A Borel-reducibility Counterpart of Shelah's Main Gap Theorem

Tapani Hyttinen, Vadim Kulikov, Miguel Moreno University of Helsinki

December 16, 2015

Abstract

We study the Borel-reducibility of isomorphism relations of complete first order theories and show the consistency of the following: For all such theories T and T', if T is classifiable and T' is not, then the isomorphism of models of T' is strictly above the isomorphism of models of T with respect to Borel-reducibility. In fact, we can also ensure that a range of equivalence relations modulo various non-stationary ideals are strictly between those isomorphism relations. The isomorphism relations are considered on models of some fixed uncountable cardinality obeying certain restrictions.

1 Introduction

Throughout this article we assume that κ is an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$. The generalized Baire space is the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set. The open sets are of the form $\bigcup X$ where X is a collection of basic open sets. The collection of κ -Borel subsets of κ^{κ} is the smallest set which contains the basic open sets and is closed under unions and intersections, both of length κ . A κ -Borel set is any element of this collection. We usually omit the prefix " κ -". In [Vau74] Vought studied this topology in the case $\kappa = \omega_1$ assuming CH and proved the following:

Theorem. A set $B \subset \omega_1^{\omega_1}$ is Borel and closed under permutations if and only if there is a sentence φ in $L_{\omega_1^+\omega_1}$ such that $B = \{\eta \mid A_\eta \models \varphi\}$.

This result was generalized in [FHK14] to arbitrary κ that satisfies $\kappa^{<\kappa} = \kappa$. Mekler and Väänänen continued the study of this topology in [MV93].

We will work with the subspace 2^{κ} with the relative subspace topology. A function $f: 2^{\kappa} \to 2^{\kappa}$ is *Borel*, if for every open set $A \subseteq 2^{\kappa}$ the inverse image $f^{-1}[A]$ is a Borel subset of 2^{κ} . Let E_1 and E_2 be equivalence relations on 2^{κ} . We say that E_1 is *Borel reducible* to E_2 , if there is a Borel function $f: 2^{\kappa} \to 2^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We call f a *reduction* of E_1 to E_2 . This is denoted by $E_1 \leq_B E_2$ and if f is continuous, then we say that E_1 is *continuously reducible* to E_2 and this is denoted by $E_1 \leq_c E_2$.

The following is a standard way to code structures with domain κ with elements of 2^{κ} . To define it, fix a countable relational vocabulary $\mathcal{L} = \{P_n \mid n < \omega\}$.

Definition 1.1. Fix a bijection $\pi: \kappa^{<\omega} \to \kappa$. For every $\eta \in 2^{\kappa}$ define the \mathcal{L} -structure \mathcal{A}_{η} with domain κ as follows: For every relation P_m with arity n, every tuple (a_1, a_2, \ldots, a_n) in κ^n satisfies

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_\eta} \iff \eta(\pi(m, a_1, a_2, \ldots, a_n)) = 1.$$

Note that for every \mathcal{L} -structure \mathcal{A} there exists $\eta \in 2^{\kappa}$ with $\mathcal{A} = \mathcal{A}_{\eta}$. For club many $\alpha < \kappa$ we can also code the \mathcal{L} -structures with domain α :

Definition 1.2. Denote by C_{π} the club $\{\alpha < \kappa \mid \pi[\alpha^{<\omega}] \subseteq \alpha\}$. For every $\eta \in 2^{\kappa}$ and every $\alpha \in C_{\pi}$ define the structure $\mathcal{A}_{\eta \mid \alpha}$ with domain α as follows: For every relation P_m with arity n, every tuple (a_1, a_2, \ldots, a_n) in α^n satisfies

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta} \restriction \alpha} \Longleftrightarrow \eta \restriction_{\alpha} (\pi(m, a_1, a_2, \ldots, a_n)) = 1.$$

For every $\alpha \in C_{\pi}$ and every $X \subseteq \alpha$ we will denote the structure \mathcal{A}_F by \mathcal{A}_X , where F is the characteristic function of X. We will work with two equivalence relations on 2^{κ} : the isomorphism relation and the equivalence modulo the non-stationary ideal.

Definition 1.3 (The isomorphism relation). Assume *T* is a complete first order theory in a countable vocabulary. We define \cong_T^{κ} as the relation

$$\{(\eta,\xi)\in 2^{\kappa}\times 2^{\kappa}\mid (\mathcal{A}_{\eta}\models T,\mathcal{A}_{\xi}\models T,\mathcal{A}_{\eta}\cong \mathcal{A}_{\xi}) \text{ or } (\mathcal{A}_{\eta}\not\models T,\mathcal{A}_{\xi}\not\models T)\}.$$

We will omit the superscript " κ " in \cong_T^{κ} when it is clear from the context. For every first order theory *T* in a countable vocabulary there is an isomorphism relation associated with T, \cong_T^{κ} . For every stationary $X \subset \kappa$, we define an equivalence relation modulo the non-stationary ideal associated with *X*:

Definition 1.4. For every $X \subset \kappa$ stationary, we define E_X as the relation

$$E_X = \{(\eta, \xi) \in 2^{\kappa} \times 2^{\kappa} \mid (\eta^{-1}[1] \triangle \xi^{-1}[1]) \cap X \text{ is not stationary}\}$$

where \triangle denotes the symmetric difference.

