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Abstract

We study the Borel reducibility of isomorphism relations in the generalized Baire space κκ . In the
main result we show for inaccessible κ, that if T is a classifiable theory and T′ is stable with OCP, then
the isomorphism of models of T is Borel reducible to the isomorphism of models of T′.

1 Introduction

One of the main motivations behind writing [FHK14] was the possibility that Borel reducibility in gener-
alized Baire spaces can be used to measure the complexity of countable first-order theories (we concen-
trated on elementary classes with countable vocabulary, since for them there is a lot of structure theory):
We say that T is simpler than T′ if the isomorphism relation among models of T with universe κ (∼=T)
is Borel (or continuously) reducible to the isomorphism relation among the models of T′ with universe
κ. Here, and throughout the paper, we assume that κ<κ = κ > ℵ0 (see [FHK14] for the discussion why
κ = ℵ0 does not work). The results reviewed in this introduction often require further assumptions on
κ, but for sake of clarity the details are omitted and the reader is referred to the original papers for
the exact assumptions on κ. The question when such reduction exists turned out to be harder than we
expected.

In [FHK14] the results were negative: It was shown that if T is classifiable (superstable with NOTOP and
NDOP) and shallow and T′ is not, then ∼=T′ is not Borel reducible to ∼=T and that at least consistently, if
T is classifiable and T′ is not, then ∼=T′ is not Borel reducible to ∼=T .

In [HK14], some positive results were obtained: If V = L, then all the Σ1
1 equivalence relations are

reducible to ∼=DLO, where DLO is the theory of dense linear orderings without end points (in [FS89] it
was proved for κ = ω that ∼=DLO is Borel complete, and the proof in [HK14] is similar). Also it was
shown that consistently the same is true for Tω+ω (see below). Obviously, there are theories for which
this holds trivially e.g. graphs (even random graphs with a bit more work). Also it was shown that if a
theory T′ has this property and V = L, then ∼=T′ is Σ1

1-complete.

Finally, by combining Corollary 15 from [FHK] and the proof of Theorem 16 from [HK14], it follows that
if T is classifiable and shallow, then ∼=T is reducible to ∼=Tω+ω .

In this paper we improve two of the results mentioned above. We start by showing that if T is clas-
sifiable, then ∼=T is Borel reducible to ∼=Tω (again, see below) and that if V = L, then ∼=Tω is Σ1

1-complete.
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And then under heavy assumptions on κ, we generalize a lot: We show that if T is classifiable and T′ is
stable with OCP (see below), then ∼=T is continuously reducible to ∼=T′ and if in addition V = L, then
∼=T′ is Σ1

1-complete. The property OCP implies that T′ is unsuperstable and it is common among stable
unsuperstable theories. E.g. both Tω and Tω+ω mentioned above have it. It is also easy to find complete
theories of abelian groups (or more generally elementary theories of ultrametric spaces) that have the
property. What does not seem to be easy, is to find a strictly stable theory that does not have the property.

We are going to work on the generalised Baire space κκ with the following topology. For every ζ ∈ κ<κ ,
we call the set

[ζ] = {η ∈ κκ |ζ ⊂ η}

a basic open set. Then the open sets are of the form
⋃

X where X is a collection of basic open sets. The
κ-Borel space of κκ is the smallest set, which contains the basic open sets, and is closed under unions
and intersections, both of length κ. A Borel set, is any element of the κ-Borel space. Suppose X and Y
are subsets of κκ , a function f : X → Y is a Borel function, if for every open set A ⊆ Y, f−1[A] is a Borel
set in X of κκ .

Suppose X and Y are subsets of κκ , let E1 and E2 be equivalent relations on X and Y respectively.
If a function f : X → Y satisfies E1(x, y) ⇔ E2( f (x), f (y)), we say that f is a reduction of E1 to E2. If
there exists a Borel function that is a reduction, we say that E1 is Borel reducible to E2 and we denote
it by E1 ≤B E2. If there exists a continuous function that is a reduction, we say that E1 is continuously
reducible to E2 and we denote it by E1 ≤c E2.

For every regular cardinal µ < κ, we say that a set A ⊆ κ is a µ-club if it is unbounded and closed
under µ-limits. Clearly the intersection of two µ-clubs is also a µ-club and every µ-club is stationary.
On the space κκ , we say that f , g ∈ κκ are Eκ

µ-club equivalent ( f Eκ
µ-club g) if the set {α < κ| f (α) = g(α)}

contains a µ-club.

2 Classifiable Theories

Let us fix a countable relation vocabulary L = {R(n,m)|n, m ∈ ω\{0}}, where R(n,m) is an n-ary relation.
Fix a bijection g : ω\{0} × ω\{0} → ω, define Pg(n,m) := R(n,m) and rewrite L = {Pn|n < ω}. Denote
g−1(α) by (g−1

1 (α), g−1
2 (α)). When we describe a complete theory T in a vocabulary L ⊆ L, we think it

as a complete L-theory T ∪ {∀x̄¬Pn(x̄)|Pn ∈ L\L}. We can code L-structures with domain κ as follows.

Definition 2.1. Fix π a bijection between κ<ω and κ. For every η ∈ κκ define the structure Aη with domain κ
as follows.
For every tuple (a1, a2, . . . , an) in κn

(a1, a2, . . . , an) ∈ P
Aη
m ⇔ n = g−1

1 (m) and η(π(m, a1, a2, . . . , an)) > 0.

This defines a map from κκ onto the set of L-structures with domain κ.

Definition 2.2. (The isomorphism relation) Assume T a complete first order theory in a countable vocabulary and
η, ξ ∈ κκ , we define ∼=T as the relation

{(η, ξ)|(Aη |= T,Aξ |= T,Aη
∼= Aξ) or (Aη 6|= T,Aξ 6|= T)}
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The following game is the usual Ehrenfeucht-Fraı̈ssé game with structures of domain κ and moves coded
by ordinals. The Ehrenfeucht-Fraı̈ssé game will be useful for the study of ∼=T when T is classifiable.
Shelah proved [She90] that when T is classifiable, two models A and B are isomorphic if and only if the
second player has a winning strategy in the Ehrenfeucht-Fraı̈ssé game EFκ

ω(A,B).
We will show that the existence of a winning strategy depends on the existence of a club on κ. We can
study the isomorphism relation by studying the relation Eκ

µ-club.

Definition 2.3. (Ehrenfeucht-Fraı̈ssé game) Fix {Xγ}γ<κ an enumeration of the elements of Pκ(κ) and { fγ}γ<κ

an enumeration of all the functions with domain in Pκ(κ) and range in Pκ(κ). For every pair of structures A and
B with domain κ, the EFκ

ω(A,B) is a game played by the players I and II as follows.
In the n-th move, first I chooses an ordinal βn < κ such that Xβn−1 ⊂ Xβn , and then II an ordinal θn < κ such
that Xβn ⊆ dom( fθn) ∩ rang( fθn) and fθn−1 ⊂ fθn (if n = 0 then Xβn−1 = ∅ and fθn−1 = ∅).
The game finishes after ω moves. The player II wins if ∪i<ω fθi : A → B is a partial isomorphism, otherwise the
player I wins.

For every α < κ we can define the restricted game EFκ
ω(A �α,B �α) for structures A and B with domain

κ, as follows.
In the n-th move, first I choose an ordinal βn < α such that Xβn ⊂ α, Xβn−1 ⊆ Xβn , and then II an ordinal
θn < α such that dom( fθn), rang( fθn) ⊂ α, Xβn ⊆ dom( fθn) ∩ rang( fθn) and fθn−1 ⊆ fθn (if n = 0 then
Xβn−1 = ∅ and fθn−1 = ∅). The game finishes after ω moves. The player II wins if ∪i<ω fθi : A �α→ B �α

is a partial isomorphism, otherwise the player I wins.
Notice that now wining strategies are functions from κ<κ to κ.
We will write I ↑ EFκ

ω(A �α,B �α) when I has a winning strategy in the game EFκ
ω(A �α,B �α), similarly

we write II ↑ EFκ
ω(A �α,B �α) when II has a winning strategy.

Lemma 2.4. If A and B are structures with domain κ, then the following hold:

• II ↑ EFκ
ω(A,B)⇐⇒ II ↑ EFκ

ω(A �α,B �α) for club-many α.

• I ↑ EFκ
ω(A,B)⇐⇒ I ↑ EFκ

ω(A �α,B �α) for club-many α.

Proof. Let us start by, II ↑ EFκ
ω(A,B)⇒ II ↑ EFκ

ω(A �α,B �α) for club-many α.
Suppose σ is a winning strategy for II and denote by Cσ the club {α < κ : σ[α<ω ] ⊆ α}. De-
fine the function H : κ → κ by H(α) = sup(rang( fα) ∪ dom( fα) ∪ Xα), this function defines the club
CH := {γ < κ|∀α < γ(H(α) < γ)}.
For all α ∈ Cσ ∩ CH , α satisfies σ[α<ω ] ⊆ α and every β < α satisfies sup(rang( fβ) ∪ dom( fβ)) < α. Then
the domain and range of fβ are subsets of α. We conclude that σ �α<ω is a winning strategy for II in the
restricted game EFκ

ω(A �α,B �α). Since the intersection of clubs is a club, then there are club many α
such that II ↑ EFκ

ω(A �α,B �α).

The case I ↑ EFκ
ω(A,B)⇒ I ↑ EFκ

ω(A �α,B �α) for club-many α is similar.

The two directions (from left to right) are proved in the same way, and thus we show only one. Suppose
there are club many α such that II ↑ EFκ

ω(A �α,B �α) (denote this club by CII) and there is no winning
strategy for II in the game EFκ

ω(A,B). Since this game is a determined game, then I ↑ EFκ
ω(A,B). We

already showed that this implies the existence of club many α such that I ↑ EFκ
ω(A �α,B �α) (denote this

club by CI). Since the intersection of clubs is a club, then CI ∩ CII 6= ∅. Therefore, there exists α, such
that both players have a winning strategy for the game EFκ

ω(A �α,B �α), a contradiction.
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Corollary 2.5. For every µ < κ and every pair of structures A and B with domain κ,

II ↑ EFκ
ω(A,B)⇐⇒ II ↑ EFκ

ω(A �α,B �α) for µ-club-many α

By Shelah’s result [She90] we know that a classifiable theory, II ↑ EFκ
ω(A,B) implies that A and B are

isomorphic. Therefore, for all η, ξ ∈ κκ , the player II ↑ EFκ
ω(Aη ,Aξ) if and only if η ∼=T ξ. We can use

the restricted games to define new relations, one relation for each α. By the previous corollary, we can
use these relations to study the isomorphism relation.

