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Abstract

We study the Borel-reducibility of isomorphism relations of complete first order theories and show
the consistency of the following: For all such theories T and T’, if T is classifiable and T’ is not, then
the isomorphism of models of T’ is strictly above the isomorphism of models of T with respect to
Borel-reducibility. In fact, we can also ensure that a range of equivalence relations modulo various
non-stationary ideals are strictly between those isomorphism relations. The isomorphism relations are
considered on models of some fixed uncountable cardinality obeying certain restrictions.

1 Introduction

Throughout this article we assume that x is an uncountable cardinal that satisfies x<* = k. The general-
ized Baire space is the set ¥* with the bounded topology. For every { € k=¥, the set

Gl ={nex|TCn}

is a basic open set. The open sets are of the form |J X where X is a collection of basic open sets. The
collection of x-Borel subsets of «* is the smallest set which contains the basic open sets and is closed
under unions and intersections, both of length x. A x-Borel set is any element of this collection. We
usually omit the prefix “x—". In [Vau74] Vought studied this topology in the case x = w; assuming CH
and proved the following:

Theorem. A set B C wy™ is Borel and closed under permutations if and only if there is a sentence ¢ in L wiw
such that B = {n | A, = ¢}.
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This result was generalized in [FHK14] to arbitrary « that satisfies k<* = x. Mekler and Véddndnen
continued the study of this topology in [MV93].

We will work with the subspace 2* with the relative subspace topology. A function f: 2 — 2% is
Borel, if for every open set A C 2¥ the inverse image f![A] is a Borel subset of 2%. Let E; and E, be
equivalence relations on 2*. We say that E; is Borel reducible to Ej, if there is a Borel function f: 2* — 2%
that satisfies (x,y) € E; < (f(x),f(y)) € E;. We call f a reduction of E; to E,. This is denoted by
E; <p E; and if f is continuous, then we say that E; is continuously reducible to E, and this is denoted by
Eq < Ep.

The following is a standard way to code structures with domain x with elements of 2*. To define it,
fix a countable relational vocabulary £ = {P, | n < w}.



Definition 1.1. Fix a bijection 71: k<“ — «. For every 5 € 2* define the L-structure A, with domain x
as follows: For every relation P, with arity n, every tuple (a,4ay,...,a,) in k" satisfies

A
(ay,ay,...,ay) € Py <= y(n(m,ay,az,...,a,)) = 1.

Note that for every L-structure A there exists 77 € 2° with A = A;,. For club many & < x we can also
code the L-structures with domain «:

Definition 1.2. Denote by C, the club {a < x | m[a=“] C a}. For every n € 2° and every & € Cy
define the structure A, with domain « as follows: For every relation P, with arity n, every tuple
(ay,az,...,a,) in a" satisfies

A,
(ay,a2,...,ay) € Pt = N lo (t(m,a1,az,...,a,)) = 1.

For every « € Cr and every X C a we will denote the structure Af by Ax, where F is the charac-
teristic function of X. We will work with two equivalence relations on 2*: the isomorphism relation and
the equivalence modulo the non-stationary ideal.

Definition 1.3 (The isomorphism relation). Assume T is a complete first order theory in a countable
vocabulary. We define =%, as the relation

{n,8) e2*x2" | (A ET A =T, Ay = Ag) or (Ay T, Az = T)}.
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We will omit the superscript “k” in =2} when it is clear from the context. For every first order theory T
in a countable vocabulary there is an isomorphism relation associated with T, =.. For every stationary
X C «, we define an equivalence relation modulo the non-stationary ideal associated with X:

Definition 1.4. For every X C «x stationary, we define Ex as the relation
Ex = {(7,&) €2 x2* | (37 1]A&"1[1]) N X is not stationary}
where A denotes the symmetric difference.

For every regular cardinal y1 < x denote {a <« | cf(a) = u} by Sj. A set Cis p-club if it is ubounded
and closed under p-limits, i.e. if S}, \ C is non-stationary. Accordingly, we will denote the equivalence

relation Ex for X = S}, by Eft-club' Note that (f,g) € E;%-club if and only if the set {a < x| f(a) = g(a)}

contains a p-club.