For every regular cardinal $\mu < \kappa$ denote $\{\alpha < \kappa \mid cf(\alpha) = \mu\}$ by S_{μ}^{κ} . A set *C* is μ -club if it is ubounded and closed under μ -limits, i.e. if $S_{\mu}^{\kappa} \setminus C$ is non-stationary. Accordingly, we will denote the equivalence relation E_X for $X = S_{\mu}^{\kappa}$ by $E_{\mu\text{-club}}^2$. Note that $(f,g) \in E_{\mu\text{-club}}^2$ if and only if the set $\{\alpha < \kappa \mid f(\alpha) = g(\alpha)\}$ contains a μ -club.

2 Reduction to E_X

Classifiable theories (superstable with NOTOP and NDOP) have a close connection to the Ehrenfeucht-Fraïssé games (EF-games for short). We will use them to study the reducibility of the isomorphism relation of classifiable theories. The following definition is from [HM15, Def 2.3]:

Definition 2.1 (The Ehrenfeucht-Fraïssé game). Fix an enumeration $\{X_{\gamma}\}_{\gamma < \kappa}$ of the elements of $\mathcal{P}_{\kappa}(\kappa)$ and an enumeration $\{f_{\gamma}\}_{\gamma < \kappa}$ of all the functions with both the domain and range in $\mathcal{P}_{\kappa}(\kappa)$. For every $\alpha \leq \kappa$ the game $\mathrm{EF}_{\omega}^{\alpha}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ on the restrictions $\mathcal{A} \upharpoonright \alpha$ and $\mathcal{B} \upharpoonright \alpha$ of the structures \mathcal{A} and \mathcal{B} with domain κ is defined as follows: In the *n*-th move, first I chooses an ordinal $\beta_n < \alpha$ such that $X_{\beta_n} \subset \alpha$ and $X_{\beta_{n-1}} \subseteq X_{\beta_n}$. Then II chooses an ordinal $\theta_n < \alpha$ such that $dom(f_{\theta_n}), \operatorname{ran}(f_{\theta_n}) \subset \alpha$,

 $X_{\beta_n} \subseteq dom(f_{\theta_n}) \cap ran(f_{\theta_n})$ and $f_{\theta_{n-1}} \subseteq f_{\theta_n}$ (if n = 0 then $X_{\beta_{n-1}} = \emptyset$ and $f_{\theta_{n-1}} = \emptyset$). The game ends after ω moves. Player II wins if $\bigcup_{i < \omega} f_{\theta_i} \colon A \upharpoonright_{\alpha} \to B \upharpoonright_{\alpha}$ is a partial isomorphism. Otherwise player I wins. If $\alpha = \kappa$ then this is the same as the standard EF-game which is usually denoted by $\text{EF}_{\omega}^{\kappa}$.

When a player *P* has a winning strategy in a game *G*, we denote it by $P \uparrow G$.

The following lemma is proved in [HM15, Lemma 2.4] and is used in the main result of this section which in turn is central to the main theorem of this paper.

Lemma 2.2. If A and B are structures with domain κ , then

- II $\uparrow EF_{\omega}^{\kappa}(\mathcal{A}, \mathcal{B}) \iff II \uparrow EF_{\omega}^{\alpha}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α ,
- $\mathbf{I} \uparrow \mathrm{EF}^{\kappa}_{\omega}(\mathcal{A}, \mathcal{B}) \iff \mathbf{I} \uparrow \mathrm{EF}^{\alpha}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})$ for club-many α .

Remark 1. In [HM15, Lemma 2.7] it was proved that there exists a club C_{EF} of α such that the relation defined by the game

$$\{(\mathcal{A},\mathcal{B}) \mid \mathbf{II} \uparrow \mathrm{EF}^{\alpha}_{\omega}(\mathcal{A} \upharpoonright_{\alpha}, \mathcal{B} \upharpoonright_{\alpha})\}$$

is an equivalence relation.

Remark 2. Shelah proved in [She90], that if *T* is classifiable then every two models of *T* that are $L_{\infty,\kappa}$ -equivalent are isomorphic. On the other hand $L_{\infty,\kappa}$ -equivalence is equivalent to EF_{ω}^{κ} -equivalence. So for every two models \mathcal{A} and \mathcal{B} of *T* we have $\mathbf{II} \uparrow EF_{\omega}^{\kappa}(\mathcal{A},\mathcal{B}) \iff \mathcal{A} \cong \mathcal{B}$ and $\mathbf{I} \uparrow EF_{\omega}^{\kappa}(\mathcal{A},\mathcal{B}) \iff \mathcal{A} \cong \mathcal{B}$.

Lemma 2.3. Assume T is a classifiable theory and $\mu < \kappa$ is a regular cardinal. If $\diamondsuit_{\kappa}(X)$ holds then \cong_T^{κ} is continuously reducible to E_X .

Proof. Let $\{S_{\alpha} \mid \alpha \in X\}$ be a sequence testifying $\Diamond_{\kappa}(X)$ and define the function $\mathcal{F}: 2^{\kappa} \to 2^{\kappa}$ by

$$\mathcal{F}(\eta)(\alpha) = \begin{cases} 1 & \text{if } \alpha \in X \cap C_{\pi} \cap C_{EF}, \text{ II} \uparrow EF_{\omega}^{\kappa}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{S_{\alpha}}) \text{ and } \mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T \\ 0 & \text{otherwise.} \end{cases}$$

Let us show that \mathcal{F} is a reduction of \cong_T to E_X , i.e. for every $\eta, \xi \in 2^{\kappa}$, $(\eta, \xi) \in \cong_T$ if and only if $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \in E_X$. Notice that when $\alpha \in C_{\pi}$, the structure $\mathcal{A}_{\eta \restriction \alpha}$ is defined and equals $\mathcal{A}_{\eta} \restriction_{\alpha}$.

