)-saturated models of T of power
M(T), {Ai}icw 0 & Uicw Aj, such that t(a, Ui« ,.A;) is not algebraic for every j < w, t(a, Ui A;) L Aj, and
forevery i < j, A; C A;.

The OCP is similar to the DIDIP defined by Shelah in [She90].

If T has the OCP then T is unsuperstable, the chain A; C A; and a satisfy a /4, A; ;1.

To show this, assume T is superstable and has the OCP. Let {A;};-., be the chain given by the OCP
and construct the following chain by induction. Let By and B; be the least elements of {A4;};-,, such
that By C By and a [, By. For every 0 < i < w let B;; be the least element of {.A;}, that satisfies
B; C Biy1 and a [/p, B 1. Since T is superstable, this chain is finite, let B, be the biggest element of this
chain. By the inductive construction of {B;};<, we know that a |p, A for every B, C A;. Therefore,
for every finite subset A C U;<,A;, a |, A and by the finite character a |p, U;-,.A;. By assumption
T has the OCP, then #(a,U;<A;) L A; for every j, in particular t(a,U;<,A;) L By. Soa Jy,_ 4, @ and
t(a, Uj<,A;) is algebraic, a contradiction.

From now on we will assume that T has the OCP.

The following is the construction of the family ¥ = {A£|u € I} from [ using the OCP. By Defini-
tion 4.6 Jf C (w x x*)=“, we will denote by X the set w x x*.

Let a and {.Afr }icw be the ones witnessing the OCP for T. Since for every saturated model, B O A
and C, there is D such that t(C, A) = #(D,A) and D |4 B. Then we can find for each 7 € (Jf)w

((Jf)w = {x € Jf|ht(x) = w}) automorphisms of the monster model, { H;}, }i<., and models {.Ai]([i}igw ,
that satisfies

Hy(A]) = Al

o Hyj, = Hy |,

Define A{, for each u C ]y as A{Z = UWGHAJ,;.

Define U (¢, «) forevery § € [N X< and « € X, as the set of the { € J; that extend {™ (dom(¢), &),
and V(¢,a) = JF\U(Z, «). Then

/ /
Auea) YaL Wieay

.AJ,; is the s-primary model over {J;,, .Af;“ U Ui<cf(17){ai} where {ui}i<cf(17) is an independent se-
quence of elements satisfying the type t(Hy(a), A(n)), A(17) = Ui<w Af;“.
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This construction was made in [Hyt97] and [HS98]. In [HS98] is proven that the family {A{,r lu € Pw(Jf)},
is strongly independent.

Remark. Notice that for every 77 € (J¢)w, A{; is s-primary over U, .Af;[i U Ui<cf(;7){“i} and since T
is countable, then

AN <A+ (U AU U s +A(T)“.

i<w i<ce (1)
If f satisfies, |f(a)’| = |f(a)], A(T) < f(a), and f(a) = cs(), for some &« < x and 7 € J;. Then
Af| = cr(n).

For every 17 € (Jf)w denote by pj,; the type t(Hy(a), A(n)) clearly pj,; L A{;H for every i < w. De-

note by Z the set Py (Jr), the family {A£|u € Zy} is strongly independent, by Lemma 5.3 we obtain the
models {A{l}uezf and Af = UueIfAj;.

We will write A, and A, instead of Aé and A{;, when it is clear and there is no possibility of ambiguity.

Under some assumptions on f and g, elements of «*, the models Af and A8 are isomorphic if and only

if f and g are E}_, . related. The proof of this is made by a dimension argument. Therefore, before we

start with the proof we need to do some calculation, like calculate |AJ§"‘\ and others.

Fact 5.5. Let I} = Pw(]}‘), where J§ = {n € Jflrang(n) C w x (B)* for some p < «} (as in the proof of
Lemma 4.7), define A} = UueI}Au. If for every B < &, A (T) < f(B), |f(B)¥| = |f(B)| and B < f(B), then
there exists a club such that every w in that club satisfies |A’]’§+1| < sup({f(B)}p<a)

Proof. Let C be the club {a < x|Vy < a(y¥ < a and sup({cf(q)}qeffw) < a)}. Assume u is such that
there is at least one ¢ € u such that f(B) = c¢(¢) for some B, then by the previous remark |A,| =

| Upeu Ay| = max({c(17)“ }yeu). Since A, is s-primary over A, we get

|Aul < AMT) + (JAul + Ar(T))“ = max({cf () }yeu). Therefore for every a < x
A< - sup (e () o)

if & € C then |]j‘}‘+1| = Up<aB” < < f(a)¥ = f(a), so
AT < f(a) ssup({(er (D) }yepprn).

