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Abstract. A classical theorem of Hechler asserts that the structure (𝜔𝜔 ,≤*)
is universal in the sense that for any 𝜎-directed poset P with no maximal
element, there is a 𝑐𝑐𝑐 forcing extension in which (𝜔𝜔 ,≤*) contains a cofi-

nal order-isomorphic copy of P. In this paper, we prove a consistency result
concerning the universality of the higher analogue

(︀
𝜅𝜅,≤𝑆

)︀
.

Theorem. Assume GCH. For every regular uncountable cardinal 𝜅, there

is a cofinality-preserving GCH-preserving forcing extension in which for every
analytic quasi-order Q over 𝜅𝜅 and every stationary subset 𝑆 of 𝜅, there is a

Lipschitz map reducing Q to (𝜅𝜅,≤𝑆).

1. Introduction

Recall that a quasi-order is a binary relation which is reflexive and transitive. A
well-studied quasi-order over the Baire space NN is the binary relation ≤* which is
defined by letting, for any two elements 𝜂 : N → N and 𝜉 : N → N,

𝜂 ≤* 𝜉 iff {𝑛 ∈ N | 𝜂(𝑛) > 𝜉(𝑛)} is finite.

This quasi-order is behind the definitions of cardinal invariants b and d (see [Bla10,
S2]), and serves as a key to the analysis of oscillation of real numbers which is
known to have prolific applications to topology, graph theory, and forcing axioms
(see [Tod89]). By a classical theorem of Hechler [Hec74], the structure (NN,≤*) is
universal in that sense that for any 𝜎-directed poset P with no maximal element,
there is a 𝑐𝑐𝑐 forcing extension in which (NN,≤*) contains a cofinal order-isomorphic
copy of P.

In this paper, we consider (a refinement of) the higher analogue of the relation
≤* to the realm of the generalized Baire space 𝜅𝜅 (sometimes refered as the higher
Baire space), where 𝜅 is a regular uncountable cardinal. This is done by simply
replacing the ideal of finite sets with the ideal of nonstationary sets, as follows.1

Definition 1.1. Given a stationary subset 𝑆 ⊆ 𝜅, we define a quasi-order ≤𝑆 over
𝜅𝜅 by letting, for any two elements 𝜂 : 𝜅→ 𝜅 and 𝜉 : 𝜅→ 𝜅,

𝜂 ≤𝑆 𝜉 iff {𝛼 ∈ 𝑆 | 𝜂(𝛼) > 𝜉(𝛼)} is nonstationary.

Note that since the nonstationary ideal over 𝑆 is 𝜎-closed, the quasi-order ≤𝑆

is well-founded, meaning that we can assign a rank value ‖𝜂‖ to each element 𝜂 of
𝜅𝜅. The utility of this approach is demonstrated in the celebrated work of Galvin
and Hajnal [GH75] concerning the behavior of the power function over the singular
cardinals, and, of course, plays an important role in Shelah’s pcf theory (see [AM10,
S4]). It was also demonstrated to be useful in the study of partition relations of
singular cardinals of uncountable cofinality [She09].
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1A comparison of the generalization considered here with the one obtained by replacing the

ideal of finite sets with the ideal of bounded sets may be found in [CS95, S8].
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In this paper, we first address the question of how ≤𝑆 compares with ≤𝑆′
for

various subsets 𝑆 and 𝑆′. It is proved:

Theorem A. Assume that 𝜅 is a regular uncountable cardinal and GCH holds.
Then there exists a cofinality-preserving GCH-preserving forcing extension in which
for all stationary subsets 𝑆, 𝑆′ of 𝜅, there exists a map 𝑓 : 𝜅≤𝜅 → 2≤𝜅 such that,
for all 𝜂, 𝜉 ∈ 𝜅≤𝜅,

∙ dom(𝑓(𝜂)) = dom(𝜂);
∙ if 𝜂 ⊆ 𝜉, then 𝑓(𝜂) ⊆ 𝑓(𝜉);

∙ if dom(𝜂) = dom(𝜉) = 𝜅, then 𝜂 ≤𝑆 𝜉 iff 𝑓(𝜂) ≤𝑆′
𝑓(𝜉).

