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Abstract

We study the Borel-reducibility of isomorphism relations of complete first order theories and show
the consistency of the following: For all such theories T and T’, if T is classifiable and T’ is not, then
the isomorphism of models of T’ is strictly above the isomorphism of models of T with respect to
Borel-reducibility. In fact, we can also ensure that a range of equivalence relations modulo various
non-stationary ideals are strictly between those isomorphism relations. The isomorphism relations are
considered on models of some fixed uncountable cardinality obeying certain restrictions.

1 Introduction

Throughout this article we assume that κ is an uncountable cardinal that satisfies κ<κ = κ. The general-
ized Baire space is the set κκ with the bounded topology. For every ζ ∈ κ<κ , the set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set. The open sets are of the form
⋃

X where X is a collection of basic open sets. The
collection of κ-Borel subsets of κκ is the smallest set which contains the basic open sets and is closed
under unions and intersections, both of length κ. A κ-Borel set is any element of this collection. We
usually omit the prefix “κ−”. In [Vau74] Vought studied this topology in the case κ = ω1 assuming CH
and proved the following:

Theorem. A set B ⊂ ωω1
1 is Borel and closed under permutations if and only if there is a sentence ϕ in Lω+

1 ω1

such that B = {η | Aη |= ϕ}.

This result was generalized in [FHK14] to arbitrary κ that satisfies κ<κ = κ. Mekler and Väänänen
continued the study of this topology in [MV93].

We will work with the subspace 2κ with the relative subspace topology. A function f : 2κ → 2κ is
Borel, if for every open set A ⊆ 2κ the inverse image f−1[A] is a Borel subset of 2κ . Let E1 and E2 be
equivalence relations on 2κ . We say that E1 is Borel reducible to E2, if there is a Borel function f : 2κ → 2κ

that satisfies (x, y) ∈ E1 ⇔ ( f (x), f (y)) ∈ E2. We call f a reduction of E1 to E2. This is denoted by
E1 ≤B E2 and if f is continuous, then we say that E1 is continuously reducible to E2 and this is denoted by
E1 ≤c E2.

The following is a standard way to code structures with domain κ with elements of 2κ . To define it,
fix a countable relational vocabulary L = {Pn | n < ω}.
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Definition 1.1. Fix a bijection π : κ<ω → κ. For every η ∈ 2κ define the L-structure Aη with domain κ
as follows: For every relation Pm with arity n, every tuple (a1, a2, . . . , an) in κn satisfies

(a1, a2, . . . , an) ∈ P
Aη
m ⇐⇒ η(π(m, a1, a2, . . . , an)) = 1.

Note that for every L-structure A there exists η ∈ 2κ with A = Aη . For club many α < κ we can also
code the L-structures with domain α:

Definition 1.2. Denote by Cπ the club {α < κ | π[α<ω ] ⊆ α}. For every η ∈ 2κ and every α ∈ Cπ

define the structure Aη�α with domain α as follows: For every relation Pm with arity n, every tuple
(a1, a2, . . . , an) in αn satisfies

(a1, a2, . . . , an) ∈ P
Aη�α
m ⇐⇒ η �α (π(m, a1, a2, . . . , an)) = 1.

For every α ∈ Cπ and every X ⊆ α we will denote the structure AF by AX , where F is the charac-
teristic function of X. We will work with two equivalence relations on 2κ : the isomorphism relation and
the equivalence modulo the non-stationary ideal.

Definition 1.3 (The isomorphism relation). Assume T is a complete first order theory in a countable
vocabulary. We define ∼=κ

T as the relation

{(η, ξ) ∈ 2κ × 2κ | (Aη |= T,Aξ |= T,Aη
∼= Aξ) or (Aη 6|= T,Aξ 6|= T)}.

We will omit the superscript “κ” in ∼=κ
T when it is clear from the context. For every first order theory T

in a countable vocabulary there is an isomorphism relation associated with T, ∼=κ
T . For every stationary

X ⊂ κ, we define an equivalence relation modulo the non-stationary ideal associated with X:

Definition 1.4. For every X ⊂ κ stationary, we define EX as the relation

EX = {(η, ξ) ∈ 2κ × 2κ | (η−1[1]4ξ−1[1]) ∩ X is not stationary}

where 4 denotes the symmetric difference.