Also for every i1 € ]}‘, cr(n) < f(B) for some B < a, therefore

AGT < sup({Lf(B)par A (e (1))} e ppinypo)-

But every 17 € ]Jﬂ‘“\];‘cK with dom () = w has rang(i11) = w and f(a) = cf(1), otherwise rang(ns) < a
and 77 € J§. We conclude |A§‘c+l| < sup({f(B)}p<a)- O

Fact 5.6. If w < u, then Ay, > 4, Au.
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Proof. If w < u, by Lemma 5.3, A, is s-constructable over 4, U A,, and Ay, is saturated, then A, >4,
Au. D

Remark. Notice that Fact 5.6 implies that A, > A, A, for every 1 € u.
Fact 5.7. Assume f € *. Ifu,v € Iy, then Ay Uy Ap.

Proof. By the previous fact it is enough to prove Ay 4., Ao
We will define U (¢, «) and V(&, ) for every ¢ € uN*v and a € X such that ™~ (dom(),«) is extended
by an element of 1 and non of the elements of v extend it. Denote by U(¢, «) the set of those 7 € J that
extends § (dom(¢),a) and V (¢, &) = JA\U(, &).
By the construction of the sets A,, for every ¢ € u N* v and every a € X such that U(&,«) and V(¢ «)
are defined, we have

Auza) Y4; Aviea)- 4

Let U = U{U(Z, &) [{¢ (dom(S),a)} < u,& € un*v,a € X'} and V be Je\U. Then by transitivity and
4),
Aulda,., Av.

By the way U and V were defined, # C U and v C V. Therefore

Au \I/Auﬁ*v AU'

By the in fact part of Lemma 5.3 (d), Aunvo 44, Uge]ng. Therefore Aynvo {a,.., AuAy and we
conclude Ay, |4, ., Ao O

Lemma 5.8. Assume f € «* is such that for every a, f(a) > A(T), f(a)® = f(a), and rang(f) C Card. If
1 € (Jf)w is such that cs(n) = f(a), then dim(pj,;, Af) = cr(n).

Proof. Suppose not. Then there exists an independent sequence I C Af over A(y) such that |I| > ¢ £(n)

and a |= p{; for every a € I. By a previous remark we know that c¢(17) = | Ay, so there exists b € I\A;
such that b | 5, Ay. Thus t(b, Ay) L Ay, foralli < w.

There exists u € Zy such that 7 € u and b € A,. By Fact 5.7 we know that there exists i < w such that
Aurfny +ay, Are

Since t(b, A;) L .A,] b iAq Ay So b iAq A, and by a previous remark we know that A, > A, Ay,
thusb | A, Ay. Butb € Ay, so t(b, Ay) is algebraic. By the choice of b, (b, A;) is a non-forking extension
of p’,; . This implies that pj,; is algebraic. By the OCP, p{; is not algebraic; a contradiction. O

The Theorem 5.9 gives a reduction only for certain elements of «*, as we will see in Corollary 5.10, this
can be easy generalize to all the elements of x*.

Theorem 5.9. Assume f,g are functions from « to Card\A.(T), that satisfy for every p < x, f(B)“ = f(B),
¢(B)¥ = g(B) and for every cardinal «, f(x) > at™, g(a) > a*+. Then the models A/ and AS$ are isomorphic
if and only if f and g are E_, , related.

w-clu
Proof. From right to left.
By Lemma 4.7 if f Ef_,,, & then Jf = Jo. Let G : ]y — ], be an isomorphism.
We will construct, using induction, a family of function {Fu}ueIf such that F, : Ay — Agyp, is an
isomorphism and Uy« F, C F,. Notice that this is equivalent to: a family of function {Fu}uelf such that
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F,: A, — -AG[u} is an isomorphism and for every W C Zr, UpewFy : Upew Ay — A8 is an elementary
map.