2 Reduction to Ex

Classifiable theories (superstable with NOTOP and NDOP) have a close connection to the Ehrenfeucht-
Fraissé games (EF-games for short). We will use them to study the reducibility of the isomorphism
relation of classifiable theories. The following definition is from [HM15, Def 2.3]:

Definition 2.1 (The Ehrenfeucht-Fraissé game). Fix an enumeration {X } <« of the elements of Py (k)
and an enumeration {f, },<x of all the functions with both the domain and range in Py (k). For every
a < «x the game EF} (A [, B [4) on the restrictions A [ « and B [ a of the structures A and B
with domain « is defined as follows: In the n-th move, first I chooses an ordinal 8, < a such that
Xpg, C wand Xp , C Xg . Then II chooses an ordinal 6, < & such that dom(fp,),ran(fp,) C w,



Xp, € dom(fy,) Nran(fy,)and fo, | C fp, (if n=0then X5 | = @and fy, | = @). The game ends after
w moves. Player IT wins if U, fg,: A [«— B [4 is a partial isomorphism. Otherwise player I wins. If
« = «x then this is the same as the standard EF-game which is usually denoted by EFj,.

When a player P has a winning strategy in a game G, we denote it by P 1 G.

The following lemma is proved in [HM15, Lemma 2.4] and is used in the main result of this section
which in turn is central to the main theorem of this paper.

Lemma 2.2. If A and B are structures with domain x, then
o I1 T EFS (A, B) <= 11 T EF (A |4, B |a) for club-many «,
o [ 1 EFS (A, B) < 11 EF.(A |4, B |4) for club-many «.

Remark 1. In [HM15, Lemma 2.7] it was proved that there exists a club Cgr of & such that the relation
defined by the game
{(A,B) | L1 EFY (A I4, B 1)}

is an equivalence relation.

Remark 2. Shelah proved in [She90], that if T is classifiable then every two models of T that are Lo -
equivalent are isomorphic. On the other hand L, x-equivalence is equivalent to EF},-equivalence. So for
every two models A and B of T we have II T EF} (A, B) <= A= Band I 1 EF,(A,B) <— A% B.
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Lemma 2.3. Assume T is a classifiable theory and y < « is a regular cardinal. If $y(X) holds then ==Y is
continuously reducible to Ex.

Proof. Let {S, | « € X} be a sequence testifying ¢« (X) and define the function F: 2¥ — 2* by

For)a) = {(1) if & € X1 Cr N Cpp, 111 EFS (A o As,) and Ay lo= T

otherwise.
Let us show that F is a reduction of =t to Ex, i.e. for every #,{ € 25, (1,¢) € = if and only if
(F(n),F(&)) € Ex. Notice that when a € Cr, the structure A, |, is defined and equals Ay, [4.

Consider first the direction from left to right. Suppose first that A, and Az are models of T and
Ay = Ag. Since Ay = Ag, we have IT 1 EFj,(A;, Az). By Lemma 2.2 there is a club C such that
IT 1+ EF,(Ay la, Az [a) for every a in C. Since the set {a« < x | A, [«F T, Az [«f= T} contains
a club, we can assume that every a € C satisfies A; [4/= T and Az [4}= T. If « € C is such that
F(n)(«) =1, then II 1 EF;,(Ay [4, As, ). Since II T EF;,(A; [«, Az 2) and & € Cgr, we can conclude
that IT 1 EF, (Ag [+, As, ). Therefore for every a € C, F(1)(a) = 1 implies F(¢)(«) = 1. Using the same
argument it can be shown that for every a € C, F(¢)(a) = 1 implies F(#)(«) = 1. Therefore F (1) and
F(¢) coincide in a club and (F (1), F(&)) € Ex.

Let us now look at the case where (7,¢) € =1 and A, is not a model of T (the case T [~ Az follows
by symmetry). By the definition of =1 we know that A is not a model of T either, so there is ¢ € T such
that A, = —¢ and Az |= —¢. Further, there is a club C such that for every a € C we have A; [4F= —¢
and .Ag l«= —¢. We conclude that for every « € C we have that Ay o and .Ag [« are not models of T,
and F(i7)(a) = F(§)(a) = 0,0 (F(y), F(¢)) € Ex.