For every regular cardinal µ < κ denote {α < κ | c f (α) = µ} by Sκ
µ. A set C is µ-club if it is ubounded

and closed under µ-limits, i.e. if Sκ
µ \ C is non-stationary. Accordingly, we will denote the equivalence

relation EX for X = Sκ
µ by E2

µ-club. Note that ( f , g) ∈ E2
µ-club if and only if the set {α < κ | f (α) = g(α)}

contains a µ-club.

2 Reduction to EX

Classifiable theories (superstable with NOTOP and NDOP) have a close connection to the Ehrenfeucht-
Fraı̈ssé games (EF-games for short). We will use them to study the reducibility of the isomorphism
relation of classifiable theories. The following definition is from [HM15, Def 2.3]:

Definition 2.1 (The Ehrenfeucht-Fraı̈ssé game). Fix an enumeration {Xγ}γ<κ of the elements of Pκ(κ)
and an enumeration { fγ}γ<κ of all the functions with both the domain and range in Pκ(κ). For every
α 6 κ the game EFα

ω(A �α,B �α) on the restrictions A � α and B � α of the structures A and B
with domain κ is defined as follows: In the n-th move, first I chooses an ordinal βn < α such that
Xβn ⊂ α and Xβn−1 ⊆ Xβn . Then II chooses an ordinal θn < α such that dom( fθn), ran( fθn) ⊂ α,
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Xβn ⊆ dom( fθn)∩ ran( fθn) and fθn−1 ⊆ fθn (if n = 0 then Xβn−1 = ∅ and fθn−1 = ∅). The game ends after
ω moves. Player II wins if

⋃
i<ω fθi : A �α→ B �α is a partial isomorphism. Otherwise player I wins. If

α = κ then this is the same as the standard EF-game which is usually denoted by EFκ
ω.

When a player P has a winning strategy in a game G, we denote it by P ↑ G.

The following lemma is proved in [HM15, Lemma 2.4] and is used in the main result of this section
which in turn is central to the main theorem of this paper.

Lemma 2.2. If A and B are structures with domain κ, then

• II ↑ EFκ
ω(A,B)⇐⇒ II ↑ EFα

ω(A �α,B �α) for club-many α,

• I ↑ EFκ
ω(A,B)⇐⇒ I ↑ EFα

ω(A �α,B �α) for club-many α.

Remark 1. In [HM15, Lemma 2.7] it was proved that there exists a club CEF of α such that the relation
defined by the game

{(A,B) | II ↑ EFα
ω(A �α,B �α)}

is an equivalence relation.

Remark 2. Shelah proved in [She90], that if T is classifiable then every two models of T that are L∞,κ-
equivalent are isomorphic. On the other hand L∞,κ-equivalence is equivalent to EFκ

ω-equivalence. So for
every two models A and B of T we have II ↑ EFκ

ω(A,B)⇐⇒ A ∼= B and I ↑ EFκ
ω(A,B)⇐⇒ A � B.

Lemma 2.3. Assume T is a classifiable theory and µ < κ is a regular cardinal. If ♦κ(X) holds then ∼=κ
T is

continuously reducible to EX .

Proof. Let {Sα | α ∈ X} be a sequence testifying ♦κ(X) and define the function F : 2κ → 2κ by

F (η)(α) =
{

1 if α ∈ X ∩ Cπ ∩ CEF, II ↑ EFκ
ω(Aη �α,ASα

) and Aη �α|= T
0 otherwise.

Let us show that F is a reduction of ∼=T to EX , i.e. for every η, ξ ∈ 2κ , (η, ξ) ∈ ∼=T if and only if
(F (η),F (ξ)) ∈ EX . Notice that when α ∈ Cπ , the structure Aη�α is defined and equals Aη �α.