Let {u; : i < a*} be the enumeration of Z used in the construction of the models A, (see Lemma 5.3).
Our induction hypothesis for f < a* is the following:

The functions {Fy, };p satisfy

e Foralli < B, Fy, : Au; — Agyy,, is an isomorphism.
e U;gF, is an elementary map.

By Lemma 5.3, Ay, and Ag|, ;] are s-primary over Up<yg Ay and Up<y; Al respectively. By the induc-
tion hypothesis Uo<ug F, is elementary and onto Uo<ug Ac[v]- Since the s-primary models over Uo<uy Ay
are isomorphic and the s-primary models over Uy<y;Ag(y) are isomorphic, there is an isomorphism
from Auﬁ to AG[u N that extends Uy« 5 F,. Let us define Fuﬁ as this isomorphism.

We will prove that U;<gFy,; is elementary by proving that for every n < w and every sequence xo, x1,... X, €
{u;|i < B}, the map Uj<, Fy, : Uj<, Ay, — A8 is elementary.

Clearly we can assume that n > 0, x, = u s Up is not comparable with x,,_1, and u; # U for every i # j.
Define 1’ = U;,(x, N* x;), notice that u" < ug.

Case u' < ug
Let X = Uj<,x;, by Fact 5.7 Auﬁ la, Ax, therefore

Auﬁ \I/Au/ Ui<VlAXj' (5)

Since G is an isomorphism, G[u] N* G[v] = G[uN* v] for every u,v € Zs. By Fact 5.7 Acug) YA, Acix)s
therefore
Aclug) $Agp Yi<n Al (6)

By the induction hypothesis U;gFy, is elementary and thus there exists an automorphism of the monster
model F that extends U;<gFy;. By (6)

Fﬁl[-AG[uﬁ]} \I/Au/ Ui<nAxi- @)

Since F and F,; both extend F, we conclude t(Ay,, A,) = t(F ’1[./4(;[”&]],“4,4/) and it is a stationary

type. So by (5) and (7), the types t(Au,, UicnAx,) and t(F! [Ac[u,;]]/ Ui<nAy,) are equal, therefore
t(Auﬁ - Ui<71 Axi,®) - t(AG[Mﬁ] - Ui<n in [Axi],@).
Therefore U;<, Fy, is elementary.

Case 1/ = ug
Let (ag,a1,...,a,) be any tuple such that for all i < n, a; € Ay,. Define A" = Uv<uﬁ.Av and

F = U F,

v<ug or ve{x;|li<n}

By the induction hypothesis F’ is elementary and by Lemma 5.3 A, s Is s-constructible over A’, therefore

Auﬁ is s-atomic over A’. Then there is A’ C A’ of size less than A,(T) such that t(a,, A") - t(a,, A').
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By Lemma 5.3 {A,|u € Zf} is a strongly independent family. Let B = A’U {a;]i < n}, there is an
automorphism of the monster model H, that satisfies H | 4/= id (notice that A’ = BN A, ;) and H (a;) €
Ay,n#x; for every i < n, therefore H(a;) € A’. Since

t(an, A") F t(ay, A"

and
H(Fug(an), Fug(A")) & t(Fug(an), F'(A"))
H(Fuy (@), Fug(A)) F H(Fiy (0), Ui s ().

We conclude that U;<,, Fy, is elementary.
We conclude that Af = A8,

From left to right.
Let us assume that f and g are not EX _, . related but there is an isomorphism IT: A8 — Af.

By a previous remark we know that {a < x|3y € ]§+1 (cg(7) = g(a))} contains an w-club and by Fact

5.5 there is a club such that for every « in it, |Ag,+1| < sup({g(B)}p<q) (this also holds for f). Therefore,
there is an w-club such that every element of it, «, satisfies

o [AT < sup({£(B)}pza)-

o [AGH] < sup({g(B)}p<a)-

e There exists 77 € ]g‘“ and ¢ € ]j‘}‘“ that satisfy sup(rang(is)) = sup(rang(ls)) = &, cg(7) = g(a),

and cf(g) = f(a).
Since {a < «[VB < a(f(B),g(B) < a)} and {a < «[I1(AZ) = Aj‘;I} are clubs, and f and g are not E*

w-club
related (the set {a < x|f(«) # g(«)} intersect every w-club), we can assume the existence of an ordinal
« with countable cofinality such that:

e Forevery B < a, f(B) < aand g(B) < a.
o g(a) # fla).

e There exists 77 € J§*! such that ¢, (17) = g(«).
o There exists ¢ € J§*" such that ¢¢(2) = f(a).
o [AFH < sup({£(B)}p<a)-
o [AFH] < sup({g(B)}p<a)-

o TI(AS) = A3,
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By symmetry we may assume that g(«) > f(a).