Definition 2.6. Assume T is a complete first order theory in a countable vocabulary. For every α < κ and
η, ξ ∈ κκ , we write η Rα

EF ξ if one of the following holds, Aη �α 6|= T and Aξ �α 6|= T, or Aη �α|= T, Aξ �α|= T
and II ↑ EFκ

ω(Aη �α,Aξ �α).

Notice that for each α ≤ κ, Rα
EF is a relation on κκ × κκ but it is not necessarily an equivalence relation.

Fortunately there are club-many α such that Rα
EF is an equivalence relation.

Lemma 2.7. For every complete first order theory T in a countable vocabulary, there are club many α such that
Rα

EF is an equivalence relation.

Proof. Define the following functions:

• h1 : κ → κ, h1(α) = γ where fγ is the identity function of Xα.

• h2 : κ → κ, h2(α) = γ where f−1
α = fγ.

• h3 : κ2 → κ, h3(α, β) = Xα ∪ Xβ = Xγ.

• h4 : κ → κ, h4(α) = rang( fα) = Xγ.

• h5 : κ → κ, h5(α) = dom( fα) = Xγ.

• h6 : κ2 → κ, h6(α, β) = γ where fα ◦ fβ = fγ, fα ◦ fβ is defined on the set f−1
β [rang( fβ) ∩ dom( fα)].

Each of these functions defines a club,

• Ci = {γ < κ|∀α < γ(hi(α) < γ)} for i ∈ {1, 2, 4, 5}.

• Ci = {γ < κ|∀β, α < γ(hi(α, β) < γ)} for i ∈ {3, 6}.

Denote by C the club ∩6
i=1Ci. We will show that for every α ∈ C, Rα

EF is an equivalence relation.

By definition η Rα
EF ξ implies that either both Aη and Aξ are models of T or non of them is a model of

T. Thus Rα
EF = R− ∪ R+, where R− is the restriction of Rα

EF to the set A = {η ∈ κ|Aη 6|= T} and R+ is
the restriction of Rα

EF to the complement of A. Since R− ∩ R+ = ∅, it is enough to prove that R− and
R+ are equivalence relations.
By definition it is easy to see that R− = A× A, therefore R− is an equivalence relation. Now we will
prove that R+ is an equivalence relation.

Reflexivity
By the way C1 was defined, for every β < α, h1(β) < α and fh1(β) is the identity function of Xβ. There-
fore, the function σ((β0, β1, . . . , βn)) = h1(βn) is a winning strategy for II in the game EFκ

ω(Aη �α,Aη �α).
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Symmetry
Let σ be a winning strategy for II in the game EFκ

ω(Aη �α,Aξ �α). Since α ∈ C2 and σ((β0, β1, . . . , βn)) <
α, we know that h2(σ((β0, β1, . . . , βn))) < α. Notice that if ∪i<ω fθi : α → α is a partial isomorphism
from Aη �α to Aξ �α, then ∪i<ω fh2(θi)

= ∪i<ω f−1
θi

is a partial isomorphism from Aξ �α to Aη �α. There-
fore, the function σ′((β0, β1, . . . , βn)) = h2(σ((β0, β1, . . . , βn))) is a winning strategy for II in the game
EFκ

ω(Aξ �α,Aη �α).

Transitivity
Let σ1 and σ2 be two winning strategies for II on the games EFκ

ω(Aη �α,Aξ �α) and EFκ
ω(Aξ �α,Aζ �α),

respectively.
For a given tuple (β0, β1, . . . , βn) let us construct by induction the tuples (γ0, γ1, . . . , γn), (β′0, β′1, . . . , β′2n, β′2n+1),
and the functions f(1,n), gn and f(2,n):

1. Let β′0 = β0 and for i > 0, let β′2i be the least ordinal such that Xβ′2i−1
∪ Xβi = Xβ′2i

.

2. f(1,i) := fσ1((β′0,β′1,...,β′2i−1,β′2i))
.

3. γi is the ordinal such that Xγi = rang( f(1,i)).

4. gi := fσ2((γ0,γ1,...,γi))
.

5. β′2i+1 is the ordinal such that Xβ′2i+1
= dom(gi).

6. f(2,i) := fσ1((β′0,β′1,...,β′2i ,β
′
2i+1))

.

Define the function σ : α<ω → α by σ((β0, β1, . . . , βn)) = θn, where θn is the ordinal such that fθn = gn ◦
( f(2,n) � f−1

(2,n) [dom(gn)]
). It is easy to check that for every n, the tuples (γ0, γ1, . . . , γn) and (β′0, β′1, . . . , β′2n+1)

are elements of α<ω, and the functions f(1,n), gn, f(2,n) and fθn are well defined; it is also easy to check
that σ((β0, β1, . . . , βn)) is a valid move.
Let us show that ∪n<ω fθn is a partial isomorphism. It is clear that rang( f(2,n)) ⊆ rang( f(1,n+1)). By 3 and
4 in the induction, we can conclude that rang( f(2,n)) is a subset of dom(gn+1). Then rang(∪n<ω( f(2,n))) ⊆
dom(∪n<ω(gn)), so

∪n<ω(gn ◦ ( f(2,n) � f−1
(2,n) [dom(gn)]

)) = ∪n<ω(gn) ◦ ∪n<ω( f(2,n)).

Since σ1 and σ2 are winning strategies, we know that ∪n<ω(gn) and ∪n<ω( f(2,n)) are partial isomor-
phism. Therefore ∪n<ω fθn is a partial isomorphism and σ is a winning strategy for II on the game
EFκ

ω(Aη �α,Aζ �α).

Assume T is a classifiable theory. We can conclude from the previous results that, η ∼=T ξ if and only if
η Rα

EF ξ for µ-club many α. This lead us to the main result of this section, ∼=T is continuously reducible
to Eκ

µ-club for any µ when T is classifiable.

Theorem 2.8. Assume T is a classifiable theory and µ < κ a regular cardinal, then ∼=T is continuously reducible
to Eκ

µ-club (∼=T ≤c Eκ
µ-club).
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Proof. Shelah proved [She90], that if T is classifiable then every two models of T that are L∞,κ-equivalent
are isomorphic. But L∞,κ-equivalent is equivalent to EFκ

ω-equivalence. In other words, if T is classifiable
then II ↑ EFκ

ω(A,B)⇐⇒ A ∼= B. This game is a determined game, so I ↑ EFκ
ω(A,B)⇐⇒ A � B.

Define the reduction F : κκ → κκ as follows,

F (η)(α) =
{

fη(α) if c f (α) = µ,Aη �α|= T and Rα
EF is an equivalence relation

0 in other case

where fη(α) is a code in κ\{0} for the Rα
EF equivalence class of Aη �α

First, we will show that F (η) Eκ
µ-club F (ξ) implies η ∼=T ξ. Assume η and ξ are such that F (η) Eκ

µ-club F (ξ).
It is known that if A is a model of T, then the set {α < κ : A �α|= T} contains a club. Therefore, if
there are µ-club many α such that F (η)(α) = 0, then Aη 6|= T, otherwise we will have a club disjoint to
a µ-club. So, if there are µ-club many α satisfying F (η)(α) = F (ξ)(α) = 0, then Aη 6|= T and Aξ 6|= T,
giving us η ∼=T ξ.
On the other hand, if there are µ-club many α satisfying F (η)(α) = F (ξ)(α) 6= 0, then there are µ-club
many α such that Aη �α|= T and Aξ �α|= T and thus Aη |= T and Aξ |= T. Since there are µ-club many
α such that Aη �α|= T, Aξ �α|= T and II ↑ EFκ

ω(Aη �α,Aξ �α), then by Corollary 2.5, II ↑ EFκ
ω(Aη ,Aξ)

and η ∼=T ξ.

To show that η ∼=T ξ implies F (η) Eκ
µ-club F (ξ), assume that η and ξ are such that η ∼=T ξ.

For the case when Aη |= T, it is clear that Aξ |= T. We will show the existence of a µ-club, such that
for every element α of it, fη(α) = fξ(α). Notices that Aη �α and Aξ �α are models of T for club many
α. Since II ↑ EFκ

ω(Aη ,Aξ) ⇐⇒ Aη
∼=T Aξ , by Corollary 2.5 there are µ-club many α such that II ↑

EFκ
ω(Aη �α,Aξ �α), what is the same as η Rα

EF ξ. Therefore, by Lemma 2.7 there is a µ-club, such that for
every α in it fη(α) = fξ(α).
For the case when Aη 6|= T, since we assumed η ∼=T ξ, then Aξ 6|= T. There is ϕ ∈ T such that Aη |= ¬ϕ
and Aξ |= ¬ϕ. Therefore, there are club many α such that Aη �α|= ¬ϕ and Aξ �α|= ¬ϕ, in particular
exist club many α such that F (η)(α) = F (ξ)(α) = 0.

To show that F is continuous, let [η �α] be a basic open set and ξ ∈ F−1[[η �α]]. Let π be the bi-
jection in Definition 2.1, since κ is regular, sup{π(a)|a ∈ ω × α<ω} < κ. Therefore, there is β > α such
that for every γ < α holds

(a1, a2, . . . , an) ∈ P
Aξ�γ
m ⇔ n = g−1

1 (m) and ξ �β (π(m, a1, a2, . . . , an)) > 0.

Then, for every ζ ∈ [ξ �β] and γ < α, Aξ �γ and Aζ �γ are isomorphic. So for every ζ ∈ [ξ �β],
fξ(γ) = fζ(γ) for every γ < α. We conclude that [ξ �β] ⊆ F−1[[η �α]] and F is continuous.

3 Stable Unsuperstable Theories

A set X ⊂ κκ is Σ1
1 if it is the projection of a Borel set C ⊂ κκ × κκ , notice that κκ × κκ is homeomorphic

to κκ . Let X ∈ {λκ |1 < λ ≤ κ} and we think this as subspaces of κκ . We say that an equivalence relation
E on X is Σ1

1-complete, if it is Σ1
1 (as a subset of κκ × κκ) and for every Σ1

1-equivalence relation F on a
space Y ∈ {λκ |1 < λ ≤ κ}, there is a Borel reduction F ≤B E.
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On the works [FHK], [FHK14] and [HK14], the relation Eλ
µ-club, 1 < λ ≤ κ, has been studied on the

closed subspaces λκ , with λ < κ and the relative subspace topology. The relation Eλ
µ-club on the subspace

λκ is defined as: we say that f , g ∈ λκ are Eλ
µ-club equivalent ( f Eγ

µ-club g) if the set {α < κ| f (α) = g(α)}
contains a µ-club. For these relations the following results are known:

Theorem. ([FHK14]) If a first order theory T is classifiable, then for all regular µ < κ, E2
µ-club �B∼=T .