Consider first the direction from left to right. Suppose first that \mathcal{A}_{η} and \mathcal{A}_{ξ} are models of T and $\mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}$. Since $\mathcal{A}_{\eta} \cong \mathcal{A}_{\xi}$, we have II $\uparrow EF_{\omega}^{\kappa}(\mathcal{A}_{\eta}, \mathcal{A}_{\xi})$. By Lemma 2.2 there is a club C such that II $\uparrow EF_{\omega}^{\alpha}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\xi} \upharpoonright_{\alpha})$ for every α in C. Since the set $\{\alpha < \kappa \mid \mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T, \mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T\}$ contains a club, we can assume that every $\alpha \in C$ satisfies $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T$ and $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T$. If $\alpha \in C$ is such that $\mathcal{F}(\eta)(\alpha) = 1$, then II $\uparrow EF_{\omega}^{\alpha}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\varsigma})$. Since II $\uparrow EF_{\omega}^{\alpha}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{\varsigma} \upharpoonright_{\alpha})$ and $\alpha \in C_{EF}$, we can conclude that II $\uparrow EF_{\omega}^{\alpha}(\mathcal{A}_{\xi} \upharpoonright_{\alpha}, \mathcal{A}_{\varsigma_{\alpha}})$. Therefore for every $\alpha \in C$, $\mathcal{F}(\eta)(\alpha) = 1$ implies $\mathcal{F}(\xi)(\alpha) = 1$. Using the same argument it can be shown that for every $\alpha \in C$, $\mathcal{F}(\xi)(\alpha) = 1$ implies $\mathcal{F}(\eta)(\alpha) = 1$. Therefore $\mathcal{F}(\eta)$ and $\mathcal{F}(\xi)$ coincide in a club and $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \in E_X$.

Let us now look at the case where $(\eta, \xi) \in \cong_T$ and \mathcal{A}_η is not a model of T (the case $T \not\models \mathcal{A}_{\xi}$ follows by symmetry). By the definition of \cong_T we know that \mathcal{A}_{ξ} is not a model of T either, so there is $\varphi \in T$ such that $\mathcal{A}_{\eta} \models \neg \varphi$ and $\mathcal{A}_{\xi} \models \neg \varphi$. Further, there is a club C such that for every $\alpha \in C$ we have $\mathcal{A}_{\eta} \upharpoonright_{\alpha} \models \neg \varphi$ and $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \models \neg \varphi$. We conclude that for every $\alpha \in C$ we have that $\mathcal{A}_{\eta} \upharpoonright_{\alpha}$ and $\mathcal{A}_{\xi} \upharpoonright_{\alpha}$ are not models of T, and $\mathcal{F}(\eta)(\alpha) = \mathcal{F}(\xi)(\alpha) = 0$, so $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \in E_X$.

Let us now look at the direction from right to left. Suppose first that A_{η} and A_{ξ} are models of T, and $A_{\eta} \not\cong A_{\xi}$.

By Remark 2, we know that $\mathbf{I} \uparrow EF_{\omega}^{\kappa}(\mathcal{A}_{\eta}, \mathcal{A}_{\xi})$. By Lemma 2.2 there is a club *C* of α with

 $\mathbf{I}\uparrow \mathrm{EF}^{\alpha}_{\omega}(\mathcal{A}_{\eta}\restriction_{\alpha},\mathcal{A}_{\xi}\restriction_{\alpha}),$

 $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T \text{ and } \mathcal{A}_{\eta} \upharpoonright_{\alpha} \models T.$

Since $\{\alpha \in X \mid \eta \cap \alpha = S_{\alpha}\}$ is stationary by the definition of $\Diamond_{\kappa}(X)$, also the set

$$\{\alpha \in X \mid \eta \cap \alpha = S_{\alpha}\} \cap C_{\pi} \cap C_{EF}$$

is stationary and every α in this set satisfies $II \uparrow EF_{\omega}^{\kappa}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{S_{\alpha}})$. Therefore

$$C \cap \{\alpha \in X \mid \eta \cap \alpha = S_{\alpha}\} \cap C_{\pi} \cap C_{EF}$$

is stationary and a subset of $\mathcal{F}(\eta)^{-1}\{1\} \bigtriangleup \mathcal{F}(\xi)^{-1}\{1\}$, where \bigtriangleup denotes the symmetric difference. We conclude that $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \notin E_X$.

Let us finally assume that $(\eta, \xi) \notin \cong_T$ and $\mathcal{A}_\eta \not\models T$ (the case $\mathcal{A}_{\xi} \not\models T$ follows by symmetry). Assume towards a contradiction that $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \in E^2_{\mu\text{-club}}$. Let *C* be a club that testifies $(\mathcal{F}(\eta), \mathcal{F}(\xi)) \in E^2_{\mu\text{-club}}$. i.e. $C \cap (\mathcal{F}(\eta)^{-1}[1] \triangle \mathcal{F}(\xi)^{-1}[1]) \cap X = \emptyset$. Since $\mathcal{A}_\eta \not\models T$, the set $\{\alpha < \kappa \mid \mathcal{A}_\eta \restriction_\alpha \not\models T\}$ contains a club. Hence, we can assume that for every $\alpha \in C$, $\mathcal{A}_\eta \restriction_\alpha \not\models T$ which implies that $\mathcal{F}(\eta)(\alpha) = 0$ and $\mathcal{F}(\xi)(\alpha) = 0$ for every $\alpha \in C$.