Let us now look at the direction from right to left. Suppose first that A, and Az are models of T,
and A; # Ag.



By Remark 2, we know that I 1 EFj,(A;, Az). By Lemma 2.2 there is a club C of « with
I T EFﬁ,(A” rmAg rvc)r

Az o= T and Ay [4=T.
Since {a € X | y N = S, } is stationary by the definition of {«(X), also the set

{lX e X | qﬂa:Sa}ﬁCnﬂCEP
is stationary and every « in this set satisfies II 1 EF(, (A [4, Asg, ). Therefore
Cn{aeX|ynNa=S,}NCrNCer

is stationary and a subset of F(17)"1{1} A F(&)~'{1}, where A denotes the symmetric difference. We
conclude that (F (1), F(§)) ¢ Ex.
Let us finally assume that (77,¢) ¢ =7 and A; = T (the case Az [~ T follows by symmetry). Assume

towards a contradiction that (F(7), F({)) € Efl_ cupb- Let C be a club that testifies (F (1), F(&)) € Ei-club'

ie. CN(F(n) 1]AF (@) M1])NX = @. Since A, £ T, the set {a < x | A, 4}~ T} contains a club.
Hence, we can assume that for every « € C, A; [+~ T which implies that 7 (77)(a) = 0 and F(¢)(x) =0
for every a € C.

By the definition of =7, A, [~ T implies Az |= T. Therefore the set {« < x | Az [4}= T} contains
a club. So there is a club C’ such that every a € C’ satisfies Az [4/= T and F(&)(x) = 0. Since
{a € X | {Na = S,} is stationary, again by the definition of {(X), also {a € X | yNa = S} NCr N Cgr
is stationary and every & in this set satisfies IT 1 EFf, (A [, As, ). Therefore,

C/ﬂ{tXEX|§ﬂtX:S,X}ﬂC7-[ﬂCEP7é@,

a contradiction.
To show that F is continuous, let [ [,] be a basic open set, & € F~[[ [4]]. Then & € [¢ [4] and
[& Ta) € F~Y[1 I4]]. We conclude that F is continuous. O

To define the reduction F it is not enough to use the isomorphism classes of the models As,, as
opposed to the equivalence classes of the relation defined by the EF-game. It is possible to construct
two non-isomorphic models with domain x such that their restrictions to any « < x are isomorphic. For
example the models M = (x,P) and N = (x,Q), with xk = AT,

P={a<x|a=p+2n necNand p a limit ordinal }
and
Q={a<A|a=p+2n necNN and f alimit ordinal }

are non-isomorphic but M [,= N [, holds for every a < .
The Borel reducibility of the isomorphism relation of classifiable theories was studied in [FHK14]
and one of the main results is the following.

Theorem 2.4. ([FHK14, Thm 77]) If a first order theory T is classifiable, then for all reqular cardinals y < x,
E2 1 £B =5
u-club T

Corollary 2.5. Assume that $x(S};) holds for all regular y < x. If a first order theory T is classifiable, then for
all regular cardinals y < x we have =1 <, Ei_dub and Ef‘_dub %£p =K.



3 Non-classifiable Theories
In [FHK14] the reducibility to the isomorphism of non-classifiable theories was studied. In particular
the following two theorems were proved there:

Theorem 3.1. ([FHK14, Thm 79]) Suppose that x = At = 2} and A<* = A.
1. If T is unstable or superstable with OTOP, then EA b Se =T

2. If A 2 2% and T is superstable with DOP, then EA_dub <c =

Theorem 3.2. ([FHK14, Thm 86]) Suppose that for all v < x, v < « and T is a stable unsuperstable theory.
Then E2

w-club e *T

Clearly from Theorems 3.1 and 3.2 and Corollary 2.3 we obtain the following:
Theorem 3.3. Suppose that x = AT =2}, A<} = A and (S holds.
1. If Ty is classifiable and T, is unstable or superstable with OTOP, then =7, <. =7, and = £p =

2. If A > 2%, Ty is classifiable and T; is superstable with DOP, then =7, <. =7, and = Lp =..

Theorem 3.4. Suppose that for all v < x, v < x and ,(SE) holds. If Ty is classifiable and T, is stable
unsuperstable, then %’i <, %”}2 and ’é’i %’%1.