Note that as rng(𝑓 � 𝜅𝜅) ⊆ 2𝜅, the above assertion is non-trivial even in the
case 𝑆 = 𝑆′ = 𝜅, and forms a contribution to the study of lossless encoding of
substructures of (𝜅≤𝜅, . . .) as substructures of (2≤𝜅, . . .) (see, e.g., [BR17, S7]).

To formulate our next result — an optimal strengthening of Theorem A — let us
recall a few basic notions from generalized descriptive set theory. The generalized
Baire space is the set 𝜅𝜅 endowed with the bounded topology, in which a basic
open set takes the form [𝜁] := {𝜂 ∈ 𝜅𝜅 | 𝜁 ⊂ 𝜂}, with 𝜁, an element of 𝜅<𝜅. A
subset 𝐹 ⊆ 𝜅𝜅 is closed iff its complement is open iff there exists a tree 𝑇 ⊆ 𝜅<𝜅

such that [𝑇 ] := {𝜂 ∈ 𝜅𝜅 | ∀𝛼 < 𝜅(𝜂 � 𝛼 ∈ 𝑇 )} is equal to 𝐹 . A subset 𝐴 ⊆ 𝜅𝜅 is
analytic iff there is a closed subset 𝐹 of the product space 𝜅𝜅 × 𝜅𝜅 such that its
projection pr(𝐹 ) := {𝜂 ∈ 𝜅𝜅 | ∃𝜉 ∈ 𝜅𝜅 (𝜂, 𝜉) ∈ 𝐹} is equal to 𝐴. The generalized
Cantor space is the subspace 2𝜅 of 𝜅𝜅 endowed with the induced topology. The
notions of open, closed and analytic subsets of 2𝜅, 2𝜅 × 2𝜅 and 𝜅𝜅 × 𝜅𝜅 are then
defined in the obvious way.

Definition 1.2. The restriction of the quasi-order ≤𝑆 to 2𝜅 is denoted by ⊆𝑆 .

For all 𝜂, 𝜉 ∈ 𝜅𝜅, denote ∆(𝜂, 𝜉) := min({𝛼 < 𝜅 | 𝜂(𝛼) ̸= 𝜉(𝛼)} ∪ {𝜅}).

Definition 1.3. Let 𝑅1 and 𝑅2 be binary relations over 𝑋1, 𝑋2 ∈ {2𝜅, 𝜅𝜅}, respec-
tively. A function 𝑓 : 𝑋1 → 𝑋2 is said to be:

(a) a reduction of 𝑅1 to 𝑅2 iff, for all 𝜂, 𝜉 ∈ 𝑋1,

𝜂 𝑅1 𝜉 iff 𝑓(𝜂) 𝑅2 𝑓(𝜉).

(b) Λ-Lipschitz iff Λ ∈ 𝜅 and, for all 𝜂, 𝜉 ∈ 𝑋1,

∆(𝜂, 𝜉) ≤ ∆(𝑓(𝜂), 𝑓(𝜉)) · Λ.

The existence of a function 𝑓 satisfying (a) and (b) is denoted by 𝑅1 →˓Λ 𝑅2.

In the above language, Theorem A provides a model in which, for all stationary

subsets 𝑆, 𝑆′ of 𝜅, ≤𝑆 →˓1 ⊆𝑆 ′
. As ≤𝑆 is an analytic quasi-order over 𝜅𝜅, it is

natural to ask whether a stronger universality result is possible, and it is moreover
forceable that any analytic quasi-order over 𝜅𝜅 admits a 1-Lipschitz reduction to
⊆𝑆′

for some (or maybe even for all) stationary 𝑆′ ⊆ 𝜅. The answer turns out to
be affirmative, hence the choice of the title of this paper.

Theorem B. Assume that 𝜅 is a regular uncountable cardinal and GCH holds.
Then there exists a cofinality-preserving GCH-preserving forcing extension in which,
for every analytic quasi-order 𝑄 over 𝜅𝜅 and every stationary 𝑆 ⊆ 𝜅, 𝑄 →˓1 ⊆𝑆.