By the definition of \cong_T , $\mathcal{A}_{\eta} \not\models T$ implies $\mathcal{A}_{\xi} \models T$. Therefore the set $\{\alpha < \kappa \mid \mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T\}$ contains a club. So there is a club *C'* such that every $\alpha \in C'$ satisfies $\mathcal{A}_{\xi} \upharpoonright_{\alpha} \models T$ and $\mathcal{F}(\xi)(\alpha) = 0$. Since $\{\alpha \in X \mid \xi \cap \alpha = S_{\alpha}\}$ is stationary, again by the definition of $\diamondsuit_{\kappa}(X)$, also $\{\alpha \in X \mid \eta \cap \alpha = S_{\alpha}\} \cap C_{\pi} \cap C_{EF}$ is stationary and every α in this set satisfies II $\uparrow EF_{\omega}^{\kappa}(\mathcal{A}_{\eta} \upharpoonright_{\alpha}, \mathcal{A}_{S_{\alpha}})$. Therefore,

$$C' \cap \{ \alpha \in X \mid \xi \cap \alpha = S_{\alpha} \} \cap C_{\pi} \cap C_{EF} \neq \emptyset,$$

a contradiction.

To show that \mathcal{F} is continuous, let $[\eta \upharpoonright_{\alpha}]$ be a basic open set, $\xi \in \mathcal{F}^{-1}[[\eta \upharpoonright_{\alpha}]]$. Then $\xi \in [\xi \upharpoonright_{\alpha}]$ and $[\xi \upharpoonright_{\alpha}] \subseteq \mathcal{F}^{-1}[[\eta \upharpoonright_{\alpha}]]$. We conclude that \mathcal{F} is continuous.

To define the reduction \mathcal{F} it is not enough to use the isomorphism classes of the models $\mathcal{A}_{S_{\alpha}}$, as opposed to the equivalence classes of the relation defined by the EF-game. It is possible to construct two non-isomorphic models with domain κ such that their restrictions to any $\alpha < \kappa$ are isomorphic. For example the models $\mathcal{M} = (\kappa, P)$ and $\mathcal{N} = (\kappa, Q)$, with $\kappa = \lambda^+$,

$$P = \{ \alpha < \kappa \mid \alpha = \beta + 2n, n \in \mathbb{N} \text{ and } \beta \text{ a limit ordinal} \}$$

and

 $Q = \{ \alpha < \lambda \mid \alpha = \beta + 2n, n \in \mathbb{N} \text{ and } \beta \text{ a limit ordinal} \}$

are non-isomorphic but $\mathcal{M} \upharpoonright_{\alpha} \cong \mathcal{N} \upharpoonright_{\alpha}$ holds for every $\alpha < \kappa$.

The Borel reducibility of the isomorphism relation of classifiable theories was studied in [FHK14] and one of the main results is the following.

Theorem 2.4. ([FHK14, Thm 77]) If a first order theory T is classifiable, then for all regular cardinals $\mu < \kappa$, $E^2_{\mu-club} \not\leq_B \cong^{\kappa}_T$.

Corollary 2.5. Assume that $\Diamond_{\kappa}(S_{\mu}^{\kappa})$ holds for all regular $\mu < \kappa$. If a first order theory T is classifiable, then for all regular cardinals $\mu < \kappa$ we have $\cong_{T}^{\kappa} \leq_{c} E_{\mu-club}^{2}$ and $E_{\mu-club}^{2} \leq_{B} \cong_{T}^{\kappa}$.

3 Non-classifiable Theories

In [FHK14] the reducibility to the isomorphism of non-classifiable theories was studied. In particular the following two theorems were proved there:

Theorem 3.1. ([FHK14, Thm 79]) Suppose that $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$.

- 1. If T is unstable or superstable with OTOP, then $E^2_{\lambda-club} \leqslant_c \cong_T^{\kappa}$.
- 2. If $\lambda \ge 2^{\omega}$ and T is superstable with DOP, then $E^2_{\lambda-club} \leqslant_c \cong_T^{\kappa}$.

Theorem 3.2. ([FHK14, Thm 86]) Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and T is a stable unsuperstable theory. Then $E^2_{\omega\text{-club}} \leq_c \cong^{\kappa}_T$.

Clearly from Theorems 3.1 and 3.2 and Corollary 2.3 we obtain the following:

Theorem 3.3. Suppose that $\kappa = \lambda^+ = 2^{\lambda}$, $\lambda^{<\lambda} = \lambda$ and $\diamondsuit_{\kappa}(S_{\lambda}^{\kappa})$ holds.

1. If T_1 is classifiable and T_2 is unstable or superstable with OTOP, then $\cong_{T_1}^{\kappa} \leqslant_c \cong_{T_2}^{\kappa}$ and $\cong_{T_2}^{\kappa} \notin_B \cong_{T_1}^{\kappa}$.

2. If $\lambda \ge 2^{\omega}$, T_1 is classifiable and T_2 is superstable with DOP, then $\cong_{T_1}^{\kappa} \leqslant_c \cong_{T_2}^{\kappa}$ and $\cong_{T_2}^{\kappa} \notin_B \cong_{T_1}^{\kappa}$.

Theorem 3.4. Suppose that for all $\gamma < \kappa$, $\gamma^{\omega} < \kappa$ and $\Diamond_{\kappa}(S^{\kappa}_{\omega})$ holds. If T_1 is classifiable and T_2 is stable unsuperstable, then $\cong_{T_1}^{\kappa} \leq_c \cong_{T_2}^{\kappa}$ and $\cong_{T_2}^{\kappa} \leq_B \cong_{T_1}^{\kappa}$.