Theorem. ([FHK14]) Suppose that κ = λ+ = 2λ and λ<λ = λ.

• If κ > 2ω and T is a first order theory, then T is classifiable if and only if for all regular µ < κ, E2
µ-club �B∼=T .

• If T is unstable then E2
λ-club ≤c∼=T .

Theorem. ([HK14]) Assume V = L. Suppose κ > ω.

• If κ = λ+, then for every regular cardinal µ, the equivalence relation Eλ
µ-club is Σ1

1-complete.

• If κ is inaccessible, then for every regular cardinal µ, the equivalence relation Eκ
µ-club is Σ1

1-complete.

Theorem. ([FHK]) Suppose T is a classifiable and shallow theory and κ > 2ω, then for all regular µ < κ,
∼=T ≤B Eκ

µ-club.

Some of the results are specifically for some fix theory. Let α be a countable ordinal, define Tα =
Th((ωα, Rβ)β<α), where η Rβ ξ holds if η �β= ξ �β.

Theorem. ([HK14]) Assume V = L. If κ = λ+ and λ is regular, then Eλ
ω-club ≤B∼=Tω+ω .

We are going to continue with this work, reducing Eκ
ω-club to some other equivalence relations and

generalize some of these results. We will use similar ideas as the ones used on [FHK], [FHK14] and
[HK14].

Theorem 3.1. ([FHK14]) Suppose for all γ < κ, γω < κ and T is a stable unsuperstable theory. Then
E2

ω-club ≤c∼=T .

Given an equivalence relation E on X it is natural to think on a λ-product relation of it for any 0 < λ < κ.
The λ-product relation ΠλE, is the relation defined on Xλ × Xλ as, f ΠλE g if fγ E gγ holds for every
γ < λ, where f = ( fγ)γ<λ and g = (gγ)γ<λ. We will work on the space (2κ)λ, with the box topology
on (2κ)λ, the topology generated by the basic open sets {Πα<λOα|∀α < λ(Oα is an open set in 2κ)}.

Remark. If there exists a cardinal λ < κ such that κ = 2λ, the relations Eκ
µ-cub and ΠλE2

µ-cub are
bireducible.
Let G be a bijection between κ and 2λ. Define F : κκ → (κκ)λ, by F ( f ) = ( fγ)γ<λ, where fγ(α) =

G( f (α))(γ) for every γ < λ and α < κ. F is a reduction of Eκ
µ-cub to ΠλE2

µ-cub. Clearly for every pair
of function f and g in κκ , f (α) = g(α) implies G( f (α)) = G(g(α)) and fγ(α) = gγ(α) for every γ < λ.
Therefore, if f and g coincide in a µ-club, then for all γ < λ, fγ and gγ coincide in the same µ-club. For
the other direction, assume that fγ and gγ coincide in a µ-club for every γ < λ. Since the intersection
of less than κ µ-club sets is a µ-club set, then there is a µ-club C, in which the functions fγ and gγ
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coincide for every γ < λ. Therefore G( f (α))(γ) = G(g(α))(γ) for every γ < λ and every α ∈ C. So
G( f (α)) = G(g(α)) for every α ∈ C and since G is a bijection, we can conclude that f (α) = g(α) for
every α ∈ C.
The other reduction is proved in [FHK].

A nice example of a stable unsuperstable theory is Tω. Under the assumptions of Theorem 3.1, E2
ω-cub ≤c

∼=Tω . This and the reducibility of Eκ
µ-cub to ΠλE2

µ-cub lead us to our first reduction related to stable unsu-
perstable theories.

Lemma 3.2. Suppose that for all γ < κ, γω < κ and κ = 2λ. Then Eκ
ω-cub ≤c ∼=Tω .

Proof. By the previous remark it is enough to prove ΠλE2
ω-club ≤c ∼=Tω . Let (Aα)α<λ be pairwise non

isomorphic models of Tω with universe κ. Let F be a continuous reduction of E2
ω-cub to ∼=Tω .

For every f = ( fγ)γ<λ ∈ (2κ)λ we will define the model A f , with domain λ× (ω + 1)× κ. The inter-

pretation of the relation RA
f

0 is the following, (γ1, β1, α1) RA
f

0 (γ2, β2, α2) if and only if γ1 = γ2. The
interpretation of the relations RA

f

i (for 0 < i) is the following, (γ1, β1, α1) RA
f

i (γ2, β2, α2) if and only if
γ1 = γ2, β1 = β2 and α1 RAi α2 where A = Aγ1 if β < ω otherwise A = AF( fγ1 )

.

Claim 3.3. f ΠλE2
ω-club g if and only if A f and Ag are isomorphic.

Proof of the claim. Let f = ( fγ)γ<λ and g = (gγ)γ<λ. If f ΠλE2
ω-club g, then fγ E2

ω-club gγ for every γ < λ,
therefore for every γ < λ the models AF( fγ) and AF(gγ) are isomorphic. Let Hγ be an isomorphism
between AF( fγ) and AF(gγ) for every γ < λ, define H : A f → Ag by,

H(γ, α, β) =

{
(γ, ω, Hγ(β)) if α = ω

(γ, α, β) in other case.

It is clear that H is an isomorphism between A f and Ag.

Assume there exists an isomorphism H : A f → Ag. Fix γ < λ, since for every β1 and β2 in ω + 1,
and α1 and α2 in κ, (γ, β1, α1) RA

f

0 (γ, β2, α2) if and only if
H(γ, β1, α1) RA

g

0 H(γ, β2, α2), then H({γ} × (ω + 1)× κ) ⊆ {α} × (ω + 1)× κ for some α < λ. Follow-
ing the same argument, we can conclude that H−1({α} × (ω + 1)× κ) ⊆ {γ} × (ω + 1)× κ. Therefore
A f �{γ}×{n}×κ and Ag �{α}×{m}×κ are isomorphic for some n, m ∈ ω, so Aγ and Aα are isomorphic. By
the way A f and Ag were constructed, this only happens when γ = α. Then H({γ} × (ω + 1)× κ) =
{γ} × (ω + 1) × κ. Since H is an isomorphism, either H({γ} × ω × κ) = {γ} × ω × κ or there is
a n < ω such that H({γ} × {n} × κ) = {γ} × {ω} × κ. For the first case, we can conclude that
H({γ} × {ω} × κ) = {γ} × {ω} × κ, then AF( fγ) and AF(gγ) are isomorphic. For the second case,
A f �{γ}×{n}×κ and Ag �{γ}×{ω}×κ are isomorphic and there is m < ω such that H({γ} × {ω} × κ) =

{γ} × {m} × κ. So A f �{γ}×{ω}×κ and Ag �{γ}×{m}×κ are isomorphic. By the way A f and Ag were
defined, we know that A f �{γ}×{n}×κ and Ag �{γ}×{m}×κ are isomorphic, therefore A f �{γ}×{ω}×κ and
Ag �{γ}×{ω}×κ are isomorphic (i.e. AF( fγ) and AF(gγ) are isomorphic). From the way F was chosen
we can conclude that fγ E2

ω-cub gγ. And so for all γ < λ, fγ E2
ω-cub gγ and finally we conclude that

f ΠλE2
ω-club g. �Claim 3.3
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Let σ be a bijection from λ × (ω + 1) × κ to κ, let π and Pn be as in Definition 2.1. We define the
reduction F : (κκ)λ → κκ by,

F (( fγ)γ<λ)(α) =

{
1 if α = π(n, a1, a2) and A f |= Pn(σ−1(a1), σ−1(a2))

0 in other case.

The continuity of F , can be proved as in the proof of Theorem 2.8.

The following corollary follows from Theorem 2.8 and Lemma 3.2.

Corollary 3.4. Suppose for all γ < κ, γω < κ and κ = 2λ, λ < κ. If T is a classifiable theory. Then ∼=T ≤c ∼=Tω .

4 Coloured trees

In this section we will define the coloured trees. These trees have high ω + 2 and a colouring function.
We will show a construction of a coloured tree, using an element of κκ to define the colouring function.
In the end these trees are going to be isomorphic if and only if their respective elements of κκ used to
construct them are Eκ

ω-cub related. This is Lemma 4.7, below, but notice that in section 5 we need more
information about the trees than just this lemma.
The coloured trees that we will present in this section, are a variation of the trees used in [HK14] and
[FHK14] for the reduction mentioned at the beginning of the previous section.
For every x ∈ t we denote by ht(x) the height of x, the order type of {y ∈ t|y < x}. Define tα = {x ∈
t|ht(x) = α} and denote by x �α the unique y ∈ t such that y ∈ tα and y ≤ x. An α, β-tree is a tree t
in which every element has less than α immediately successors and every branch η has order type less
than β.

Definition 4.1. A coloured tree is a pair (t, c), with t is a κ+, (ω + 2)-tree and c is a map c : tω → κ\{0}.

Two coloured trees (t, c) and (t′, c′) are isomorphic, if there is a trees isomorphism f : t → t′ such that
for every x ∈ tω, c(x) = c′( f (x)).
Denote the set of all coloured trees by CTω. Let CTω

∗ ⊂ CTω be the set of coloured trees, in which every
element with finite height, has infinitely many immediate successors, every maximal branch has order
type ω + 1 and the intersection of two distinct branches is finite. Notice that for every t ∈ CTω

∗ and
every pair x, y ∈ tω, x �ω= y �ω implies x = y.
We are going to work only with elements of CTω

∗ , every time we mention a coloured tree, we mean an
element of CTω

∗ .
We can see every coloured tree as a downward closed subset of κ≤ω.

Definition 4.2. Let (t, c) be a coloured tree, suppose (Iα)α<κ is a collection of subsets of t that satisfies:

• for each α < κ, Iα is a downward closed subset of t.

•
⋃

α<κ Iα = t.

• if α < β < κ, then Iα ⊂ Iβ.

• if γ is a limit ordinal, then Iγ =
⋃

α<γ Iα.

• for each α < κ the cardinality of Iα is less than κ.

9



We call (Iα)α<κ a filtration of t.

Definition 4.3. Let t be a coloured tree and I = (Iα)α<κ a filtration of t. Define HI ,t ∈ κκ as follows.
Fix α < κ. Let Bα be the set of all x ∈ tω that are not in Iα, but x �n∈ Iα for all n < ω.

• If Bα is non-empty and there is β such that for all x ∈ Bα, c(x) = β, then let HI ,t(α) = β

• Otherwise let HI ,t(α) = 0

We will call a filtration good if for every α, Bα 6= ∅ implies that c is constant on Bα.