Remark. The universality statement under consideration is optimal, as 𝑄 →˓1 ⊆𝑆

implies that 𝑄 analytic.

The proof of the preceding goes through a new diamond-type principle for reflect-
ing second-order formulas, introduced here and denoted by Dl*𝑆(Π1

2). This principle
is a strengthening of Jensen’s ♢𝑆 and a weakening of Devlin’s ♢♯

𝜅. For 𝜅 a successor
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cardinal, we have Dl*𝑆(Π1
2) ⇒ ♢*

𝑆 but not ♢*
𝑆 ⇒ Dl*𝑆(Π1

2) (see Remark 4.2 below).
Another crucial difference between the two is that, unlike ♢*

𝑆 , the principle Dl*𝑆(Π1
2)

is compatible with the set 𝑆 being ineffable.
In Section 2, we establish the consistency of the new principle, in fact, proving

that it follows from an abstract condensation principle that was introduced and
studied in [FH11, HWW15]. It thus follows that it is possible to force Dl*𝑆(Π1

2) to
hold over all stationary subsets 𝑆 of a prescribed regular uncountable cardinal 𝜅. It
also follows that, in canonical models for Set Theory (including any 𝐿[𝐸] model with
Jensen’s 𝜆-indexing which is sufficiently iterable and has no subcompact cardinals),
Dl*𝑆(Π1

2) holds for every stationary subset 𝑆 of every regular uncountable (including
ineffable) cardinal 𝜅.

Then, in Section 3, the core combinatorial component of our result is proved:

Theorem C. Suppose 𝑆 is a stationary subset of a regular uncountable cardinal
𝜅. If Dl*𝑆(Π1

2) holds, then, for every analytic quasi-order 𝑄 over 𝜅𝜅, 𝑄 →˓1 ⊆𝑆.

2. A Diamond reflecting second-order formulas

In [Dev82], Devlin introduced a strong form of the Jensen-Kunen principle ♢+
𝜅 ,

which he denoted by ♢♯
𝜅, and proved:

Fact 2.1 (Devlin, [Dev82, Theorem 5]). In 𝐿, for every regular uncountable cardinal
𝜅 that is not ineffable, ♢♯

𝜅 holds.

Remark 2.2. A subset 𝑆 of a regular uncountable cardinal 𝜅 is said to be ineffable
iff, for every sequence ⟨𝑍𝛼 | 𝛼 ∈ 𝑆⟩, there exists a subset 𝑍 ⊆ 𝜅, for which {𝛼 ∈ 𝑆 |
𝑍 ∩ 𝛼 = 𝑍𝛼 ∩ 𝛼} is stationary. Note that the collection of non-ineffable subsets of
𝜅 forms a normal ideal that contains {𝛼 < 𝜅 | cf(𝛼) < 𝛼} as an element. Also note
that if 𝜅 is ineffable, then 𝜅 is strongly inaccessible.

As said before, in this paper, we consider a refinement of Devlin’s principle com-
patible with 𝜅 being ineffable. Devlin’s principle as well as its refinement provide
us with Π1

2-reflection over structures of the form ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩. We now describe
the relevant logic in detail.

A Π1
2-sentence 𝜑 is a formula of the form ∀𝑋∃𝑌 𝜙 where 𝜙 is a first-order sentence

over a relational language ℒ as follows:

∙ ℒ has a predicate symbol 𝜖 of arity 2;
∙ ℒ has a predicate symbol X of arity 𝑚(X);
∙ ℒ has a predicate symbol Y of arity 𝑚(Y);
∙ ℒ has infinitely many predicate symbols (A𝑛)𝑛∈𝜔, each A𝑛 is of arity𝑚(A𝑛).

Definition 2.3. For sets 𝑁 and 𝑥, we say that 𝑁 sees 𝑥 iff 𝑁 is transitive, p.r.-
closed, and 𝑥 ∪ {𝑥} ⊆ 𝑁 .