Corollary 3.5. Suppose $\kappa = \kappa^{<\kappa} = \lambda^+$ and $\lambda^{\omega} = \lambda$. If T_1 is classifiable and T_2 is stable unsuperstable, then $\cong_{T_1}^{\kappa} \leq_c \cong_{T_2}^{\kappa}$ and $\cong_{T_2}^{\kappa} \leq_B \cong_{T_1}^{\kappa}$.

Proof. In [She10] Shelah proved that if $\kappa = \lambda^+ = 2^{\lambda}$ and *S* is a stationary subset of $\{\alpha < \kappa \mid cf(\alpha) \neq cf(\lambda)\}$, then $\Diamond_{\kappa}(S)$ holds. Since $\lambda^{\omega} = \lambda$, we have $cf(\lambda) \neq \omega$ and $\Diamond_{\kappa}(S_{\omega}^{\kappa})$ holds. On the other hand $\kappa = \lambda^+$ and $\lambda^{\omega} = \lambda$ implies $\gamma^{\omega} < \kappa$ for all $\gamma < \kappa$. By Theorem 3.4 we conclude that if T_1 is a classifiable theory and T_2 is a stable unsuperstable theory, then $\cong_{T_1} \leq_c \cong_{T_2}$ and $\cong_{T_2} \leq_B \cong_{T_1}$.

Theorem 3.6. Let $H(\kappa)$ be the following property: If T is classifiable and T' not, then $\cong_T^{\kappa} \leq_c \cong_{T'}^{\kappa}$ and $\cong_{T'}^{\kappa} \leq_B \cong_T^{\kappa}$. Suppose that $\kappa = \kappa^{<\kappa} = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$.

- 1. If V = L, then $H(\kappa)$ holds.
- 2. There is a κ -closed forcing notion \mathbb{P} with the κ^+ -c.c. which forces $H(\kappa)$.

Proof. 1. This follows from Theorems 3.3 and 3.4.

- 2. Let \mathbb{P} be $\{f: X \to 2 \mid X \subseteq \kappa, |X| < \kappa\}$ with the order $p \leq q$ if $q \subset p$. It is known that \mathbb{P} has the κ^+ -cc [Kun11, Lemma IV.7.5] and is κ -closed [Kun11, Lemma IV.7.14]. It is also known that \mathbb{P} preserves cofinalities, cardinalities and subsets of κ of size less than κ [Kun11, Thm IV.7.9, Lemma IV.7.15]. Therefore, in V[G], κ satisfies $\kappa = \kappa^{<\kappa} = \lambda^+ = 2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$. It is known that \mathbb{P} satisfies $\mathbb{1} \Vdash_{\mathbb{P}} \diamondsuit_k(S_{\mu}^{\kappa})$ for every regular cardinal $\mu < \kappa$. Therefore, by Theorems 3.3 and 3.4 $H(\kappa)$ holds in V[G].
- **Definition 3.7.** 1. A tree *T* is a κ^+ , κ -tree if does not contain chains of length κ and its cardinality is less than κ^+ . It is *closed* if every chain has a unique supremum.

- 2. A pair (T, h) is a *Borel*-code* if *T* is a closed κ^+ , κ -tree and *h* is a function with domain *T* such that if $x \in T$ is a leaf, then h(x) is a basic open set and otherwise $h(x) \in \{\cup, \cap\}$.
- 3. For an element $\eta \in 2^{\kappa}$ and a *Borel**-code (T,h), the *Borel*-game* $B^*(T,h,\eta)$ is played as follows. There are two players, I and II. The game starts from the root of *T*. At each move, if the game is at node $x \in T$ and $h(x) = \cap$, then I chooses an immediate successor *y* of *x* and the game continues from this *y*. If $h(x) = \bigcup$, then II makes the choice. At limits the game continues from the (unique) supremum of the previous moves by Player I. Finally, if h(x) is a basic open set, then the game ends, and II wins if and only if $\eta \in h(x)$.
- 4. A set $X \subseteq 2^{\kappa}$ is a *Borel*-set* if there is a *Borel**-code (T, h) such that for all $\eta \in 2^{\kappa}$, $\eta \in X$ if and only if **II** has a winning strategy in the game $B^*(T, h, \eta)$.

Note that a strategy in a game $B^*(T,h,\eta)$ can be seen as a function $\sigma : \kappa^{<\kappa} \to \kappa$, because every $\kappa^+\kappa$ -tree can be seen as a downward closed subtree of $\kappa^{<\kappa}$.

Theorem 3.8. Suppose that $\kappa = \kappa^{<\kappa} = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$. Then the following statements are consistent.

- 1. If T_1 is classifiable and T_2 is not, then there is an embedding of $(\mathcal{P}(\kappa), \subseteq)$ to $(B^*(T_1, T_2), \leq_B)$, where $B^*(T_1, T_2)$ is the set of all Borel^{*}-equivalence relations strictly between \cong_{T_1} and \cong_{T_2} .
- 2. If T_1 is classifiable and T_2 is unstable or superstable, then

$$\cong_{T_1}^{\kappa} \leqslant_c E_{\lambda\text{-club}}^2 \leqslant_c \cong_{T_2}^{\kappa} \wedge \cong_{T_2}^{\kappa} \notin_B E_{\lambda\text{-club}}^2 \wedge E_{\lambda\text{-club}}^2 \notin_B \cong_{T_1}^{\kappa}.$$

Proof. We will start the proof with two claims.

Claim 3.9. If $\Diamond_{\kappa}(S)$ holds in V and Q is κ -closed, then $\Diamond_{\kappa}(S)$ holds in every Q-generic extension.