Lemma 4.4. Suppose (t0, c0) and (t1, c1) are isomorphic coloured trees, and I = (Iα)α<κ and J = (Jα)α<κ are
good filtrations of (t0, c0) and (t1, c1) respectively. Then HI ,t0 Eκ

ω-club HJ ,t1

Proof. Let F : (t0, c0)→ (t1, c1) be a coloured tree isomorphism. Define FI = (F[Iα])α<κ . It is easy to see
that F[Iα] is a downward closed subset of t1. Clearly F[Iα] ⊂ F[Iβ] when α < β and for γ a limit ordinal,
∪α<γF[Iα] = F[Iγ]. If x ∈ t1 then there exists y ∈ t0 and α < κ such that F(y) = x and y ∈ Iα, therefore
x ∈ F[Iα] and ∪α<κ F[Iα] = t1. Since F is an isomorphism, |F[Iα]| = |Iα| < κ for every α < κ. So FI is a
filtration of t1.
For every α, BIα 6= ∅ implies that BFI

α 6= ∅. On the other hand, I is a good filtration, then when BIα 6= ∅,
c0 is constant on BIα . Since F is colour preserving, c1 is constant on BFI

α , we conclude that FI is a good
filtration and HI ,t0(α) = HFI ,t1(α).
Notice that F[Iα] = Jα implies HI ,t0(α) = HJ ,t1(α). Therefore it is enough to show that C = {α|F[Iα] =
Jα} is an ω-club. By the definition of a filtration, for every sequence (αi)i<θ in C, cofinal to γ, Jγ =⋃

i<θ Jαi =
⋃

i<θ F[Iαi ] = F[Iγ], so C is closed. To show that C is unbounded, choose α < κ. Define
the succession (αi)i<ω by induction. For i = 0, α0 = α. When n is odd let αn+1 be the least ordinal
bigger than αn such that F[Iαn ] ⊂ Jαn+1 (such ordinal exists because κ is regular, and J and FI are
filtrations, specially |F[Iαn ]| < κ). When n is even let αn+1 be the least ordinal bigger than αn such that
Jαn ⊂ F[Iαn+1 ] (such ordinal exists because κ is regular, and J and FI are filtrations, specially |Jαn | < κ).
Clearly

⋃
i<ω Jαi =

⋃
i<ω F[Iαi ] and ∪i<ωαi ∈ C.

Now we can construct the coloured trees that we need for the reduction. This construction is in essential
the same used in [HK14]. The only difference between them is that in [HK14] the construction was made
for successor cardinals, here we do it for inaccessible cardinals. These trees are useful for the study of
the relation Eκ

ω-cub.

Order the set ω × κ × κ × κ × κ lexicographically, (α1, α2, α3, α4, α5) > (β1, β2, β3, β4, β5) if for some
1 ≤ k ≤ 5, αk > βk and for every i < k, αi = βi. Order the set (ω × κ × κ × κ × κ)≤ω as a tree by
inclusion.
Define the tree (I f , d f ) as, I f the set of all strictly increasing functions from some n ≤ ω to κ and for
each η with domain ω, d f (η) = f (sup(rang(η))).
For every pair of ordinals α and β, α < β < κ and i < ω define

R(α, β, i) =
⋃

i<j≤ω

{η : [i, j)→ [α, β)|η strictly increasing}.

Definition 4.5. Assume κ is an inaccessible cardinal. If α < β < κ and α, β, γ 6= 0, let {Pα,β
γ |γ < κ} be an

enumeration of all downward closed subtrees of R(α, β, i) for all i, in such a way that each possible coloured tree
appears cofinally often in the enumeration. And the tree P0,0

0 is (I f , d f ).
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This enumeration is possible because κ is inaccessible; there are at most
|⋃i<ω P(R(α, β, i))| ≤ ω× κ = κ downward closed coloured subtrees, and at most κ× κ<κ = κ coloured
trees.
Denote by Q(Pα,β

γ ) the unique natural number i such that Pα,β
γ ⊂ R(α, β, i).

Definition 4.6. Assume κ is an inaccessible cardinal. Define for each f ∈ κκ the coloured tree (J f , c f ) by the
following construction.
For every f ∈ κκ define J f = (J f , c f ) as the tree of all η : s → ω × κ4, where s ≤ ω, ordered by extension, and
such that the following conditions hold for all i, j < s:
Denote by ηi, 1 < i < 5, the functions from s to κ that satisfies, η(n) = (η1(n), η2(n), η3(n), η4(n), η5(n)).

1. η �n∈ J f for all n < s.

2. η is strictly increasing with respect to the lexicographical order on ω× κ4.

3. η1(i) ≤ η1(i + 1) ≤ η1(i) + 1.

4. η1(i) = 0 implies η2(i) = η3(i) = η4(i) = 0.

5. η1(i) < η1(i + 1) implies η2(i + 1) ≥ η3(i) + η4(i).

6. η1(i) = η1(i + 1) implies ηk(i) = ηk(i + 1) for k ∈ {2, 3, 4}.

7. If for some k < ω, [i, j) = η−1
1 {k}, then

η5 �[i,j)∈ Pη2(i),η3(i)
η4(i)

.

Note that 7 implies Q(Pη2(i),η3(i)
η4(i)

) = i.

8. If s = ω, then either

(a) there exists a natural number m such that η1(m− 1) < η1(m), for every k ≥ m η1(k) = η1(k + 1),
and the color of η is determined by Pη2(m),η3(m)

η4(m)
:

c f (η) = c(η5 �[m,ω))

where c is the colouring function of Pη2(m),η3(m)
η4(m)

.

or

(b) there is no such m and then c f (η) = f (sup(rang(η5))).

Lemma 4.7. Assume κ is an inaccessible cardinal, then for every f , g ∈ κκ the following holds

f Eκ
ω-club g⇔ J f

∼= Jg

Proof. By Lemma 4.4, it is enough to prove the following properties of J f

1. There is a good filtration I of J f , such that HI ,J f Eκ
ω-club f .

2. If f Eκ
ω-club g, then J f

∼= Jg.

11



Notice that for any k ∈ rang(η1) if η5 �[i,j)∈ Pη2(i),η3(i)
η4(i)

, when [i, j) = η−1
1 {k} and if i + 1 < j, then

η5 �[i,j) is strictly increasing. If η1(i) < η1(i + 1), by Definition 4.6 item 5, η2(i + 1) ≥ η3(i) + η4(i), so
η5(i) < η3(i) ≤ η2(i + 1) ≤ η5(i + 1). Thus η5 is strictly increasing. If η �n∈ J f for every n, then η ∈ J f .
Clearly every maximal branch has order type ω + 1, every chain η �1⊂ η �2⊂ η �3⊆ · · · has a unique
limit in the tree, and every element in a finite level has an infinite number of successors (at most κ),
therefore J f ∈ CTω

∗ .
For each α < κ define Jα

f as

Jα
f = {η ∈ J f |rang(η) ⊂ ω× (β)4 for some β < α}.

Suppose rang(η1) = ω. As it was mentioned before, η5 is increasing and sup(rang(η3)) ≥ sup(rang(η5)) ≥
sup(rang(η2)). By Definition 4.6 sup(rang(η2)) ≥ sup(rang(η3)) and sup(rang(η2)) ≥ sup(rang(η4)),
this lead us to

sup(rang(η4)) ≤ sup(rang(η3)) = sup(rang(η5)) = sup(rang(η2)). (1)

When η �k∈ Jα
f holds for every k ∈ ω, can be concluded that sup(rang(η5)) ≤ α, if in addition η /∈ Jα

f ,
then

sup(rang(η5)) = α. (2)

Claim 4.8. Suppose ξ ∈ Jα
f and η ∈ J f . If dom(ξ) < ω, ξ ( η and for every k in dom(η)\dom(ξ), η1(k) =

ξ1(max(dom(ξ))) and η1(k) > 0. Then η ∈ Jα
f .

Proof of the claim. Assume ξ, η ∈ J f are as in the assumption. Let βi = ξi(max(dom(ξ))), for i ∈ {2, 3, 4}.
Since ξ ∈ Jα

f , then there exists β < α such that β2, β3, β4 < β. By Definition 4.6 item 6 for every
k ∈ dom(η)\dom(ξ), ηi(k) = βi for i ∈ {2, 3, 4}. Therefore, by Definition 4.6 item 7 and the definition of
Pβ2,β3

β4
, we conclude η5(k) < β3 < β, so η ∈ Jα

f . �Claim 4.8

Claim 4.9. |J f | = κ, J = (Jα
f )α<κ is a good filtration of J f and HJ ,J f Eκ

ω-club f

Proof of the claim. Clearly J f = ∪α<κ Jα
f , Jα

f is a downward closed subset of J f , and Jα
f ⊂ Jβ

f when α < β.
Since κ is inaccessible, we conclude |Jα

f | < κ and |J f | = κ. Finally, when γ is a limit ordinal

Jγ
f = {η ∈ J f |∃β < γ(rang(η) ⊂ ω× (β)4)}

= {η ∈ J f |∃α < γ, ∃β < α(rang(η) ⊂ ω× (β)4)}
=

⋃
α<γ Jα

f

Suppose α has cofinality ω, and η ∈ J f \Jα
f satisfies η �k∈ Jα

f for every k < ω. By the previous claim, η

satisfies Definition 4.6 item 8 (a) only if η1(n) = 0 for every n ∈ ω. So η1, η2, η3 and η4 are constant zero,
and c f (η) = d f (η5), where d f is the colouring function of P0,0

0 = I f , c f (η) = f (sup(rang(η5))). When η

satisfies Definition 4.6 item 8 (b), c f (η) = f (sup(rang(η5))).
In both cases, c f (η) = f (α). Therefore, if Bα 6= ∅ then c f is constant on Bα and J is a good filtration.
By Definition 4.3 and since J is a good filtration, HJ ,J f (α) = f (α). �Claim 4.9

Claim 4.10. If f Eκ
ω-club g, then J f

∼= Jg.
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Proof of the claim. Let C′ ⊆ {α < κ| f (α) = g(α)} a ω-club testifying f Eκ
ω-club g, and let C ⊃ C′ be the

closure of C′ under limits. By induction we are going to construct an isomorphism between J f and Jg.
We define continuous increasing sequences (αi)i<κ of ordinals and (Fαi )i<κ of partial isomorphism from
J f to Jg such that:

a) If i is a successor, then αi is a successor ordinal and there exists β ∈ C such that αi−1 < β < αi and
thus if i is a limit, αi ∈ C.

b) Suppose that i = γ + n, where γ is a limit ordinal or 0, and n < ω is even. Then dom(Fαi ) = Jαi
f .

c) Suppose that i = γ + n, where γ is a limit ordinal or 0, and n < ω is odd. Then rang(Fαi ) = Jαi
g .

d) If dom(ξ) < ω, ξ ∈ dom(Fαi ), η �dom(ξ)= ξ and for every k ≥ dom(ξ)

η1(k) = ξ1(max(dom(ξ))) and η1(k) > 0

then η ∈ dom(Fαi ). Similar for rang(Fαi ).

e) If ξ ∈ dom(Fαi ) and k < dom(ξ), then ξ �k∈ dom(Fαi ).

f) For all η ∈ dom(Fαi ), dom(η) = dom(Fαi (η)).