Suppose that a set 𝑁 sees an ordinal 𝛼, and that 𝜑 = ∀𝑋∃𝑌 𝜙 is a Π1
2-sentence,

where 𝜙 is a first-order sentence in the above-mentioned language ℒ. For every
sequence (𝐴𝑛)𝑛∈𝜔 such that, for all 𝑛 ∈ 𝜔, 𝐴𝑛 ⊆ 𝛼𝑚(A𝑛), we write

⟨𝛼,∈, (𝐴𝑛)𝑛∈𝜔⟩ |=𝑁 𝜑

to express that the two hold:

(1) (𝐴𝑛)𝑛∈𝜔 ∈ 𝑁 ;
(2) ⟨𝑁,∈⟩ |= (∀𝑋 ⊆ 𝛼𝑚(X))(∃𝑌 ⊆ 𝛼𝑚(Y))[⟨𝛼,∈, 𝑋, 𝑌, (𝐴𝑛)𝑛∈𝜔⟩ |= 𝜙], where:

∙ ∈ is the interpretation of 𝜖;
∙ 𝑋 is the interpretation of X;
∙ 𝑌 is the interpretation of Y, and
∙ for all 𝑛 ∈ 𝜔, 𝐴𝑛 is the interpretation of A𝑛.
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Convention 2.4. We write 𝛼+ for |𝛼|+, and write ⟨𝛼,∈, (𝐴𝑛)𝑛∈𝜔⟩ |= 𝜑 for

⟨𝛼,∈, (𝐴𝑛)𝑛∈𝜔⟩ |=𝐻𝛼+ 𝜑.

Definition 2.5 (Devlin, [Dev82]). Let 𝜅 be a regular and uncountable cardinal.

♢♯
𝜅 asserts the existence of a sequence 𝑁⃗ = ⟨𝑁𝛼 | 𝛼 < 𝜅⟩ satisfying the following:

(1) for every infinite 𝛼 < 𝜅, 𝑁𝛼 is a set of cardinality |𝛼| that sees 𝛼;
(2) for every 𝑋 ⊆ 𝜅, there exists a club 𝐶 ⊆ 𝜅 such that, for all 𝛼 ∈ 𝐶,

𝐶 ∩ 𝛼,𝑋 ∩ 𝛼 ∈ 𝑁𝛼;
(3) whenever ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ |= 𝜑, with 𝜑 a Π1

2-sentence, there are stationarily
many 𝛼 < 𝜅 such that ⟨𝛼,∈, (𝐴𝑛 ∩ (𝛼𝑚(A𝑛)))𝑛∈𝜔⟩ |=𝑁𝛼

𝜑.

Consider the following refinement:

Definition 2.6. Let 𝜅 be a regular and uncountable cardinal, and 𝑆 ⊆ 𝜅 stationary.

Dl*𝑆(Π1
2) asserts the existence of a sequence 𝑁⃗ = ⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ satisfying the

following:

(1) for every 𝛼 ∈ 𝑆, 𝑁𝛼 is a set of cardinality < 𝜅 that sees 𝛼;
(2) for every 𝑋 ⊆ 𝜅, there exists a club 𝐶 ⊆ 𝜅 such that, for all 𝛼 ∈ 𝐶 ∩ 𝑆,

𝑋 ∩ 𝛼 ∈ 𝑁𝛼;
(3) whenever ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ |= 𝜑, with 𝜑 a Π1

2-sentence, there are stationarily
many 𝛼 ∈ 𝑆 such that |𝑁𝛼| = |𝛼| and ⟨𝛼,∈, (𝐴𝑛 ∩ (𝛼𝑚(A𝑛)))𝑛∈𝜔⟩ |=𝑁𝛼

𝜑.

Remark 2.7. The choice of notation for the above principle is motivated by [HLS93,
Definition 1.8] and [TV99, Definition 45].

The goal of this section is to derive Dl*𝑆(Π1
2) from an abstract principle which is

both forceable and a consequence of 𝑉 = 𝐿[𝐸], for 𝐿[𝐸] an iterable extender model
with Jensen 𝜆-indexing without a subcompact cardinal (see [SZ01, SZ04]). Note
that this covers all 𝐿[𝐸] models that can be built so far.