Proof. Let us proceed by contradiction. Suppose $(S_{\alpha})_{\alpha \in S}$ is a $\Diamond_{\kappa}(S)$ -sequence in V but not in V[G], for some generic G. Fix the names $\check{S}, \dot{C}, \dot{X} \in V^{\mathbb{Q}}$ and $p \in G$, such that:

 $p \Vdash (\dot{C} \subseteq \check{\kappa} \text{ is a club } \land \dot{X} \subseteq \check{\kappa} \land \forall \alpha \in \dot{C}[\check{S}_{\alpha} \neq \dot{X} \cap \alpha]).$

Working in *V*, we choose by recursion p_{α} , β_{α} , θ_{α} , and δ_{α} such that:

- 1. $p_{\alpha} \in \mathbb{Q}$, $p_0 = p$ and $p_{\alpha} \ge p_{\gamma}$ if $\alpha \le \gamma$.
- 2. $\beta_{\alpha} \leq \beta_{\gamma}$ if $\alpha \leq \gamma$.
- 3. $\beta_{\alpha} \leq \theta_{\alpha}, \delta_{\alpha} < \beta_{\alpha+1}$.
- 4. If γ is a limit ordinal, then $\beta_{\gamma} = \delta_{\gamma} = \bigcup_{\alpha < \gamma} \beta_{\alpha}$.
- 5. $p_{\alpha+1} \Vdash (\check{\delta}_{\alpha} \in \check{C} \land \dot{X} \cap \check{\beta}_{\alpha} = \check{S}_{\theta_{\alpha}}).$

We will show how to choose them such that 1-5 are satisfied. First, for the successor step assume that for some $\alpha < \kappa$ we have chosen $p_{\alpha+1}, \beta_{\alpha}, \theta_{\alpha}$ and δ_{α} . We choose any ordinal satisfying 3 as $\beta_{\alpha+1}$. Since $p_{\alpha+1} \Vdash (\dot{C} \subseteq \check{\kappa} \text{ is a club})$, there exists $q \in \mathbb{Q}$ stronger than $p_{\alpha+1}$ and $\delta < \kappa$ such that $q \Vdash (\check{\delta} \in \dot{C} \land \check{\beta}_{\alpha} \leq \check{\delta})$. Now set $\delta_{\alpha+1} = \delta$. Since \mathbb{Q} is κ -closed, there exists $Y \in \mathcal{P}(\beta_{\alpha+1})^V$ and $r \in \mathbb{Q}$ stronger than q such that $r \Vdash \dot{X} \cap \check{\beta}_{\alpha+1} = \check{Y}$. By $\diamondsuit_{\kappa}(S)$ in V, the set $\{\gamma < \kappa \mid Y = S_{\gamma}\}$ is stationary, so we can choose the least ordinal $\theta_{\alpha+1} \ge \beta_{\alpha+1}$ such that $r \Vdash \dot{X} \cap \check{\beta}_{\alpha+1} = \check{S}_{\theta_{\alpha+1}}$. Clearly $r = p_{\alpha+2}$ satisfies 1 and 5. For the limit step, assume that for some limit ordinal $\alpha < \kappa$ we have chosen p_{γ} , β_{γ} , θ_{γ} and δ_{γ} for every $\gamma < \alpha$. Note that by 4 we know how to choose β_{α} and δ_{α} . Since Q is κ -closed, there exists p_{α} that satisfies 1. We choose θ_{α} as in the successor case with $q = p_{\alpha}$ and $p_{\alpha+1}$ as the condition r used to choose θ_{α} .

Define *A*, *B* and C_{δ} by $B = \bigcup_{\alpha < \kappa} S_{\theta_{\alpha}}$, $A = \{\alpha \in S \mid B \cap \alpha = S_{\alpha}\}$ and $C_{\delta} = \{\delta_{\alpha} \mid \alpha \text{ is a limit ordinal}\}$. Note that C_{δ} is a club. By $\diamondsuit_{\kappa}(S)$ in *V*, *A* is stationary and $A \cap C_{\delta} \neq \emptyset$. Let $\delta_{\alpha} \in A \cap C_{\delta}$. Then by 1, 2 and 5, for every $\gamma > \alpha$ we have $p_{\gamma+1} \Vdash (\check{S}_{\theta_{\alpha}} = \check{S}_{\theta_{\gamma}} \cap \check{\beta}_{\alpha})$. Therefore, $S_{\theta_{\alpha}} = B \cap \beta_{\alpha}$ and $\delta_{\alpha} \in A \cap C_{\delta}$ and so by 4 we have $S_{\theta_{\alpha}} = B \cap \delta_{\alpha} = S_{\delta_{\alpha}}$. But now by 5 we get $p_{\alpha+1} \Vdash (\check{\delta}_{\alpha} \in \check{C} \land \dot{X} \cap \check{\delta}_{\alpha} = \check{S}_{\delta_{\alpha}})$ which is a contradiction.

Claim 3.10. For all stationary $X \subseteq \kappa$, the relation E_X is a Borel^{*}-set.

Proof. The idea is to code the club-game into the Borel^{*}-game: in the club-game the players pick ordinals one after another and if the limit is in a predefined set A, then the second player wins. Define T_X as the tree whose elements are all the increasing elements of $\kappa^{\leq \lambda}$, ordered by end-extension. For every element of T_X that is not a leaf, define

$$H_X(x) = \begin{cases} \cup & \text{if } x \text{has an immediate predecessor } x^- \text{ and } H_X(x^-) = \cap \\ \cap & \text{otherwise} \end{cases}$$

and for every leaf *b* define $H_X(b)$ by:

$$(\eta, \xi) \in H_X(b) \iff$$
 for every $\alpha \in \lim(\operatorname{ran}(b)) \cap X(\eta(\alpha) = \xi(\alpha))$

where $\alpha \in \lim(\operatorname{ran}(b))$ if $\sup(\alpha \cap \operatorname{ran}(b)) = \alpha$.