For every ordinal α denote by M(α) the ordinal that is order isomorphic to the lexicographic order of
ω× α4.

First step (i=0).
Let α0 = β + 1 for some β ∈ C. Let γ be an ordinal such that there is a coloured tree isomorphism
h : P0,M(β)

γ → Jα0
f and Q(P0,M(β)

γ ) = 0. It is easy to see that such γ exists, by the way our enumeration
was chosen.
Since P0,M(β)

γ and Jα0
f are closed under initial segments, then |dom(h−1(η))| = |dom(η)|. Also both do-

mains are intervals containing zero, therefore dom(h−1(η)) = dom(η).
Define Fα0(η) for η ∈ Jα0

f as follows, let Fα0(η) be the function ξ with dom(ξ) = dom(η), and for all
κ < dom(ξ)

• ξ1(k) = 1

• ξ2(k) = 0

• ξ3(k) = M(β)

• ξ4(k) = γ

• ξ5(k) = h−1(η)(k)

To check that ξ ∈ Jg, we will check every item of Definition 4.6. Since rang(Fα0) = {1}×{0}×{M(β)}×
{γ} × P0,M(β)

γ , ξ satisfies 1. Also ξ5 = h−1(η) ∈ P0,M(β)
γ , by definition of Pα,β

γ , we now that ξ5 is strictly
increasing with respect to the lexicographic order, then ξ satisfies item 2. Notice that ξ is constant in
every component except for ξ5, therefore ξ satisfies the items 3, 5, 6, 8 (a). Clearly ξ1(i) 6= 0, so ξ satisfies
item 4. Notice that [0, ω) = ξ−1

1 (1) but Pξ2(k),ξ3(k)
ξ4(k)

= P0,M(β)
γ for every k, therefore ξ5 ∈ Pξ2(0),ξ3(0)

ξ4(0)
and ξ

satisfies 7.
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Let us show that the conditions a)-f) are satisfied, the conditions a) and c) are clearly satisfied. By
the way Fα0 was defined, dom(Fα0) = Jα0

f and dom(η) = dom(Fα0(η)), these are the conditions b), e)

and f). Since dom(Fα0) = Jα0
f , the Claim 4.8 implies d) for dom(Fα0). For d) with rang(Fα0), suppose

ξ ∈ rang(Fα0) and η ∈ Jg are as in the assumption. Then η1(k) = ξ1(k) = 1 for every k < dom(η), by 6 in
Jg we have that η2(k) = ξ2(k) = 0, η3(k) = ξ3(k) = M(β) and η4(k) = ξ4(k) = γ for every k < dom(η).

By 7 in Jg, η5 ∈ P0,M(β)
γ and since rang(Fα0) = {1} × {0} × {M(β)} × {γ} × P0,M(β)

γ , we can conclude
that η ∈ rang(Fα0).

Odd successor step.
Suppose that j < k is a successor ordinal such that j = β j + nj for some limit ordinal (or 0) β j and an
odd integer nj. Assume αl and Fαl are defined for every l < j satisfying the conditions a)-f).

Let αj = β + 1 where β ∈ C is such that β > αj−1 and rang(Fαj−1) ⊂ Jβ
g , such a β exists because

|rang(Fαj−1)| ≤ 2|αj−1| and κ is strongly inaccessible.
When η ∈ rang(Fαj−1) has finite domain m, define

W(η) = {ζ|dom(ζ) = [m, s), m < s ≤ ω, η_〈m, ζ(m)〉 /∈ rang(Fαj−1) and η_ζ ∈ J
αj
g }

with the color function cW(η)(ζ) = cg(η_ζ) for every ζ ∈ W(η) with s = ω. Denote ξ ′ = F−1
αj−1

(η),

α = ξ ′3(m − 1) + ξ ′4(m − 1) and θ = α + M(αj). Now choose an ordinal γη such that Q(Pα,θ
γη ) = m

and there is an isomorphism hη : Pα,θ
γη → W(η). We will define Fαj by defining its inverse such that

rang(Fαj) = J
αj
g .

Each η ∈ J
αj
g satisfies one of the followings:

(*) η ∈ rang(Fαj−1).

(**) ∃m < dom(η)(η �m∈ rang(Fαj−1) ∧ η �(m+1)/∈ rang(Fαj−1)).

(***) ∀m < dom(η)(η �(m+1)∈ rang(Fαj−1) ∧ η /∈ rang(Fαj−1)).

We define ξ = F−1
αj

(η) as follows. There are the three cases:

Case η satisfies (∗).
Define ξ(n) = F−1

αj−1
(η)(n) for all n < dom(η).

Case η satisfies (∗∗).
Let m witnesses (**) for η. For every n < dom(ξ)

• If n < m, then ξ(n) = F−1
αj−1

(η �m)(n).

• For every n ≥ m. Let

– ξ1(n) = ξ1(m− 1) + 1

– ξ2(n) = ξ3(m− 1) + ξ4(m− 1)

– ξ3(n) = ξ2(m) + M(αj)

– ξ4(n) = γη�m
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– ξ5(n) = h−1
η�m

(η �[m,dom(η)))(n)

Note that, η �[m,dom(η)) is an element of W(η �m), this makes possible the definition of ξ5.
Let us check the items of Definition 4.6 to see that ξ ∈ J f . Clearly item 1 is satisfied. By induction
hypothesis, ξ �m is increasing, ξ1(m) = ξ1(m− 1) + 1 so ξ(m− 1) < ξ(m), and ξk is constant on [m, ω)

for k ∈ {1, 2, 3, 4},since h−1
η�m

(η) ∈ Pα,θ
γη , then ξ5 is increasing, and we conclude that ξ is increasing respect

to the lexicographic order, so ξ satisfies item 2. Also we conclude ξ1(i) ≤ ξ1(i + 1) ≤ ξ1(i) + 1, so ξ
satisfies item 3. For every i < ω, ξ1(i) = 0 implies i < m, so ξ(i) = F−1

αj−1
(η �m)(i) and by the induction

hypothesis ξ satisfies item 4. By the induction hypothesis, for every i + 1 < m, ξ1(i) < ξ1(i + 1) implies
ξ2(i + 1) ≥ ξ3(i) + ξ4(i), on the other hand ξ1(i) = ξ1(i + 1) implies ξk(i) = ξk(i + 1) for k ∈ {2, 3, 4},
clearly ξ2(m) ≥ ξ3(m− 1) + ξ4(m− 1) and ξk(i) = ξk(i + 1) for i > m and k ∈ {2, 3, 4}, then ξ satisfies
items 5 and 6.
Suppose [i, j) = ξ−1

1 (k) for some k in rang(ξ). Either j < m or m = i. If j < m, by the induction

hypothesis ξ5 �[i,j)∈ Pξ2(i),ξ3(i)
ξ4(i)

, if [i, j) = [m, dom(ξ)), then ξ5 �[i,j)= h−1
η�m

(η �[m,dom(ξ))) ∈ Pξ2(m),ξ3(m)
ξ4(m)

,
ξ thus satisfies item 7. Since ξ is constant on [m, ω), ξ satisfies 8 (a). Finally by item 8 (a) when
dom(ζ) = ω, c f (ξ) = c(ξ5 �[m,ω)), where c is the color of Pξ2(m),ξ3(m)

ξ4(m)
. Since ξ5 �[m,ω)= h−1

η�m
(η �[m,ω)),

c f (ξ) = c(h−1
η�m

(η �[m,ω))) and since h is an isomorphism, c f (ξ) = cW(η�m)(η �[m,ω)) = cg(η).

Case η satisfies (∗ ∗ ∗).
Clearly dom(η) = ω, by the induction hypothesis and condition d), rang(η) = ω, otherwise η ∈
rang(Fαj−1). Let F−1

αj
(η) = ξ = ∪n<ω F−1

αj−1
(η �n), by the induction hypothesis, ξ is well defined. Since for

every n < ω, ξ �n∈ J f , then ξ ∈ J f . Let us check that c f (ξ) = cg(η). First note that ξ /∈ J
αj−1
f , otherwise

by the induction hypothesis f),

Fαj−1(ξ) =
⋃

n<ω

Fαj−1(ξ �n) =
⋃

n<ω

η �n= η

giving us η ∈ rang(Fαj−1). By the equation (2), sup(rang(ξ5)) = αj−1 and ξ satisfies item 8 b) in J f ,

therefore c f (ξ) = f (αj−1). Also by the definition of Jα
f and since ξ �n∈ J

αj−1
f for every n < ω, αj−1 is a

limit ordinal and by condition a), j− 1 is a limit ordinal and αj−1 ∈ C. The conditions b) and c) ensure

rang(Fαj−1) = J
αj−1
f . This implies, η /∈ J

αj−1
f . By the equation (2), sup(rang(η5)) = αj−1. Therefore αj−1

has cofinality ω, αj−1 ∈ C′ and f (αj−1) = g(αj−1). By item 8 b) in Jg, cg(η) = g(αj−1) = f (αj−1) = c f (ξ).