Convention 2.8. The class of ordinals is denoted by OR. The class of ordinals
of cofinality 𝜇 is denoted by cof(𝜇), and the class of ordinals of cofinality greater
than 𝜇 is denoted by cof(>𝜇). For a set of ordinals 𝑎, we write acc(𝑎) := {𝛼 ∈ 𝑎 |
sup(𝑎 ∩ 𝛼) = 𝛼 > 0}. ZF− denotes ZF without the power-set axiom, and 𝑟(𝛼)
denotes a formula expressing that “𝛼 is regular”. The transitive closure of a set 𝑋
is denoted by trcl(𝑋), and the Mostowski collapse of a structure B is denoted by
clps(B).

Convention 2.9. Whenever 𝜆 is a limit ordinal, and 𝑀⃗ = ⟨𝑀𝛽 | 𝛽 < 𝜆⟩ is a
⊆-increasing, continuous sequence of sets, we denote its limit

⋃︀
𝛽<𝜆𝑀𝛽 by 𝑀𝜆.

Definition 2.10 (Friedman-Holy [FH11], Holy-Welch-Wu [HWW15]). Let 𝜆 be
a cardinal of uncountable cofinality or the class OR of all ordinals. We say that

𝑀⃗ = ⟨𝑀𝛽 | 𝛽 < 𝜆⟩ is a witness to the fact that local club condensation holds in

(𝜂, 𝜁), and denote this by ⟨𝐻𝜆,∈, 𝑀⃗⟩ |= LCC(𝜂, 𝜁), iff all of the following hold true:

(1) 𝜂 < 𝜁 ≤ 𝜆+ 1;

(2) 𝑀⃗ is nice filtration of 𝐻𝜆:
(a) for all 𝛽 < 𝜆, 𝑀𝛽 is a transitive set with 𝑀𝛽 ∩ OR = 𝛽;

(b) 𝑀⃗ is ∈-increasing, that is, 𝛼 < 𝛽 < 𝜆 =⇒ 𝑀𝛼 ∈𝑀𝛽 ;

(c) 𝑀⃗ is continuous, that is, for every limit ordinal 𝛽 < 𝜆, 𝑀𝛽 =
⋃︀

𝛼<𝛽 𝑀𝛼;

(d) 𝑀𝜆 = 𝐻𝜆.2

(3) For every ordinal 𝛼 in the interval (𝜂, 𝜁) and every sequence ℱ = ⟨(𝐹𝑛, 𝑘𝑛) |
𝑛 ∈ 𝜔⟩ such that, for all 𝑛 ∈ 𝜔, 𝑘𝑛 ∈ 𝜔 and 𝐹𝑛 ⊆ (𝑀𝛼)𝑘𝑛 , there is a sequence

B⃗ = ⟨ℬ𝛽 | 𝛽 < |𝛼|⟩ having the following properties:

2Recall Convention 2.9.
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(a) for all 𝛽 < |𝛼|, ℬ𝛽 is of the form ⟨𝐵𝛽 ,∈, 𝑀⃗�(𝐵𝛽∩OR), (𝐹𝑛∩(𝐵𝛽)𝑘𝑛)𝑛∈𝜔⟩;
(b) for all 𝛽 < |𝛼|, ℬ𝛽 ≺ ⟨𝑀𝛼,∈, 𝑀⃗ � 𝛼, (𝐹𝑛)𝑛∈𝜔⟩;3
(c) for all 𝛽 < |𝛼|, 𝛽 ⊆ 𝐵𝛽 and |𝐵𝛽 | = |𝛽|;
(d) for all 𝛽 < |𝛼|, there exists 𝛽 < 𝜆 such that

clps(⟨𝐵𝛽 ,∈, ⟨𝐵𝛿 | 𝛿 ∈ 𝐵𝛽 ∩ OR⟩⟩) = ⟨𝑀𝛽 ,∈, ⟨𝑀𝛿 | 𝛿 ∈ 𝛽⟩⟩;

(e) ⟨𝐵𝛽 | 𝛽 < |𝛼|⟩ is ⊆-increasing, continuous and converging to 𝑀𝛼.