Consider first the direction from left to right. Suppose first that Aη and Aξ are models of T and
Aη
∼= Aξ . Since Aη

∼= Aξ , we have II ↑ EFκ
ω(Aη ,Aξ). By Lemma 2.2 there is a club C such that

II ↑ EFα
ω(Aη �α,Aξ �α) for every α in C. Since the set {α < κ | Aη �α|= T,Aξ �α|= T} contains

a club, we can assume that every α ∈ C satisfies Aη �α|= T and Aξ �α|= T. If α ∈ C is such that
F (η)(α) = 1, then II ↑ EFα

ω(Aη �α,ASα
). Since II ↑ EFα

ω(Aη �α,Aξ �α) and α ∈ CEF, we can conclude
that II ↑ EFα

ω(Aξ �α,ASα
). Therefore for every α ∈ C, F (η)(α) = 1 implies F (ξ)(α) = 1. Using the same

argument it can be shown that for every α ∈ C, F (ξ)(α) = 1 implies F (η)(α) = 1. Therefore F (η) and
F (ξ) coincide in a club and (F (η),F (ξ)) ∈ EX .

Let us now look at the case where (η, ξ) ∈ ∼=T and Aη is not a model of T (the case T 6|= Aξ follows
by symmetry). By the definition of ∼=T we know that Aξ is not a model of T either, so there is ϕ ∈ T such
that Aη |= ¬ϕ and Aξ |= ¬ϕ. Further, there is a club C such that for every α ∈ C we have Aη �α|= ¬ϕ
and Aξ �α|= ¬ϕ. We conclude that for every α ∈ C we have that Aη �α and Aξ �α are not models of T,
and F (η)(α) = F (ξ)(α) = 0, so (F (η),F (ξ)) ∈ EX .

Let us now look at the direction from right to left. Suppose first that Aη and Aξ are models of T,
and Aη 6∼= Aξ .
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By Remark 2, we know that I ↑ EFκ
ω(Aη ,Aξ). By Lemma 2.2 there is a club C of α with

I ↑ EFα
ω(Aη �α,Aξ �α),

Aξ �α|= T and Aη �α|= T.
Since {α ∈ X | η ∩ α = Sα} is stationary by the definition of ♦κ(X), also the set

{α ∈ X | η ∩ α = Sα} ∩ Cπ ∩ CEF

is stationary and every α in this set satisfies II ↑ EFκ
ω(Aη �α,ASα

). Therefore

C ∩ {α ∈ X | η ∩ α = Sα} ∩ Cπ ∩ CEF

is stationary and a subset of F (η)−1{1} 4 F (ξ)−1{1}, where 4 denotes the symmetric difference. We
conclude that (F (η),F (ξ)) /∈ EX .

Let us finally assume that (η, ξ) /∈ ∼=T and Aη 6|= T (the case Aξ 6|= T follows by symmetry). Assume
towards a contradiction that (F (η),F (ξ)) ∈ E2

µ-club. Let C be a club that testifies (F (η),F (ξ)) ∈ E2
µ-club,

i.e. C ∩ (F (η)−1[1]4F (ξ)−1[1]) ∩ X = ∅. Since Aη 6|= T, the set {α < κ | Aη �α 6|= T} contains a club.
Hence, we can assume that for every α ∈ C, Aη �α 6|= T which implies that F (η)(α) = 0 and F (ξ)(α) = 0
for every α ∈ C.

By the definition of ∼=T , Aη 6|= T implies Aξ |= T. Therefore the set {α < κ | Aξ �α|= T} contains
a club. So there is a club C′ such that every α ∈ C′ satisfies Aξ �α|= T and F (ξ)(α) = 0. Since
{α ∈ X | ξ ∩ α = Sα} is stationary, again by the definition of ♦κ(X), also {α ∈ X | η ∩ α = Sα}∩Cπ ∩CEF
is stationary and every α in this set satisfies II ↑ EFκ

ω(Aη �α,ASα
). Therefore,

C′ ∩ {α ∈ X | ξ ∩ α = Sα} ∩ Cπ ∩ CEF 6= ∅,

a contradiction.
To show that F is continuous, let [η �α] be a basic open set, ξ ∈ F−1[[η �α]]. Then ξ ∈ [ξ �α] and

[ξ �α] ⊆ F−1[[η �α]]. We conclude that F is continuous.

To define the reduction F it is not enough to use the isomorphism classes of the models ASα
, as

opposed to the equivalence classes of the relation defined by the EF-game. It is possible to construct
two non-isomorphic models with domain κ such that their restrictions to any α < κ are isomorphic. For
example the modelsM = (κ, P) and N = (κ, Q), with κ = λ+,

P = {α < κ | α = β + 2n, n ∈N and β a limit ordinal}

and
Q = {α < λ | α = β + 2n, n ∈N and β a limit ordinal}

are non-isomorphic butM �α∼= N �α holds for every α < κ.
The Borel reducibility of the isomorphism relation of classifiable theories was studied in [FHK14]

and one of the main results is the following.