By Lemma 5.8, 7 and « satisfy dim(p%,.Ag) = cg(n) = g(a), so the type H(p%) = {o(x,II(c))|p(x,c) €
p%} has dim(H(p%),Af) = g(a).

Since 7 € J§*! and T1(A§) = A%, TI(A(7)) S A}. On the other hand, by the way we chose a, we
conclude that |.Aj§+1| <gla) = dim(H(p% ), Af). So there exists an independence sequence A C Af over

TI(A(7)), such that a |= TI(p}), with an element b € A\A?+l that satisfy b Lrya(y)) A?H.
For every u € Zy denote by i the closure of u under initial segments.
Let {u;};q(x)+ be a sequence of elements of 7y with the following properties:

[ ] b € Auo.
e Every 1, is a tree isomorphic to .
o If i # j, then 7; N j = 7l m]}‘“.
e Every ¢ € dom(cs) Nl satisfies cf(¢) = c£(G;($)), where G; is the isomorphism between i1y and
;.
For every ¢ € il such that ¢ [,€ IJ’}‘H and & [,41€ g\ ]J‘}‘H it holds that, by Definition 4.6 ¢ [, has «

many immediate successors in [\ ]J“[‘H. Also by Definition 4.6 the elements of J; are all the functions
Nis—wx 4 that satisfy the items 1 to 8, therefore each of this immediate successors of ¢ [, , satisfies
that in the set {n € J|{ < 17} there is a subtree isomorphic (as coloured tree) to 7\ ]}‘H.

This and the fact that uy is finite, gives the existence of the sequence {u;};g(4)+-

By the way we chose the sequence {u;}; g+, for every i < g(a)*, the isomorphism G; induces an
isomorphism H; : ]j’ﬁ“ Uilg — ]j}““ U i; such that H; []a+1= id. The other direction of this theorem

f
implies that the models A(0) = U{Ay|v € Pw(]}”'l Uilp)} and A(i) = U{A|v € 73(4,(]}’(Hrl Uii;)} are
isomorphic and there is an isomorphism h; : A(0) — A(i) such that h; [ 1= id. Let bp = b and b; =
f

h;(b), for every i < g(a)™, then t(b;, .Ajﬁ“) = t(b, Ajﬁ“). By the way (#;);4(4)+ Was constructed, Lemma
5.3 and the finite character of forking, the models (A(7));4(y)+ are independent over A;"CH, and thus
for every i < g¢(a)™, b; iA}“ Ujibj. Since b Lry(a () A’J",H, then for every i < g(a)™, b; Lri(a(y) Ajf“,
80 bi dry(a(y)) Ujzibj Therefore {b;};_¢(,)+ is an independence sequence over I1(A(y7)). We conclude
that dim(I1(py), Af) > g(a)" a contradiction with dim(I1(p}), A) = dim(p3, AS) = g(). O

Corollary 5.10. Assume T is stable and has the OCP, then EZ;- ctup =T

Proof. Let f and g be elements of x*. First we will construct a function F : ¥* — «* such that f Ef _, . &
if and only if AF(f) and AF(®) are isomorphic.

For every cradinal « < x, define S, = {B < x|A,(T),a™* < Band a¥ = a}. Let Gg be a bijection
from x into Sg, for every B < k. For every f € x* define F(f) by F(f)(B) = Gg(f(B)), for every B < «.

Clearly f Ef_ ., & if and only if F(f) Ef

X aup F(8) ie. AFU) and AF(®) are isomorphic and F is continu-
ous.
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Finally we need to find G : {AF)|f € ¥} — «* such that Agarny = AFS) and f s G(AFU)) is
continuous. This can be done as in Lemma 3.2. O

Corollary 5.11. Assume Ty is a classifiable theory and T, is a stable theory with the OCP, then =1, < .

Proof. Follows from Theorem 2.8 and Corollary 5.10. O
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