For B⃗ as in Clause (3) above we say that B⃗ witnesses LCC(𝜂, 𝜁) at 𝛼 with respect
to ℱ . We write LCC(𝜂, 𝜁] for LCC(𝜂, 𝜁 + 1) and LCC(𝜂) for LCC(𝜂, 𝜆).

Remark 2.11. There are first-order sentences 𝜓0(𝜂̇) and 𝜓1(𝜂̇, 𝜁) in the language

ℒ := {∈, 𝑀⃗ , 𝜂̇, 𝜁} of set theory augmented by a predicate for a nice filtration and

two ordinals such that, for 𝜂 < 𝜁 ≤ 𝜆+ 1, if we interpret 𝜂̇ = 𝜂 and 𝜁 = 𝜁, then

∙ (⟨𝐻𝜆,∈, 𝑀⃗⟩ |= 𝜓0(𝜂)) ⇔ (⟨𝐻𝜆,∈, 𝑀⃗⟩ |= LCC(𝜂)), and

∙ (⟨𝐻𝜆,∈, 𝑀⃗⟩ |= 𝜓1(𝜂, 𝜁)) ⇔ (⟨𝐻𝜆,∈, 𝑀⃗⟩ |= LCC(𝜂, 𝜁)).

Fact 2.12 (Holy-Welch-Wu, [HWW15, pp. 1362 and S4]). Assume GCH. For every
regular cardinal 𝜅, there is a (set-size) notion of forcing P which is (<𝜅)-directed-
closed and has the 𝜅+−𝑐𝑐 such that, in 𝑉 P, the two holds:

(1) there is 𝑀⃗ such that ⟨𝐻𝜅+ ,∈, 𝑀⃗⟩ |= LCC(𝜅, 𝜅+], and
(2) there is a ∆1-formula Θ and a parameter 𝑎 ⊆ 𝜅 such that the order defined

by 𝑥 <Θ 𝑦 ↔ 𝐻𝜅+ |= Θ(𝑥, 𝑦, 𝑎) is a global well-order of 𝐻𝜅+ .

By reading [SZ04, Theorem 0.1] and the proof of [FH11, Theorem 8], one arrives
at the following conclusion.

Lemma 2.13. Suppose 𝐿[𝐸] is an iterable extender model with Jensen 𝜆-indexing.
Then the following are equivalent:

(1) ⟨𝐿[𝐸],∈, ⟨𝐿𝛽 [𝐸] | 𝛽 ∈ OR⟩⟩ |= LCC(ℵ0);
(2) ⟨𝐿[𝐸],∈⟩ |= there exist no subcompact cardinals. �

Lemma 2.14. Suppose 𝑀⃗ is such that ⟨𝐻𝜅+ ,∈, 𝑀⃗⟩ |= LCC(𝜅, 𝜅+]. Then:

(1) for every cardinal 𝜇 < 𝜅+, 𝐻𝜇 = 𝑀𝜇;
(2) for every ordinal 𝛿 ≤ 𝜅+, |𝑀𝛿| = |𝛿|;
(3) there are club many 𝛿 < 𝜅+ such that ⟨𝑀𝛿,∈, 𝑀⃗ � 𝛿⟩ ≺ ⟨𝑀𝜅+ ,∈, 𝑀⃗⟩.

Proof. This follows from the arguments of [HWW15, Theorem 3.1]. For the reader’s
convenience, we include a proof of Clauses (1) and (3).

(1) It suffices to prove it for 𝜇 successor, say 𝜇 = 𝜃+.

I 𝑀𝜇 ⊆ 𝐻𝜇: Let B⃗ witness LCC(𝜅, 𝜅+] at 𝜅+ with respect to ℱ := ∅.
For each 𝛼 < 𝜇, let 𝛽(𝛼) < 𝜅+ be such that clps(B𝛼) = ⟨𝑀𝛽(𝛼),∈, . . .⟩.
By Clauses (2)(a) and (3)(c) of Definition 2.10, we have 𝑀𝛽(𝛼)∩OR =
𝛽(𝛼) and |𝑀𝛽(𝛼)| = |𝐵𝛼| = |𝛼| < 𝜇, so that 𝛽(𝛼) < 𝜇. It thus follows
that 𝑌 := {𝛽(𝛼) | 𝛼 < 𝜇} is cofinal in 𝜇 and, as each 𝑀𝛽 is transitive,

𝑀𝜇 =
⋃︁
𝛽<𝜇

𝑀𝛽 =
⋃︁
𝛽∈𝑌

𝑀𝛽 ⊆ 𝐻𝜇.