Next we show that Fαi is a color preserving partial isomorphism. We already showed that Fαi preserve
the colors, so we only need to show that

η ( ξ ⇔ F−1
αi

(η) ( F−1
αi

(ξ). (3)

From left to right.
When η, ξ ∈ rang(Fαi−1), the induction hypothesis implies (3) from left to right. If η ∈ rang(Fαi−1) and
ξ /∈ rang(Fαi−1), the construction implies (3) from left to right. Let us assume η, ξ /∈ rang(Fαi−1), then η, ξ
satisfy (**). Let m1 and m2 be the respective natural numbers that witness (**) for η and ξ, respectively.
Notice that m2 < dom(η), otherwise, η ∈ rang(Fαi−1). If m1 < m2, clearly η ∈ rang(Fαi−1) what is not
the case. A similar argument shows that m2 < m1 cannot hold. We conclude that m1 = m2 and by the
construction of Fαi , F−1

αi
(η) ( F−1

αi
(ξ).
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From right to left.
When η, ξ ∈ rang(Fαi−1), the induction hypothesis implies (3) from right to left. If η ∈ rang(Fαi−1) and
ξ /∈ rang(Fαi−1), the construction implies (3) from right left. Let us assume η, ξ /∈ rang(Fαi−1), then η, ξ
satisfy (**). Let m1 and m2 be the respective natural numbers that witness (**) for η and ξ, respectively.
Notice that m2 < dom(η), otherwise, F−1

αi
(η) = F−1

αi−1
(η) and η ∈ rang(Fαi−1). If m1 < m2, then

F−1
αi

(η)1(m2 − 1) = (F−1
αi

(ξ) �m2)1(m2 − 1)
< F−1

αi
(ξ �m2)1(m2 − 1) + 1

= F−1
αi

(η)1(m2)

= F−1
αi

(η)1(m2 − 1).

This cannot hold. A similar argument shows that m2 < m1 cannot hold. We conclude that m1 = m2.
By the induction hypothesis F−1

αi−1
(η �m1) = F−1

αi−1
(ξ �m2) implies η �m1= ξ �m2 (also implies hη�m1

= hξ�m2
).

Since F−1
αi−1

(η �m1)(n) = F−1
αi

(η)(n) for all n < m1, we only need to prove that η �[m1,dom(η))( ξ �[m2,dom(ξ)).
But hη�m1

is an isomorphism and F−1
αi

(η)5(n) = F−1
αi

(ξ)5(n) for every n ≥ m1, so h−1
η�m1

(η �[m1,dom(η))

)(n) = h−1
ξ�m2

(ξ �[m2,dom(ξ)))(n). Therefore η �[m1,dom(η))( ξ �[m2,dom(ξ)).

Let us check that this three constructions satisfy the conditions a)-f).
When i is a successor we have αi−1 < β < αi = β + 1 for some β ∈ C, this is the condition a). Clearly
the three cases satisfy b). We defined F−1

αi
according to (*), (**), or (***); since every η ∈ J

αj
g satisfies one

of these, we conclude rang(Fαi ) = J
αj
g which is the condition c).

Let us show that the Fαi satisfy condition d). Let ξ and β be as in the assumptions of condition d)
for domain. Notice that if ξ ∈ dom(Fαi−1) then the induction hypothesis and Claim 4.8, ensure that
η ∈ dom(Fαi ). Suppose ξ /∈ dom(Fαi−1), then Fαi (ξ) /∈ rang(Fαi−1). Since dom(ξ) < ω, so Fαi (ξ) satisfies
(**). Let m be the number witnessing it. Clearly ξ ∈ Jαi

f , by Claim 4.8 η ∈ Jαi
f . By item 6 in Jαi

f , ηk is

constant on [m, dom(η)) for k ∈ {2, 3, 4}, now by Definition 4.6 numeral 7 in Jαi
f , η5 �[m,dom(η))∈ Pα,β

γξ�m
.

Let ζ = hξ�m(η[m,dom(η))), then η = F−1
αi

(Fαi (ξ �m)_ζ) and η ∈ dom(Fαi ).
The condition d) for range follows from Claim 4.8.
For the conditions e) and f), notice that ξ was constructed such that dom(ξ) = dom(η) and ξ �k∈ dom(Fαi )
which are these conditions.

Even successor step.
Suppose that j < k is a successor ordinal such that j = β j + nj for some limit ordinal (or 0) β j and an
even integer nj. Assume αl and Fαl are defined for every l < j satisfying conditions a)-f).

Let αj = β + 1 where β ∈ C such that β > αj−1 and dom(Fαj−1) ⊂ Jβ
f , such a β exists because

|dom(Fαj−1)| ≤ 2|αj−1| and κ is strongly inaccessible. The construction of Fαj such that dom(Fαj) = Jαi
f

follows as in the odd successor step, with the equivalent definitions for dom(Fαj) and Jαi
f . Notice that for

every η ∈ J
αj
f , there are only the following cases:

(*) η ∈ dom(Fαj−1).

(**) ∃m < dom(η)(η �m∈ dom(Fαj−1) ∧ η �(m+1)/∈ dom(Fαj−1)).
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Limit step.
Assume j is a limit ordinal. Let αj = ∪i<jαi and Fαj = ∪i<jFαi , clearly Fαj : J

αj
f → Jg and satisfies

condition c). Since for i successor, αi is the successor of an ordinal in C, then αj ∈ C and satisfies the

condition a). Also Fαj is a partial isomorphism. Remember that ∪i<j J
αi
f = J

αj
f , the same for Jg. By the

induction hypothesis and the conditions b) and c) for i < j, we have dom(Fαj) = J
αj
f (this is the condi-

tion b)) and rang(Fαj) = J
αj
g . This and Claim 4.8 ensure that condition d) is satisfied. By the induction

hypothesis, for every i < j, Fαi satisfies conditions e) and f), then Fαj satisfies conditions e) and f). �Claim 4.10

Define F = ∪i<κ Fαi , clearly, it is an isomorphism between J f and Jg.

From now on κ will be an inaccessible cardinal. Let us take a look to the sets rang( f ) and rang(c f ),
more specific to the set {α < κ| f (α) ∈ rang(c f )}.

Remark. Assume f ∈ κκ and let J f be the respective coloured tree obtained by Definition 4.6. If
η ∈ J f satisfies Definition 4.6 item 8 b), then clearly exists α < κ such that c f (η) = f (α). It is
possible that not for every α < κ, there is η ∈ Jα+1

f such that c f (η) = f (α). Nevertheless the set

C = {α < κ|∃ξ ∈ Jα+1
f such that ξ1 = idω + 1 and c f (ξ) = f (α)} is an ω-club. C is unbounded: For

every β < κ we can construct the function η ∈ J f by β0 = β, η1 = idω + 1, η2(i) = βi, η3(i) = βi + 1,

η4(i) = γi and η5 = η2, where γi is the least ordinal such that Pβi βi+1
γi = {ξ : [i, i + 1) → [βi, βi + 1)}

and βi+1 = βi + 1 + γi; since κ is inaccessible, η ∈ J(∪i<ω βi)+1
f and ∪i<ω βi ∈ C. C is closed: Let {αi}i<ω

be a succession of elements of C, for every i < ω let ξ i be an element of J f such that ξ i
1 = idω + 1 and

rang(ξ i
5) = αi, define n0 = 0 and for every i < ω, ni+1 as the least natural number bigger than ni such

that αi < ξ i+1
2 (ni+1). The function ξ define by ξ �[ni ,ni+1)

= ξ i �[ni ,ni+1)
is an element of J(∪i<ωαi)+1

f such
that ξ1 = idω + 1 and rang(ξ5) = ∪i<ωαi, therefore f (∪i<ωαi) = c f (ξ) and ∪i<ωαi ∈ C.

5 The Orthogonal Chain Property

In this section we will construct a model of T from an element of κκ . Before this, let us fix some notation
and make some general assumptions. From now on T is going to be a stable theory. Denote by λ(T) the
least cardinal such that T is λ-stable, λr(T) the least regular cardinal λ bigger or equal than λ(T). And
κ will be bigger than λr(T).

For every J ⊆ κ≤ω closed under initial segments, order I = Pω(J) by ≤ as, for every u, v ∈ I we
say u ≤ v if for every η ∈ u exists ξ ∈ v such that η is an initial segment of ξ. Let us denote by r(η, ξ)
the longest element in J that is an initial segment of both, and u ∩∗ v the largest set that satisfies:

• u ∩∗ v ⊆ {r(η, ξ)|η ∈ u, ξ ∈ v}

• if τ ∈ u ∩∗ v, η ∈ u, ξ ∈ v and τ is an initial segment of r(η, ξ) then τ = r(η, ξ)

Definition 5.1. Assume J ⊆ κ≤ω is closed under initial segments and I = Pω(J). We say that an indexed
family Σ = {Au|u ∈ I} is strongly independent if:

• For every u, v ∈ I, u ≤ v implies Au ⊆ Av.
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• if u, ui ∈ I for i < n and B ⊆ ∪i<n Aui has power less than λr(T), then there is an automorphism of the
monster model f = f Σ,B

u,u0,...,un−1 , such that f �(B∩Au)= idB∩Au and f (B ∩ Aui ) ⊆ Au∩∗ui .

We will construct models using an isolation notion. In [HS98] Shelah gives an axiomatic approach for
isolation notion and defines F-constructible, F-primary and F-atomic where F is an isolation notion.

Definition 5.2. Denote by Fs
λr(T)

the set of pairs (p, A) with |A| < λr(T), such that for some B ⊇ A, p ∈ S(B),
and p �A` p.

Fs
λr(T)

is the isolation notion we are going to use. Instead of write Fs
λr(T)

-constructible, Fs
λr(T)

-primary
and Fs

λr(T)
-atomic we will write s-constructible, s-primary and s-atomic.

Now we can state in detail the lemma that leads us to the construction of A f from the coloured tree J f .
The proof of this lemma can be found in [HS98] (Theorem 4 and Claim (I)).

Lemma 5.3. Assume that Σ = {Au|u ∈ I}, I = Pω(J) is strongly independent. Then there are subsets of the
monster model, Au for u ∈ I, such that

(a) for all u, v ∈ I, u ≤ v implies Au ⊆ Av

(b) for all u ∈ I, Au is s-primary over Au; in fact it is s-primary over ∪v<uAv (see the proof of Theorem 4 in
[HS98])

(c) ∪u∈IAu is a model

(d) if v ≤ u, then Au is s-atomic over ∪η∈J f Aη and s-primary over Av ∪ Au; in fact for all a ∈ Au there is
B ⊂ Au of power less than λr(T), such that t(a, B) ` t(a,∪η∈J f Aη) (see the proof of Theorem 4 in [HS98])

(e) if J′ ⊆ J is closed under initial segments and u ∈ Pω(J′), then ∪v∈Pω(J′)Av is s-constructible over
Au ∪

⋃
v∈Pω(J′) Av

(f) the family {Au|u ∈ I} is strongly independent (see Claim (I) in the proof of Theorem 4 in [HS98])

In [HS98] the models for Lemma 5.3 above, are constructed as follow: Let {ui|i < β} be an enumeration
of I such that ui ≤ uj and uj � ui implies i ≤ j. Choose α, γi < α for i < β, aγ and Bγ for γ < α, and
s : α→ I so that

1. γ0 = 0 and (γi)i<β is increasing and continuous,

2. if γi ≤ γ < γi+1, then s(γ) = ui,

3. for all γ < α, |Bγ| < λ and if we write for γ ≤ α, Aγ
u = Au ∪ {aδ|δ < γ, s(δ) ≤ u}, then Bγ ⊆ Aγ

s(γ),

4. for all γ < α, if we write Aγ = ∪u∈I Aγ
u , then t(aγ, Bγ) s-isolates t(aγ, Aγ),

5. for all i < β, there are no a /∈ Aγi+1
ui and B ⊆ Aγi+1

ui of power less than λ such that t(a, B) s-isolates
t(a, Aγi+1),

6. if aδ ∈ Bγ, then Bδ ⊆ Bγ.
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For all u ∈ I, Au = Aα
u.