Theorem 2.4. ([FHK14, Thm 77]) If a first order theory T is classifiable, then for all regular cardinals µ < κ,
E2

µ-club �B ∼=κ
T .

Corollary 2.5. Assume that ♦κ(Sκ
µ) holds for all regular µ < κ. If a first order theory T is classifiable, then for

all regular cardinals µ < κ we have ∼=κ
T 6c E2

µ-club and E2
µ-club �B ∼=κ

T .
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3 Non-classifiable Theories

In [FHK14] the reducibility to the isomorphism of non-classifiable theories was studied. In particular
the following two theorems were proved there:

Theorem 3.1. ([FHK14, Thm 79]) Suppose that κ = λ+ = 2λ and λ<λ = λ.

1. If T is unstable or superstable with OTOP, then E2
λ-club 6c ∼=κ

T .

2. If λ > 2ω and T is superstable with DOP, then E2
λ-club 6c ∼=κ

T .

Theorem 3.2. ([FHK14, Thm 86]) Suppose that for all γ < κ, γω < κ and T is a stable unsuperstable theory.
Then E2

ω-club 6c ∼=κ
T .

Clearly from Theorems 3.1 and 3.2 and Corollary 2.3 we obtain the following:

Theorem 3.3. Suppose that κ = λ+ = 2λ, λ<λ = λ and ♦κ(Sκ
λ) holds.

1. If T1 is classifiable and T2 is unstable or superstable with OTOP, then ∼=κ
T1
6c ∼=κ

T2
and ∼=κ

T2
66B ∼=κ

T1
.

2. If λ > 2ω, T1 is classifiable and T2 is superstable with DOP, then ∼=κ
T1
6c ∼=κ

T2
and ∼=κ

T2
66B ∼=κ

T1
.

Theorem 3.4. Suppose that for all γ < κ, γω < κ and ♦κ(Sκ
ω) holds. If T1 is classifiable and T2 is stable

unsuperstable, then ∼=κ
T1
6c ∼=κ

T2
and ∼=κ

T2
66B ∼=κ

T1
.

Corollary 3.5. Suppose κ = κ<κ = λ+ and λω = λ. If T1 is classifiable and T2 is stable unsuperstable, then
∼=κ

T1
6c ∼=κ

T2
and ∼=κ

T2
66B ∼=κ

T1
.

Proof. In [She10] Shelah proved that if κ = λ+ = 2λ and S is a stationary subset of {α < κ | c f (α) 6=
c f (λ)}, then ♦κ(S) holds. Since λω = λ, we have c f (λ) 6= ω and ♦κ(Sκ

ω) holds. On the other hand
κ = λ+ and λω = λ implies γω < κ for all γ < κ. By Theorem 3.4 we conclude that if T1 is a classifiable
theory and T2 is a stable unsuperstable theory, then ∼=T1 6c ∼=T2 and ∼=T2 66B ∼=T1 .

Theorem 3.6. Let H(κ) be the following property: If T is classifiable and T′ not, then ∼=κ
T 6c ∼=κ

T′ and ∼=κ
T′ 66B

∼=κ
T . Suppose that κ = κ<κ = λ+, 2λ > 2ω and λ<λ = λ.

1. If V = L, then H(κ) holds.

2. There is a κ-closed forcing notion P with the κ+-c.c. which forces H(κ).

Proof. 1. This follows from Theorems 3.3 and 3.4.

2. Let P be { f : X → 2 | X ⊆ κ, |X| < κ} with the order p 6 q if q ⊂ p. It is known that P has
the κ+-cc [Kun11, Lemma IV.7.5] and is κ-closed [Kun11, Lemma IV.7.14]. It is also known that P

preserves cofinalities, cardinalities and subsets of κ of size less than κ [Kun11, Thm IV.7.9, Lemma
IV.7.15]. Therefore, in V[G], κ satisfies κ = κ<κ = λ+ = 2λ > 2ω and λ<λ = λ. It is known that P

satisfies 1 P ♦k(Sκ
µ) for every regular cardinal µ < κ. Therefore, by Theorems 3.3 and 3.4 H(κ)

holds in V[G].