I 𝐻𝜇 ⊆𝑀𝜇: Let 𝑥 ∈ 𝐻𝜇 be arbitrary. Fix a surjection 𝑓 : 𝜃 → trcl({𝑥}).

Let B⃗ witness LCC(𝜅, 𝜅+] at 𝜅+ with respect to ℱ := ⟨(𝑓, 2)⟩. For
notational simplicity, we write ℱ0 for 𝑓 . Let 𝛽 < 𝜅+ be such that

3Note that the case 𝛼 = 𝜆 uses Convention 2.9.
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clps(B𝜃+1) = ⟨𝑀𝛽 ,∈, . . .⟩. By Definition 2.10(3)(c), 𝜃 + 1 ⊆ 𝐵𝜃+1, so
that, altogether, 𝜃 < 𝛽 < 𝜇. Now, as

B𝜃+1 ≺ ⟨𝐻𝜅+ ,∈, 𝑀⃗ ,ℱ0⟩ |= ∃𝑦(∀𝛾∀𝛿(ℱ0(𝛾, 𝛿) ↔ (𝛾, 𝛿) ∈ 𝑦)),

we have 𝑓 ∈ 𝐵𝜃+1. Since dom(𝑓) ⊆ 𝐵𝜃+1, rng(𝑓) ⊆ 𝐵𝜃+1. But
rng(𝑓) = trcl({𝑥}) is a transitive set, so that the Mostowski collapsing
map 𝜋 : 𝐵𝜃+1 → 𝑀𝛽 is the identity over trcl({𝑥}), meaning that
𝑥 ∈ trcl({𝑥}) ⊆𝑀𝛽 ⊆𝑀𝜇.

(3) Let ℬ⃗ witness LCC(𝜅, 𝜅+] at 𝜅+ with respect to ℱ := ∅. By continuity of
the sequences ⟨𝐵𝛿 | 𝛿 < 𝜅+⟩ and ⟨𝑀𝛿 | 𝛿 < 𝜅+⟩, the set 𝐷 := {𝛿 < 𝜅+ |
𝐵𝛿 = 𝑀𝛿} is closed. We shall prove that 𝐷 is unbounded, and then the
conclusion will follow from Clause (3)(b) of Definition 2.10. Let 𝜀 < 𝜅+

be arbitrary, and we shall find 𝛿 ∈ 𝐷 above 𝜀. As
⋃︀

𝛽<𝜅+ 𝐵𝛽 = 𝑀𝜅+ =⋃︀
𝛽<𝜅+ 𝑀𝛽 with |𝐵𝛽 | = |𝛽| = |𝑀𝛽 | for all 𝛽 < 𝜅+, and as |𝑀𝜅+ | = 𝜅+, we

can recursively construct two sequences of ordinals ⟨𝛾𝑛 | 𝑛 < 𝜔⟩ and ⟨𝛿𝑛 |
𝑛 < 𝜔⟩ such that, for all 𝑛 < 𝜔:

∙ 𝜀 < 𝛾𝑛 < 𝛿𝑛 < 𝛾𝑛+1 < 𝜅+, and
∙ 𝑀𝛾𝑛

⊆ 𝐵𝛿𝑛 ⊆𝑀𝛾𝑛+1
,

so that the two sequences of ordinals converge to the same ordinal, say 𝛿,
and, by continuity,

𝑀𝛿 =
⋃︁
𝑛<𝜔

𝑀𝛾𝑛
=

⋃︁
𝑛<𝜔

𝐵𝛿𝑛 = 𝐵𝛿.