Let us assume there is a winning strategy σ for Player II in the game $B^*(T_X, H_X, (\eta, \xi))$ and let us conclude that $(\eta, \xi) \in E_X$. Clearly by the definition of H_X we know that η and ξ coincide in the set $B = \{\alpha < \kappa \mid \sigma[dom(\sigma) \cap \alpha^{<\lambda}] \subset \alpha^{<\lambda}\} \cap X$. Since $\lambda^{<\lambda} = \lambda$, we know that $B' = \{\alpha < \kappa \mid \sigma[dom(\sigma) \cap \alpha^{<\lambda}] \subset \alpha^{<\lambda}\}$ is closed and unbounded. Therefore, there exists a club that doesn't intersect $(\eta^{-1}[1] \Delta \xi^{-1}[1]) \cap X$.

For the other direction, assume that $(\eta^{-1}[1] \triangle \xi^{-1}[1]) \cap X$ is not stationary and denote by *C* the club that does not intersect $(\eta^{-1}[1] \triangle \xi^{-1}[1]) \cap X$. The second player has a winning strategy for the game $B^*(T_\lambda, H_X, (\eta, \xi))$: she makes sure that, if *b* is the leaf in which the game ends and $A \subset \operatorname{ran}(b)$ is such that $\sup(\bigcup A) \in X$, then $\sup(\bigcup A) \in C$. This can be done by always choosing elements $f \in \kappa^{<\lambda}$ such that $\sup(\operatorname{ran}(f)) \in C$.

Let \mathbb{P} be $\{f : X \to 2 \mid X \subseteq \kappa, |X| < \kappa\}$ with the order $p \leq q$ if $q \subset p$. It is known that in any \mathbb{P} -generic extension, $V[G], \Diamond_{\kappa}(S)$ holds for every $S \in V$, S a stationary subset of κ .

1. In [FHK14, Thm 52] the following was proved under the assumption $\kappa = \lambda^+$ and GCH:

For every $\mu < \kappa$ there is a κ -closed forcing notion \mathbb{Q} with the κ^+ -c.c. which forces that there are stationary sets $K(A) \subsetneq S_u^{\kappa}$ for each $A \subsetneq \kappa$ such that $E_{K(A)} \nleq_B E_{K(B)}$ if and only if $A \not\subset B$.

In [FHK14, Thm 52] the proof starts by taking $(S_i)_{i < \kappa}$, κ pairwise disjoint stationary subsets of $lim(S^{\kappa}_{\mu}) = \{ \alpha \in S^{\kappa}_{\mu} \mid \alpha \text{ is a limit ordinal in } S^{\kappa}_{\mu} \}$, and defining $K(A) = \bigcup_{\alpha \in A} S_{\alpha}$. \mathbb{Q} is an iterated forcing that satisfies: For every name σ of a function $f : 2^{\kappa} \to 2^{\kappa}$, exists $\beta < \kappa$ such that, $\mathbb{P}_{\beta} \Vdash$ " σ is not a reduction".

With a small modification on the iteration, it is possible to construct Q a κ -closed forcing with the κ^+ -c.c. that forces

(*) For $\mu \in \{\omega, \lambda\}$ and $A \subsetneq \kappa$, there are stationary sets $K(\mu, A) \subsetneq S_{\mu}^{\kappa}$ for which $E_{K(\mu, A)} \not\leq B E_{K(\mu, B)}$ if and only if $A \not\subset B$.

Assume without loss of generality that GCH holds in *V*. Let *G* be a $\mathbb{P} * \mathbb{Q}$ -generic. It is enough to prove that for every $A \subsetneq \kappa$ in V[G] the following holds:

- (a) If T_2 is unstable, or superstable with OTOP or with DOP, then $E_{K(\lambda,A)} \in B^*(T_1, T_2)$.
- (b) If T_2 is stable unsuperstable, then $E_{K(\omega,A)} \in B^*(T_1,T_2)$.

In both cases the proof is the same; we will only consider (a).

Working in V[G], let T_2 be as in (a). Since \mathbb{Q} is κ -closed, we have $V[G] \models \diamondsuit_{\kappa}(S)$ for every stationary $S \subset \kappa, S \in V$. Since \mathbb{P} and \mathbb{Q} are κ -closed and have the κ^+ -c.c., we have $\kappa = \kappa^{<\kappa} = \lambda^+, 2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$. By Lemma 2.3, Theorems 3.1 and 3.4, we have that $\cong_{T_1}^{\kappa} \leqslant_c E_{K(\lambda,A)} \leqslant_c \cong_{T_2}^{\kappa}$ holds for every $A \subsetneq \kappa$. The argument in the proof of Theorem 2.4 can be used to prove that $E_{K(\lambda,A)} \notin_B \cong_{T_1}^{\kappa}$ holds for every $A \subsetneq \kappa$.

To show that $\cong_{T_2}^{\kappa} \not\leq_B E_{K(\lambda,A)}$ holds for every $A \subsetneq \kappa$, assume towards a contradiction that there exists $B \subsetneq \kappa$ such that $\cong_{T_2}^{\kappa} \leq_B E_{K(\lambda,B)}$. But then $E_{K(\lambda,A)} \leq_B E_{K(\lambda,B)}$ holds for every $A \subsetneq \kappa$ and by (*), $A \subsetneq B$ for every $A \subsetneq \kappa$. So $B = \kappa$ which is a contradiction.