Corollary 3.5. Suppose k = k<" = At and AY = A. If Ty is classifiable and T, is stable unsuperstable, then
= <c :j;% and =7 Lp =T
1 2 1

Proof. In [Shel0] Shelah proved that if x = AT = 2 and S is a stationary subset of {a < x | cf(a) #
cf(A)}, then $x(S) holds. Since A = A, we have cf(A) # w and {«(SK,) holds. On the other hand
k = AT and AY = A implies v < « for all y < k. By Theorem 3.4 we conclude that if T; is a classifiable
theory and T is a stable unsuperstable theory, then =1, <, =1, and =1, £p =r,. O

Theorem 3.6. Let H(x) be the following property: If T is classifiable and T’ not, then =% <. =%, and =2, £p
K Suppose that k = k<% = AT, 24 > 29 and A=A = A,

1. If V = L, then H(x) holds.
2. There is a x-closed forcing notion P with the k™ -c.c. which forces H(x).

Proof. 1. This follows from Theorems 3.3 and 3.4.

2. Let Pbe {f: X - 2| X C «,|X| < «x} with the order p < g if g C p. It is known that IP has
the x-cc [Kunll, Lemma IV.7.5] and is x-closed [Kun1l, Lemma IV.7.14]. It is also known that IP
preserves cofinalities, cardinalities and subsets of « of size less than x [Kunl1, Thm IV.7.9, Lemma
IV.7.15]. Therefore, in V[G],  satisfies k = k<¥ = AT = 2} > 2¢ and A<* = A. It is known that IP
satisfies 1 I-p ¢k (S,) for every regular cardinal p < x. Therefore, by Theorems 3.3 and 3.4 H(x)
holds in V[G]. O

Definition 3.7. 1. A tree T is a k™, k-tree if does not contain chains of length x and its cardinality is
less than x. It is closed if every chain has a unique supremum.



2. A pair (T, h) is a Borel*-code if T is a closed x*, x-tree and h is a function with domain T such that
if x € T is a leaf, then h(x) is a basic open set and otherwise h(x) € {U,N}.

3. For an element # € 2° and a Borel*-code (T, h), the Borel*-game B*(T,h,1) is played as follows.
There are two players, I and II. The game starts from the root of T. At each move, if the game is at
node x € T and h(x) = N, then I chooses an immediate successor y of x and the game continues
from this y. If 1(x) = U, then II makes the choice. At limits the game continues from the (unique)
supremum of the previous moves by Player I. Finally, if i(x) is a basic open set, then the game
ends, and II wins if and only if # € h(x).

4. A set X C 2" is a Borel*-set if there is a Borel*-code (T,h) such that for all € 2%, € X if and
only if IT has a winning strategy in the game B*(T, h, 7).

Note that a strategy in a game B*(T,h,7) can be seen as a function ¢ : k<* — «, because every
kT k-tree can be seen as a downward closed subtree of k<.

Theorem 3.8. Suppose that xk = k<X = A+, 24 > 29 gnd A<} = A. Then the following statements are
consistent.

1. If Ty is classifiable and T, is not, then there is an embedding of (P(x),C) to (B*(Ty, T2), <p), where
B*(Ty, T,) is the set of all Borel*-equivalence relations strictly between =1, and =r,.

2. If Ty is classifiable and T, is unstable or superstable, then

~vK

2 ~ ~ 2 2 ~
=1 e By <c =1, N =T, €8 ExXqup N EX %8 =T -
Proof. We will start the proof with two claims.
Claim 3.9. If $«(S) holds in V and Q is x-closed, then <, (S) holds in every Q-generic extension.

Proof. Let us proceed by contradiction. Suppose (Su)qes is a O«(S)-sequence in V but not in V[G], for
some generic G. Fix the names 5,C, X € V= and p € G, such that:

plF(CCkisaclub AX CkAVa € C[S, # XNal).
Working in V, we choose by recursion py, Ba, Ox,and , such that:
1. pa €Q,po=pand p, = pyif a < 7.
2. Bu < Byifa <.
3. Bu < 0,60 < Pasti-
4

. If v is a limit ordinal, then By = &, = Uy<Ba.