Definition 3.7. 1. A tree T is a κ+, κ-tree if does not contain chains of length κ and its cardinality is
less than κ+. It is closed if every chain has a unique supremum.
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2. A pair (T, h) is a Borel∗-code if T is a closed κ+, κ-tree and h is a function with domain T such that
if x ∈ T is a leaf, then h(x) is a basic open set and otherwise h(x) ∈ {∪,∩}.

3. For an element η ∈ 2κ and a Borel∗-code (T, h), the Borel∗-game B∗(T, h, η) is played as follows.
There are two players, I and II. The game starts from the root of T. At each move, if the game is at
node x ∈ T and h(x) = ∩, then I chooses an immediate successor y of x and the game continues
from this y. If h(x) = ∪, then II makes the choice. At limits the game continues from the (unique)
supremum of the previous moves by Player I. Finally, if h(x) is a basic open set, then the game
ends, and II wins if and only if η ∈ h(x).

4. A set X ⊆ 2κ is a Borel∗-set if there is a Borel∗-code (T, h) such that for all η ∈ 2κ , η ∈ X if and
only if II has a winning strategy in the game B∗(T, h, η).

Note that a strategy in a game B∗(T, h, η) can be seen as a function σ : κ<κ → κ, because every
κ+κ-tree can be seen as a downward closed subtree of κ<κ .

Theorem 3.8. Suppose that κ = κ<κ = λ+, 2λ > 2ω and λ<λ = λ. Then the following statements are
consistent.

1. If T1 is classifiable and T2 is not, then there is an embedding of (P(κ),⊆) to (B∗(T1, T2),6B), where
B∗(T1, T2) is the set of all Borel∗-equivalence relations strictly between ∼=T1 and ∼=T2 .

2. If T1 is classifiable and T2 is unstable or superstable, then

∼=κ
T1
6c E2

λ-club 6c ∼=κ
T2
∧ ∼=κ

T2
66B E2

λ-club ∧ E2
λ-club 66B ∼=κ

T1
.

Proof. We will start the proof with two claims.

Claim 3.9. If ♦κ(S) holds in V and Q is κ-closed, then ♦κ(S) holds in every Q-generic extension.

Proof. Let us proceed by contradiction. Suppose (Sα)α∈S is a ♦κ(S)-sequence in V but not in V[G], for
some generic G. Fix the names Š, Ċ, Ẋ ∈ VQ and p ∈ G, such that:

p  (Ċ ⊆ κ̌ is a club ∧ Ẋ ⊆ κ̌ ∧ ∀α ∈ Ċ[Šα 6= Ẋ ∩ α]).

Working in V, we choose by recursion pα, βα, θα,and δα such that:

1. pα ∈ Q, p0 = p and pα > pγ if α 6 γ.

2. βα 6 βγ if α 6 γ.

3. βα 6 θα, δα < βα+1.

4. If γ is a limit ordinal, then βγ = δγ = ∪α<γβα.

5. pα+1  (δ̌α ∈ Č ∧ Ẋ ∩ β̌α = Šθα
).

We will show how to choose them such that 1-5 are satisfied. First, for the successor step assume that
for some α < κ we have chosen pα+1, βα, θα and δα. We choose any ordinal satisfying 3 as βα+1. Since
pα+1  (Ċ ⊆ κ̌ is a club), there exists q ∈ Q stronger than pα+1 and δ < κ such that q  (δ̌ ∈ Ċ∧ β̌α 6 δ̌).
Now set δα+1 = δ. Since Q is κ-closed, there exists Y ∈ P(βα+1)

V and r ∈ Q stronger than q such that
r  Ẋ ∩ β̌α+1 = Y̌. By ♦κ(S) in V, the set {γ < κ | Y = Sγ} is stationary, so we can choose the least
ordinal θα+1 > βα+1 such that r  Ẋ ∩ β̌α+1 = Šθα+1 . Clearly r = pα+2 satisfies 1 and 5.
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For the limit step, assume that for some limit ordinal α < κ we have chosen pγ, βγ, θγ and δγ for
every γ < α. Note that by 4 we know how to choose βα and δα. Since Q is κ-closed, there exists pα that
satisfies 1. We choose θα as in the successor case with q = pα and pα+1 as the condition r used to choose
θα.