By 3 and 4, Au is s-constructible over ∪v<uAv.

At this point it is clear that our intention is to use Lemma 5.3 with I = Pω(J f ). We only need to
find the appropriate sets Au for us. We will use the orthogonal chain property to construct a strongly
independent family Σ = {Au|u ∈ I} with some properties useful for us. The orthogonal chain property
implies that T is unsuperstable, as we will see later.

Definition 5.4. T has the orthogonal chain property (OCP), if there exist λr(T)-saturated models of T of power
λr(T), {Ai}i<ω, a /∈ ∪i<ωAi, such that t(a,∪i<ωAi) is not algebraic for every j < ω, t(a,∪i<ωAi) ⊥ Aj, and
for every i ≤ j, Ai ⊆ Aj.

The OCP is similar to the DIDIP defined by Shelah in [She90].
If T has the OCP then T is unsuperstable, the chain Ai ⊆ Aj and a satisfy a 6↓Ai Ai+1.
To show this, assume T is superstable and has the OCP. Let {Ai}i<ω be the chain given by the OCP
and construct the following chain by induction. Let B0 and B1 be the least elements of {Ai}i<ω such
that B0 ⊂ B1 and a 6↓B0 B1. For every 0 < i < ω let Bi+1 be the least element of {Ai}i<ω that satisfies
Bi ⊂ Bi+1 and a 6↓Bi Bi+1. Since T is superstable, this chain is finite, let Bn be the biggest element of this
chain. By the inductive construction of {Bi}i≤n we know that a ↓Bn Aj for every Bn ⊂ Aj. Therefore,
for every finite subset A ⊂ ∪i<ωAi, a ↓Bn A and by the finite character a ↓Bn ∪i<ωAi. By assumption
T has the OCP, then t(a,∪i<ωAi) ⊥ Aj for every j, in particular t(a,∪i<ωAi) ⊥ Bn. So a ↓∪i<ωAi a and
t(a,∪i<ωAi) is algebraic, a contradiction.
From now on we will assume that T has the OCP.

The following is the construction of the family Σ = {A f
u|u ∈ I} from J f using the OCP. By Defini-

tion 4.6 J f ⊆ (ω× κ4)≤ω, we will denote by X the set ω× κ4.

Let a and {A f
i }i<ω be the ones witnessing the OCP for T. Since for every saturated model, B ⊃ A

and C, there is D such that t(C,A) = t(D,A) and D ↓A B. Then we can find for each η ∈ (J f )ω

((J f )ω = {x ∈ J f |ht(x) = ω}) automorphisms of the monster model, {Hη�i}i≤ω and models {A f
η�i
}i≤ω ,

that satisfies

• Hη(A f
i ) = A

f
η�i

.

• Hη�i = Hη �A f
i
.

• Define A f
u for each u ⊆ J f as A f

u = ∪η∈uA f
η .

• Define U(ξ, α) for every ξ ∈ J f ∩X<ω and α ∈ X , as the set of the ζ ∈ J f that extend ξ_〈dom(ξ), α〉,
and V(ξ, α) = J f \U(ξ, α). Then

A f
U(ξ,α) ↓A f

ξ

A f
V(ξ,α).

• A f
η is the s-primary model over

⋃
i<ω A

f
η�i ∪

⋃
i<c f (η)

{ai} where {ai}i<c f (η)
is an independent se-

quence of elements satisfying the type t(Hη(a), A(η)), A(η) =
⋃

i<ω A
f
η�i.
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This construction was made in [Hyt97] and [HS98]. In [HS98] is proven that the family {A f
u|u ∈ Pω(J f )},

is strongly independent.

Remark. Notice that for every η ∈ (J f )ω, A f
η is s-primary over

⋃
i<ω A

f
η�i ∪

⋃
i<c f (η)

{ai} and since T
is countable, then

|A f
η | ≤ λ(T) + (|

⋃
i<ω

A f
η�i ∪

⋃
i<c f (η)

{ai}|+ λr(T))ω.

If f satisfies, | f (α)ω | = | f (α)|, λr(T) < f (α), and f (α) = c f (η), for some α < κ and η ∈ J f . Then

|A f
η | = c f (η).

For every η ∈ (J f )ω denote by p f
η the type t(Hη(a), A(η)) clearly p f

η ⊥ A
f
η�i for every i < ω. De-

note by I f the set Pω(J f ), the family {A f
u|u ∈ I f } is strongly independent, by Lemma 5.3 we obtain the

models {A f
u}u∈I f and A f = ∪u∈I fA

f
u.

We will write Aη and Aη instead of A f
η and A f

η , when it is clear and there is no possibility of ambiguity.
Under some assumptions on f and g, elements of κκ , the models A f and Ag are isomorphic if and only
if f and g are Eκ

ω-club related. The proof of this is made by a dimension argument. Therefore, before we
start with the proof we need to do some calculation, like calculate |A<α

f | and others.

Fact 5.5. Let Iα
f = Pω(Jα

f ), where Jα
f = {η ∈ J f |rang(η) ⊂ ω × (β)4 for some β < α} (as in the proof of

Lemma 4.7), define Aα
f = ∪u∈Iα

f
Au. If for every β < κ, λr(T) < f (β), | f (β)ω | = | f (β)| and β < f (β), then

there exists a club such that every α in that club satisfies |Aα+1
f | ≤ sup({ f (β)}β≤α).

Proof. Let C be the club {α < κ|∀γ < α(γω < α and sup({c f (η)}η∈Jγ
f
) < α)}. Assume u is such that

there is at least one ξ ∈ u such that f (β) = c f (ξ) for some β, then by the previous remark |Au| =
| ∪η∈u Aη | = max({c f (η)

ω}η∈u). Since Au is s-primary over Au we get
|Au| ≤ λ(T) + (|Au|+ λr(T))ω = max({c f (η)

ω}η∈u). Therefore for every α < κ

|Aα+1
f | ≤ |Jα+1

f | · sup({(c f (η)
ω)ω}

η∈Jα+1
f

),

if α ∈ C then |Jα+1
f | = ∪β≤αβω ≤ αω ≤ f (α)ω = f (α), so

|Aα+1
f | ≤ f (α) · sup({(c f (η)

ω)ω}
η∈Jα+1

f
).

Also for every η ∈ Jα
f , c f (η) < f (β) for some β < α, therefore

|Aα+1
f | ≤ sup({ f (β)}β≤α, {(c f (η)

ω)ω}
η∈Jα+1

f \Jα
f
).

But every η ∈ Jα+1
f \Jα

f with dom(η) = ω has rang(η1) = ω and f (α) = c f (η), otherwise rang(η5) < α

and η ∈ Jα
f . We conclude |Aα+1

f | ≤ sup({ f (β)}β≤α).

Fact 5.6. If w ≤ u, then Au �Aw Au.
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Proof. If w ≤ u, by Lemma 5.3, Au is s-constructable over Aw ∪ Au, and Aw is saturated, then Au �Aw
Au.

Remark. Notice that Fact 5.6 implies that Au �Aη
Au for every η ∈ u.

Fact 5.7. Assume f ∈ κκ . If u, v ∈ I f , then Au ↓Au∩∗v
Av.

Proof. By the previous fact it is enough to prove Au ↓Au∩∗v
Av.

We will define U(ξ, α) and V(ξ, α) for every ξ ∈ u ∩∗ v and α ∈ X such that ξ_〈dom(ξ), α〉 is extended
by an element of u and non of the elements of v extend it. Denote by U(ξ, α) the set of those η ∈ J f that
extends ξ_〈dom(ξ), α〉 and V(ξ, α) = J f \U(ξ, α).
By the construction of the sets Au, for every ξ ∈ u ∩∗ v and every α ∈ X such that U(ξ, α) and V(ξ, α)
are defined, we have

AU(ξ,α) ↓Aξ
AV(ξ,α). (4)

Let U = ∪{U(ξ, α)|{ξ_〈dom(ξ), α〉} ≤ u, ξ ∈ u ∩∗ v, α ∈ X} and V be J f \U. Then by transitivity and
(4),

AU ↓Au∩∗v
AV .

By the way U and V were defined, u ⊆ U and v ⊆ V. Therefore

Au ↓Au∩∗v
Av.

By the in fact part of Lemma 5.3 (d), Au∩∗v ↓Au∩∗v
∪ξ∈J fAξ . Therefore Au∩∗v ↓Au∩∗v

Au Av and we
conclude Au ↓Au∩∗v

Av.

Lemma 5.8. Assume f ∈ κκ is such that for every α, f (α) > λr(T), f (α)ω = f (α), and rang( f ) ⊂ Card. If
η ∈ (J f )ω is such that c f (η) = f (α), then dim(p f

η ,A f ) = c f (η).

Proof. Suppose not. Then there exists an independent sequence I ⊆ A f over A(η) such that |I| > c f (η)

and a |= p f
η for every a ∈ I. By a previous remark we know that c f (η) = |Aη |, so there exists b ∈ I\Aη

such that b ↓A(η) Aη . Thus t(b,Aη) ⊥ Aη�i for all i < ω.
There exists u ∈ I f such that η ∈ u and b ∈ Au. By Fact 5.7 we know that there exists i < ω such that
Au\{η} ↓Aη�i

Aη .
Since t(b,Aη) ⊥ Aη�i , b ↓Aη

Au\{η}. So b ↓Aη
Au and by a previous remark we know that Au �Aη

Au,
thus b ↓Aη

Au. But b ∈ Au, so t(b,Aη) is algebraic. By the choice of b, t(b,Aη) is a non-forking extension

of p f
η . This implies that p f

η is algebraic. By the OCP, p f
η is not algebraic; a contradiction.

The Theorem 5.9 gives a reduction only for certain elements of κκ , as we will see in Corollary 5.10, this
can be easy generalize to all the elements of κκ .