Q1

. Pat1IF (Bx € CAX N By = Sp,).

We will show how to choose them such that 1-5 are satisfied. First, for the successor step assume that
for some a < x we have chosen p,+1, B«,0x and ;. We choose any ordinal satisfying 3 as B,+1. Since
Pai1 P (C C & is a club), there exists g € Q stronger than p, 1 and 6 < x such that g I- (6 € CA By < 3).
Now set J, 11 = 6. Since Q is k-closed, there exists Y € P(B,.1)" and r € Q stronger than g such that
rIF XN Pas1 =Y. By Ox(S) in V, the set {y < x | Y = S,} is stationary, so we can choose the least
ordinal 6, 11 > By.1 such that r IF X N ,BD(H =S Clearly r = py42 satisfies 1 and 5.

a+1"



For the limit step, assume that for some limit ordinal &« < x we have chosen p.,, 8,0, and 4, for
every v < «. Note that by 4 we know how to choose , and J,. Since Q is x-closed, there exists p, that
satisfies 1. We choose 6, as in the successor case with g = p, and p,1 as the condition r used to choose
O

Define A, B and Cs by B = Uy<xSg,, A = {w € S| BNa =S4} and Cs = {J, | a is a limit ordinal}.
Note that Cs is a club. By {«(S) in V, A is stationary and ANC,; # @. Let 6, € ANCs. Then by 1, 2
and 5, for every v > a we have p,1 IF (Sg, = S, N o). Therefore, So, = BN By and dy € AN C;s and
so by 4 we have Sy, = BNJ, = S;,. But now by 5 we get pyy1 IF (6x € CAXNJy = S5,) which is a
contradiction. O

Claim 3.10. For all stationary X C «, the relation Ex is a Borel*-set.

Proof. The idea is to code the club-game into the Borel*-game: in the club-game the players pick ordinals
one after another and if the limit is in a predefined set A, then the second player wins. Define Tx as the
tree whose elements are all the increasing elements of ¥<*, ordered by end-extension. For every element
of Tx that is not a leaf, define

U if xhas an immediate predecessor x~ and Hx(x~) =N

Hx(x) = {

N otherwise

and for every leaf b define Hx(b) by:
(n,8) € Hx(b) <= for every a € lim(ran(b)) N X(y(a) = &(a))

where o € lim(ran(b)) if sup(a Nran(b)) = a.

Let us assume there is a winning strategy o for Player II in the game B*(Tx, Hx, (17,¢)) and let
us conclude that (7,¢) € Ex. Clearly by the definition of Hx we know that 7 and ¢ coincide in the
set B = {a < « | oldom(c)Na<}] € a<*}NX. Since A<* = A, we know that B’ = {a < « |
oldom(c) Na<* C a<*} is closed and unbounded. Therefore,there exists a club that doesn’t intersect
(1 1 AE 1) N X,

For the other direction, assume that (7~![1]AZ&1[1]) N X is not stationary and denote by C the club
that does not intersect (77 1[1JA¢![1]) N X. The second player has a winning strategy for the game
B*(T), Hx, (,&)): she makes sure that, if b is the leaf in which the game ends and A C ran(b) is such
that sup(UA) € X, then sup(UA) € C. This can be done by always choosing elements f € k< such that
sup(ran(f)) € C. O

LetPbe {f: X = 2| X Cx,|X| < x} with the order p < g if g C p. It is known that in any IP-generic
extension, V[G], {«(S) holds for every S € V, S a stationary subset of «.

1. In [FHK14, Thm 52] the following was proved under the assumption x = A™ and GCH:
For every p < « there is a x-closed forcing notion Q with the k™ -c.c. which forces that there are stationary
sets K(A) C Sy, for each A C « such that Ex4) %p Ex(p) if and only if A ¢ B.
In [FHK14, Thm 52] the proof starts by taking (S;);«, k¥ pairwise disjoint stationary subsets of
lim(S}) = {a € S}, | ais alimit ordinal in S} }, and defining K(A) = UycaSs- Q is an iterated
forcing that satisfies: For every name ¢ of a function f : 2 — 2%, exists f < « such that, Pg I-
“o is not a reduction”.