Define A, B and Cδ by B = ∪α<κSθα
, A = {α ∈ S | B ∩ α = Sα} and Cδ = {δα | α is a limit ordinal}.

Note that Cδ is a club. By ♦κ(S) in V, A is stationary and A ∩ Cδ 6= ∅. Let δα ∈ A ∩ Cδ. Then by 1, 2
and 5, for every γ > α we have pγ+1  (Šθα

= Šθγ
∩ β̌α). Therefore, Sθα

= B ∩ βα and δα ∈ A ∩ Cδ and
so by 4 we have Sθα

= B ∩ δα = Sδα
. But now by 5 we get pα+1  (δ̌α ∈ Č ∧ Ẋ ∩ δ̌α = Šδα

) which is a
contradiction.

Claim 3.10. For all stationary X ⊆ κ, the relation EX is a Borel∗-set.

Proof. The idea is to code the club-game into the Borel∗-game: in the club-game the players pick ordinals
one after another and if the limit is in a predefined set A, then the second player wins. Define TX as the
tree whose elements are all the increasing elements of κ6λ, ordered by end-extension. For every element
of TX that is not a leaf, define

HX(x) =

{
∪ if xhas an immediate predecessor x− and HX(x−) = ∩
∩ otherwise

and for every leaf b define HX(b) by:

(η, ξ) ∈ HX(b)⇐⇒ for every α ∈ lim(ran(b)) ∩ X(η(α) = ξ(α))

where α ∈ lim(ran(b)) if sup(α ∩ ran(b)) = α.
Let us assume there is a winning strategy σ for Player II in the game B∗(TX , HX , (η, ξ)) and let

us conclude that (η, ξ) ∈ EX . Clearly by the definition of HX we know that η and ξ coincide in the
set B = {α < κ | σ[dom(σ) ∩ α<λ] ⊂ α<λ} ∩ X. Since λ<λ = λ, we know that B′ = {α < κ |
σ[dom(σ) ∩ α<λ] ⊂ α<λ} is closed and unbounded. Therefore,there exists a club that doesn’t intersect
(η−1[1]4ξ−1[1]) ∩ X.

For the other direction, assume that (η−1[1]4ξ−1[1]) ∩ X is not stationary and denote by C the club
that does not intersect (η−1[1]4ξ−1[1]) ∩ X. The second player has a winning strategy for the game
B∗(Tλ, HX , (η, ξ)): she makes sure that, if b is the leaf in which the game ends and A ⊂ ran(b) is such
that sup(∪A) ∈ X, then sup(∪A) ∈ C. This can be done by always choosing elements f ∈ κ<λ such that
sup(ran( f )) ∈ C.

Let P be { f : X → 2 | X ⊆ κ, |X| < κ} with the order p 6 q if q ⊂ p. It is known that in any P-generic
extension, V[G], ♦κ(S) holds for every S ∈ V, S a stationary subset of κ.

1. In [FHK14, Thm 52] the following was proved under the assumption κ = λ+ and GCH:

For every µ < κ there is a κ-closed forcing notion Q with the κ+-c.c. which forces that there are stationary
sets K(A) ( Sκ

µ for each A ( κ such that EK(A) 66B EK(B) if and only if A 6⊂ B.

In [FHK14, Thm 52] the proof starts by taking (Si)i<κ , κ pairwise disjoint stationary subsets of
lim(Sκ

µ) = {α ∈ Sκ
µ | α is a limit ordinal in Sκ

µ}, and defining K(A) = ∪α∈ASα. Q is an iterated
forcing that satisfies: For every name σ of a function f : 2κ → 2κ , exists β < κ such that, Pβ 
“σ is not a reduction′′.

With a small modification on the iteration, it is possible to construct Q a κ-closed forcing with the
κ+-c.c. that forces
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(∗) For µ ∈ {ω, λ} and A ( κ, there are stationary sets K(µ, A) ( Sκ
µ for which EK(µ,A) 66B EK(µ,B)

if and only if A 6⊂ B.

Assume without loss of generality that GCH holds in V. Let G be a P ∗Q-generic. It is enough to
prove that for every A ( κ in V[G] the following holds:

(a) If T2 is unstable, or superstable with OTOP or with DOP, then EK(λ,A) ∈ B∗(T1, T2).