2. In [HK12, Thm 3.1] it is proved (under the assumptions $2^{\kappa} = \kappa^+$ and $\kappa = \kappa^{<\kappa} > \omega$) that there is a generic extension in which \cong_{DLO}^{κ} is not a Borel*-set. The forcing is constructed using the following claim [HK12, Claim 3.1.5]:

For each (t,h) there exists a κ^+ -c.c. κ -closed forcing $\mathbb{R}(t,h)$ such that in any $\mathbb{R}(t,h)$ -generic extension \cong_{DIO}^{κ} is not a Borel^{*}-set.

The forcing in [HK12, Thm 3.1] works for every theory *T* that is unstable, or *T* non-classifiable and superstable (not only *DLO*, see [HK12] and [HT91]). Therefore, this claim can be generalized to:

For each (t,h) there exists a κ^+ -c.c. κ -closed forcing $\mathbb{R}(t,h)$ such that in any $\mathbb{R}(t,h)$ -generic extension, \cong_T^{κ} is not a Borel*-set, for all T unstable, or T non-classifiable and superstable.

By iterating this forcing (as in [HK12, Thm 3.1]), we construct a forcing $\mathbb{Q} \kappa$ -closed, κ^+ -c.c. that forces \cong_T^{κ} *is not a Borel**-*set*, for all *T* unstable, or *T* non-classifiable and superstable.

Assume without loss of generality that $2^{\kappa} = \kappa^+$ holds in *V*. Let *G* be a $\mathbb{P} * \mathbb{Q}$ -generic. Since \mathbb{Q} is κ -closed, $V[G] \models \Diamond_{\kappa}(S)$ for every stationary $S \subset \kappa$, $S \in V$. Since \mathbb{P} and \mathbb{Q} are κ -closed and have the κ^+ -c.c., we have $\kappa = \kappa^{<\kappa} = \lambda^+$, $2^{\lambda} > 2^{\omega}$ and $\lambda^{<\lambda} = \lambda$. Working in V[G], let T_2 be unstable, or non-classifiable and superstable. By Lemma 2.3, Theorems 3.3 and 3.4 we finally have that $\cong_{T_1}^{\kappa} \leq_c E_{\lambda-\text{club}}^2 \leq_c \cong_{T_2}^{\kappa}$ and $E_{\lambda-\text{club}}^2 \leq_B \cong_{T_1}^{\kappa}$ holds.

Since $2^{\kappa} \times 2^{\kappa}$ is homeomorphic to 2^{κ} , in order to finish the proof, it is enough to show that if $f: 2^{\kappa} \to 2^{\kappa}$ is Borel, then for all Borel*-sets A, the set $f^{-1}[A]$ is a Borel*. This is because if f were the reduction $\cong_{T_2}^{\kappa} \leq_B E_{\lambda-\text{club}}^2$, we would have $(f \times f)^{-1}[E_{\lambda-\text{club}}^2] = \cong_{T_2}^{\kappa}$ and since $E_{\lambda-\text{club}}^2$ is Borel*, this would yield the latter Borel* as well.

Claim 3.11. Assume $f: 2^{\kappa} \to 2^{\kappa}$ is a Borel function and $B \subset 2^{\kappa}$ is Borel^{*}. Then $f^{-1}[B]$ is Borel^{*}.

Proof. Let (T_B, H_B) be a Borel*-code for *B*. Define the Borel*-code (T_A, H_A) by letting $T_B = T_A$ and $H_A(b) = f^{-1}[H_B(b)]$ for every branch *b* of T_B . Let *A* be the Borel*-set coded by (T_A, H_A) . Clearly, $\mathbf{II} \uparrow B^*(T_B, H_B, \eta)$ if and only if $\mathbf{II} \uparrow B^*(T_A, H_A, f^{-1}(\eta))$, so $f^{-1}[B] = A$.

We end this paper with an open question:

Question 3.12. Is it provable in ZFC that $\cong_T^{\kappa} \leq_B \cong_{T'}^{\kappa}$ (note the strict inequality) for all complete first-order theories T and T', T classifiable and T' not? How much can the cardinality assumptions on κ be relaxed?

References

- [FHK14] S.D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory, Memoirs of the Amer. Math. Soc. Vol. 230/1081 (American Mathematical Society, 2014).
- [HK12] T. Hyttinen, and V. Kulikov, Borel* sets in the generalized Baire space arXiv:1209.3933 [math.LO](2012)
- [HM15] T. Hyttinen, and M. Moreno, On the reducibility of isomorphism relations arXiv:1509.05291 [math.LO](2015).
- [HT91] T. Hyttinen, and H. Tuuri, Constructing strongly equivalent nonisomorphic models for unstable theories, APAL 52 203–248, (1991).
- [Kun11] K. Kunen, *Set theory*, Studies in Logic: Mathematical Logic and Foundations. Vol. 34, (College Publications, London, 2011).
- [MV93] A. Mekler, and J. Väänänen, *Trees and* Π_1^1 *subsets of* $\omega_1^{\omega_1}$, J. Symb. Log. 58(3), 97–114, (1993).
- [She90] S. Shelah, *Classification theory*, Stud. Logic Found. Math. Vol. 92, (North-Holland, Amsterdam, 1990).
- [She10] S. Shelah, *Diamonds*, Proc. Amer. Math. Soc. 138, 2151–2161, (2010).
- [Vau74] R. Vaught, Invariant sets in topology and logic, Fund. Math. 82, 269–294, (1974/75).