Theorem 5.9. Assume f , g are functions from κ to Card\λr(T), that satisfy for every β < κ, f (β)ω = f (β),
g(β)ω = g(β) and for every cardinal α, f (α) > α++, g(α) > α++. Then the models A f and Ag are isomorphic
if and only if f and g are Eκ

ω-club related.

Proof. From right to left.
By Lemma 4.7 if f Eκ

ω-club g then J f
∼= Jg. Let G : J f → Jg be an isomorphism.

We will construct, using induction, a family of function {Fu}u∈I f such that Fu : Au → AG[u] is an
isomorphism and ∪v<uFv ⊆ Fu. Notice that this is equivalent to: a family of function {Fu}u∈I f such that
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Fu : Au → AG[u] is an isomorphism and for every W ⊆ I f , ∪v∈W Fv : ∪v∈WAv → Ag is an elementary
map.
Let {ui : i < α∗} be the enumeration of I f used in the construction of the models Au (see Lemma 5.3).
Our induction hypothesis for β < α∗ is the following:
The functions {Fui}i<β satisfy

• For all i < β, Fui : Aui → AG[ui ]
is an isomorphism.

• ∪i<βFui is an elementary map.

By Lemma 5.3, Auβ
and AG[uβ ]

are s-primary over ∪v<uβ
Av and ∪v<uβ

AG[v] respectively. By the induc-
tion hypothesis ∪v<uβ

Fv is elementary and onto ∪v<uβ
AG[v]. Since the s-primary models over ∪v<uβ

Av
are isomorphic and the s-primary models over ∪v<uβ

AG(v) are isomorphic, there is an isomorphism
from Auβ

to AG[uβ ]
that extends ∪v<uβ

Fv. Let us define Fuβ
as this isomorphism.

We will prove that ∪i≤βFui is elementary by proving that for every n < ω and every sequence x0, x1, . . . xn ∈
{ui|i ≤ β}, the map ∪i≤nFxi : ∪i≤nAxi → Ag is elementary.
Clearly we can assume that n > 0, xn = uβ, uβ is not comparable with xn−1, and ui 6= uj for every i 6= j.
Define u′ = ∪i<n(xn ∩∗ xi), notice that u′ ≤ uβ.

Case u′ < uβ

Let X = ∪i<nxi, by Fact 5.7 Auβ
↓Au′

AX , therefore

Auβ
↓Au′

∪i<nAxi . (5)

Since G is an isomorphism, G[u]∩∗ G[v] = G[u∩∗ v] for every u, v ∈ I f . By Fact 5.7 AG[uβ ]
↓AG[u′ ]

AG[X],
therefore

AG[uβ ]
↓AG[u′ ]

∪i<nAG[xi ]
. (6)

By the induction hypothesis ∪i<βFui is elementary and thus there exists an automorphism of the monster
model F that extends ∪i<βFui . By (6)

F−1[AG[uβ ]
] ↓Au′

∪i<nAxi . (7)

Since F and Fuβ
both extend Fu′ we conclude t(Auβ

,Au′) = t(F−1[AG[uβ ]
],Au′) and it is a stationary

type. So by (5) and (7), the types t(Auβ
,∪i<nAxi ) and t(F−1[AG[uβ ]

],∪i<nAxi ) are equal, therefore

t(Auβ
_ ∪i<n Axi , ∅) = t(AG[uβ ]

_ ∪i<n Fxi [Axi ], ∅).

Therefore ∪i≤nFxi is elementary.

Case u′ = uβ

Let (a0, a1, . . . , an) be any tuple such that for all i ≤ n, ai ∈ Axi . Define A′ = ∪v<uβ
Av and

F′ =
⋃

v<uβ or v∈{xi |i<n}
Fv

By the induction hypothesis F′ is elementary and by Lemma 5.3 Auβ
is s-constructible over A′, therefore

Auβ
is s-atomic over A′. Then there is A′ ⊆ A′ of size less than λr(T) such that t(an, A′) ` t(an,A′).
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By Lemma 5.3 {Au|u ∈ I f } is a strongly independent family. Let B = A′ ∪ {ai|i < n}, there is an
automorphism of the monster model H, that satisfies H �A′= id (notice that A′ = B ∩Auβ

) and H(ai) ∈
Axn∩∗xi for every i < n, therefore H(ai) ∈ A′. Since

t(an, A′) ` t(an,A′)

and
t(Fuβ

(an), Fuβ
(A′)) ` t(Fuβ

(an), F′(A′))

so
t(Fuβ

(an), Fuβ
(A′)) ` t(Fuβ

(an),∪i<nFxi (ai)).

We conclude that ∪i≤nFxi is elementary.

We conclude that A f ∼= Ag.

From left to right.
Let us assume that f and g are not Eκ

ω-club related but there is an isomorphism Π : Ag → A f .
By a previous remark we know that {α < κ|∃η ∈ Jα+1

g (cg(η) = g(α))} contains an ω-club and by Fact
5.5 there is a club such that for every α in it, |Aα+1

g | ≤ sup({g(β)}β≤α) (this also holds for f ). Therefore,
there is an ω-club such that every element of it, α, satisfies

• |Aα+1
f | ≤ sup({ f (β)}β≤α).

• |Aα+1
g | ≤ sup({g(β)}β≤α).

• There exists η ∈ Jα+1
g and ξ ∈ Jα+1

f that satisfy sup(rang(η5)) = sup(rang(ξ5)) = α, cg(η) = g(α),
and c f (ξ) = f (α).

Since {α < κ|∀β < α( f (β), g(β) < α)} and {α < κ|Π(Aα
g) = Aα

f |} are clubs, and f and g are not Eκ
ω-club

related (the set {α < κ| f (α) 6= g(α)} intersect every ω-club), we can assume the existence of an ordinal
α with countable cofinality such that:

• For every β < α, f (β) < α and g(β) < α.

• g(α) 6= f (α).

• There exists η ∈ Jα+1
g such that cg(η) = g(α).

• There exists ξ ∈ Jα+1
f such that c f (ξ) = f (α).

• |Aα+1
f | ≤ sup({ f (β)}β≤α).

• |Aα+1
g | ≤ sup({g(β)}β≤α).

• Π(Aα
g) = Aα

f .
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By symmetry we may assume that g(α) > f (α).
By Lemma 5.8, η and α satisfy dim(pg

η ,Ag) = cg(η) = g(α), so the type Π(pg
η) = {ϕ(x, Π(c))|ϕ(x, c) ∈

pg
η} has dim(Π(pg

η),A f ) = g(α).
Since η ∈ Jα+1

g and Π(Aα
g) = Aα

f , Π(A(η)) ⊆ Aα
f . On the other hand, by the way we chose α, we

conclude that |Aα+1
f | < g(α) = dim(Π(pg

η),A f ). So there exists an independence sequence A ⊆ A f over

Π(A(η)), such that a |= Π(pg
η), with an element b ∈ A\Aα+1

f that satisfy b ↓Π(A(η)) Aα+1
f .

For every u ∈ I f denote by ū the closure of u under initial segments.
Let {ui}i<g(α)+ be a sequence of elements of I f with the following properties:

• b ∈ Au0 .

• Every ūi is a tree isomorphic to ū0.

• If i 6= j, then ūi ∩ ūj = ū0 ∩ Jα+1
f .

• Every ξ ∈ dom(c f ) ∩ ū0 satisfies c f (ξ) = c f (Gi(ξ)), where Gi is the isomorphism between ū0 and
ūi.

For every ξ ∈ ū0 such that ξ �n∈ Jα+1
f and ξ �n+1∈ ū0\Jα+1

f it holds that, by Definition 4.6 ξ �n has κ

many immediate successors in J f \Jα+1
f . Also by Definition 4.6 the elements of J f are all the functions

η : s→ ω× κ4 that satisfy the items 1 to 8, therefore each of this immediate successors of ξ �n, ζ, satisfies
that in the set {η ∈ J f |ζ ≤ η} there is a subtree isomorphic (as coloured tree) to ū0\Jα+1

f .
This and the fact that u0 is finite, gives the existence of the sequence {ui}i<g(α)+ .
By the way we chose the sequence {ui}i<g(α)+ , for every i < g(α)+, the isomorphism Gi induces an
isomorphism Hi : Jα+1

f ∪ ū0 → Jα+1
f ∪ ūi such that Hi �Jα+1

f
= id. The other direction of this theorem

implies that the models A(0) = ∪{Av|v ∈ Pω(Jα+1
f ∪ ū0)} and A(i) = ∪{Av|v ∈ Pω(Jα+1

f ∪ ūi)} are
isomorphic and there is an isomorphism hi : A(0) → A(i) such that hi �Aα+1

f
= id. Let b0 = b and bi =

hi(b), for every i < g(α)+, then t(bi,Aα+1
f ) = t(b,Aα+1

f ). By the way (ūi)i<g(α)+ was constructed, Lemma

5.3 and the finite character of forking, the models (A(i))i<g(α)+ are independent over Aα+1
f , and thus

for every i < g(α)+, bi ↓Aα+1
f
∪j 6=ibj. Since b ↓Π(A(η)) Aα+1

f , then for every i < g(α)+, bi ↓Π(A(η)) Aα+1
f ,

so bi ↓Π(A(η)) ∪j 6=ibj. Therefore {bi}i<g(α)+ is an independence sequence over Π(A(η)). We conclude
that dim(Π(pg

η),A f ) ≥ g(α)+ a contradiction with dim(Π(pg
η),A f ) = dim(pg

η ,Ag) = g(α).

Corollary 5.10. Assume T is stable and has the OCP, then Eκ
ω-club ≤c∼=T .

Proof. Let f and g be elements of κκ . First we will construct a function F : κκ → κκ such that f Eκ
ω-club g

if and only if AF( f ) and AF(g) are isomorphic.

For every cradinal α < κ, define Sα = {β < κ|λr(T), α+++ < β and αω = α}. Let Gβ be a bijection
from κ into Sβ, for every β < κ. For every f ∈ κκ define F( f ) by F( f )(β) = Gβ( f (β)), for every β < κ.
Clearly f Eκ

ω-club g if and only if F( f ) Eκ
ω-club F(g) i.e. AF( f ) and AF(g) are isomorphic and F is continu-

ous.
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Finally we need to find G : {AF( f )| f ∈ κκ} → κκ such that AG(AF( f ))
∼= AF( f ) and f 7→ G(AF( f )) is

continuous. This can be done as in Lemma 3.2.

Corollary 5.11. Assume T1 is a classifiable theory and T2 is a stable theory with the OCP, then ∼=T1≤c∼=T2 .

Proof. Follows from Theorem 2.8 and Corollary 5.10.
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