With a small modification on the iteration, it is possible to construct Q a x-closed forcing with the
kT -c.c. that forces



(%) For UEe {w,‘)\} and A C x, there are stationary sets K(y, A) C S}, for which Eg(, ) €5 Eg(y,)
if and only if A ¢ B.

Assume without loss of generality that GCH holds in V. Let G be a IP * Q-generic. It is enough to
prove that for every A C « in V[G] the following holds:

(a) If T, is unstable, or superstable with OTOP or with DOP, then Eg(, 4) € B*(Ti, Ty).
(b) If T, is stable unsuperstable, then Eg(,, 4) € B*(T1, T2).

In both cases the proof is the same; we will only consider (a).

Working in V[G], let T, be as in (a). Since Q is x-closed, we have V[G] |= (S) for every stationary
SC«x, S e V. Since P and Q are k-closed and have the xt-c.c., we have x = k<X = AT, 24 > 2w
and A<A = A, By Lemma 2.3, Theorems 3.1 and 3.4, we have that %”%1 < EK(,\,A) < %’}2 holds for
every A C k. The argument in the proof of Theorem 2.4 can be used to prove that Ex(, 4) £p =T,
holds for every A C «.

To show that =7 #p Eg() 4) holds for every A C «, assume towards a contradiction that there

exists B C « such that %’i <B Ek()p)- But then Ex() o) <p Ek(, p) holds for every A C x and by
(%), A C Bfor every A C k. So B = « which is a contradiction.

. In [HK12, Thm 3.1] it is proved (under the assumptions 2 = " and x = k=" > w) that there is a
generic extension in which =, , is not a Borel*-set. The forcing is constructed using the following
claim [HK12, Claim 3.1.5]:

For each (t,h) there exists a k*-c.c. k-closed forcing R(t,h) such that in any R(t, h)-generic extension
=10 is not a Borel*-set.

The forcing in [HK12, Thm 3.1] works for every theory T that is unstable, or T non-classifiable and
superstable (not only DLO, see [HK12] and [HT91]). Therefore, this claim can be generalized to:

For each (t, h) there exists a k" -c.c. x-closed forcing R(t, h) such that in any R(t, h)-generic extension, =
is not a Borel*-set, for all T unstable, or T non-classifiable and superstable.

By iterating this forcing (as in [HK12, Thm 3.1]), we construct a forcing Q x-closed, x"-c.c. that
forces =% is not a Borel*-set, for all T unstable, or T non-classifiable and superstable.

Assume without loss of generality that 2 = x™ holds in V. Let G be a P x Q-generic. Since Q
is x-closed, V[G] [= <{«(S) for every stationary S C x, S € V. Since P and Q are x-closed and
have the x*-c.c., we have x = k¥ = A%, 2} > 2¢ and A<} = A. Working in V[G], let T, be
unstable, or non-classifiable and superstable. By Lemma 2.3, Theorems 3.3 and 3.4 we finally have
that 2. <, E3 qub <c =~ and E3 ub B =} holds.

Since 2* x 2* is homeomorphic to 2%, in order to finish the proof, it is enough to show that if
f:2¥ — 2 is Borel, then for all Borel*-sets A, the set f ~1[A] is a Borel*. This is because if f were
the reduction =} <p E3 upy We would have (f x f)~1[E3 ] = =7, and since E3 b is Borel®,
this would yield the latter Borel* as well.

Claim 3.11. Assume f: 2% — 2¥ is a Borel function and B C 2~ is Borel*. Then f~'[B] is Borel*.

Proof. Let (Tg, Hg) be a Borel*-code for B. Define the Borel*-code (T4, H,) by letting Tg = T4 and
Hy(b) = f~[Hp(b)] for every branch b of Tp. Let A be the Borel*-set coded by (T4, Ha). Clearly,
I1 1 B*(Tg, Hp,n) if and only if I1 1 B*(T4, Ha, f (7)), so f~[B] = A. O



We end this paper with an open question:

Question 3.12. [s it provable in ZFC that =T <p =7, (note the strict inequality) for all complete first-order

=

theories T and T, T classifiable and T’ not? How much can the cardinality assumptions on x be relaxed?
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