(b) If T2 is stable unsuperstable, then EK(ω,A) ∈ B∗(T1, T2).

In both cases the proof is the same; we will only consider (a).

Working in V[G], let T2 be as in (a). Since Q is κ-closed, we have V[G] |= ♦κ(S) for every stationary
S ⊂ κ, S ∈ V. Since P and Q are κ-closed and have the κ+-c.c., we have κ = κ<κ = λ+, 2λ > 2ω

and λ<λ = λ. By Lemma 2.3, Theorems 3.1 and 3.4, we have that ∼=κ
T1
6c EK(λ,A) 6c ∼=κ

T2
holds for

every A ( κ. The argument in the proof of Theorem 2.4 can be used to prove that EK(λ,A) 66B ∼=κ
T1

holds for every A ( κ.

To show that ∼=κ
T2
66B EK(λ,A) holds for every A ( κ, assume towards a contradiction that there

exists B ( κ such that ∼=κ
T2
6B EK(λ,B). But then EK(λ,A) 6B EK(λ,B) holds for every A ( κ and by

(∗), A ( B for every A ( κ. So B = κ which is a contradiction.

2. In [HK12, Thm 3.1] it is proved (under the assumptions 2κ = κ+ and κ = κ<κ > ω) that there is a
generic extension in which ∼=κ

DLO is not a Borel∗-set. The forcing is constructed using the following
claim [HK12, Claim 3.1.5]:

For each (t, h) there exists a κ+-c.c. κ-closed forcing R(t, h) such that in any R(t, h)-generic extension
∼=κ

DLO is not a Borel∗-set.

The forcing in [HK12, Thm 3.1] works for every theory T that is unstable, or T non-classifiable and
superstable (not only DLO, see [HK12] and [HT91]). Therefore, this claim can be generalized to:

For each (t, h) there exists a κ+-c.c. κ-closed forcing R(t, h) such that in any R(t, h)-generic extension, ∼=κ
T

is not a Borel∗-set, for all T unstable, or T non-classifiable and superstable.

By iterating this forcing (as in [HK12, Thm 3.1]), we construct a forcing Q κ-closed, κ+-c.c. that
forces ∼=κ

T is not a Borel∗-set, for all T unstable, or T non-classifiable and superstable.

Assume without loss of generality that 2κ = κ+ holds in V. Let G be a P ∗Q-generic. Since Q

is κ-closed, V[G] |= ♦κ(S) for every stationary S ⊂ κ, S ∈ V. Since P and Q are κ-closed and
have the κ+-c.c., we have κ = κ<κ = λ+, 2λ > 2ω and λ<λ = λ. Working in V[G], let T2 be
unstable, or non-classifiable and superstable. By Lemma 2.3, Theorems 3.3 and 3.4 we finally have
that ∼=κ

T1
6c E2

λ-club 6c ∼=κ
T2

and E2
λ-club 66B ∼=κ

T1
holds.

Since 2κ × 2κ is homeomorphic to 2κ , in order to finish the proof, it is enough to show that if
f : 2κ → 2κ is Borel, then for all Borel∗-sets A, the set f−1[A] is a Borel∗. This is because if f were
the reduction ∼=κ

T2
6B E2

λ-club, we would have ( f × f )−1[E2
λ-club] =

∼=κ
T2

and since E2
λ-club is Borel∗,

this would yield the latter Borel∗ as well.

Claim 3.11. Assume f : 2κ → 2κ is a Borel function and B ⊂ 2κ is Borel∗. Then f−1[B] is Borel∗.

Proof. Let (TB, HB) be a Borel∗-code for B. Define the Borel∗-code (TA, HA) by letting TB = TA and
HA(b) = f−1[HB(b)] for every branch b of TB. Let A be the Borel∗-set coded by (TA, HA). Clearly,
II ↑ B∗(TB, HB, η) if and only if II ↑ B∗(TA, HA, f−1(η)), so f−1[B] = A.

8



We end this paper with an open question:

Question 3.12. Is it provable in ZFC that ∼=κ
T �B ∼=κ

T′ (note the strict inequality) for all complete first-order
theories T and T′, T classifiable and T′ not? How much can the cardinality assumptions on κ be relaxed?
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