Altogether, 𝛿 ∈ 𝐷 ∖ (𝜀+ 1). �

Theorem 2.15. Suppose that 𝜅 is a regular uncountable cardinal, and 𝑀⃗ is such

that ⟨𝐻𝜅+ ,∈, 𝑀⃗⟩ |= LCC(𝜅, 𝜅+]. Suppose further that there is a subset 𝑎 ⊆ 𝜅
and a formula Θ ∈ Σ𝜔 which defines a well-order <Θ in 𝐻𝜅+ via 𝑥 <Θ 𝑦 iff
𝐻𝜅+ |= Θ(𝑥, 𝑦, 𝑎). Then, for every stationary 𝑆 ⊆ 𝜅, Dl*𝑆(Π1

2) holds.

Proof. Let 𝑆′ ⊆ 𝜅 be stationary. We shall prove that Dl*𝑆′(Π1
2) holds by adjusting

Devlin’s proof of Fact 2.1.
As a first step, we identify a subset 𝑆 of 𝑆′ of interest.

Claim 2.15.1. There exists a stationary non-ineffable subset 𝑆 ⊆ 𝑆′ ∖𝜔 such that,
for every 𝛼 ∈ 𝑆′ ∖ 𝑆, |𝐻𝛼+ | < 𝜅.

Proof. If 𝑆′ is non-ineffable, then let 𝑆 := 𝑆′∖𝜔, so that 𝐻𝛼+ = 𝐻𝜔 for all 𝛼 ∈ 𝑆′∖𝑆.
From now on, suppose that 𝑆′ is ineffable. In particular, 𝜅 is strongly inaccessible
and |𝐻𝛼+ | < 𝜅 for every 𝛼 < 𝜅. Let 𝑆 := 𝑆′ ∖ (𝜔 ∪ 𝑇 ), where

𝑇 := {𝛼 < 𝜅 ∩ cof(>𝜔) | 𝑆′ ∩ 𝛼 is stationary in 𝛼}.
To see that 𝑆 is stationary, let 𝐸 be an arbitrary club in 𝜅.
I If 𝑆′∩cof(𝜔) is stationary, then since 𝑆′∩cof(𝜔) ⊆ 𝑆, we infer that 𝑆∩𝐸 ̸= ∅.
I If 𝑆′∩cof(𝜔) is non-stationary, then fix a club 𝐶 ⊆ 𝐸 disjoint from 𝑆′∩cof(𝜔),

and let 𝛼 := min(acc(𝐶) ∩ 𝑆′). Then cf(𝛼) > 𝜔 and 𝐶 ∩ 𝛼 is a club in 𝛼 disjoint
from 𝑆′, so that 𝛼 /∈ 𝑇 . Altogether, 𝛼 ∈ 𝑆 ∩ 𝐸.

To see that 𝑆 is non-ineffable, we define a sequence ⟨𝑍𝛼 | 𝛼 ∈ 𝑆⟩, as follows. For
every 𝛼 ∈ 𝑆, fix a closed and cofinal subset 𝑍𝛼 of 𝛼 with otp(𝑍𝛼) = cf(𝛼) such that,
if cf(𝛼) > 𝜔, then the club 𝑍𝛼 is disjoint from 𝑆′ ∩ 𝛼. Towards a contradiction,
suppose that 𝑍 ⊆ 𝜅 is a set for which {𝛼 ∈ 𝑆 | 𝑍 ∩ 𝛼 = 𝑍𝛼} is stationary. Clearly,
𝑍 is closed and cofinal in 𝜅, so that 𝑍 ∩𝑆′ is stationary, otp(𝑍 ∩𝑆′) = 𝜅 and hence
𝐸 := {𝛼 < 𝜅 | otp(𝑍 ∩ 𝑆′ ∩ 𝛼) = 𝛼 > 𝜔} is a club. Pick 𝛼 ∈ 𝐸 ∩ 𝑆 such that
𝑍 ∩ 𝛼 = 𝑍𝛼. As

cf(𝛼) = otp(𝑍𝛼) = otp(𝑍 ∩ 𝛼) ≥ otp(𝑍 ∩ 𝑆′ ∩ 𝛼) = 𝛼 > 𝜔,
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it must be the case that 𝑍𝛼 is a club disjoint from 𝑆′ ∩ 𝛼, while 𝑍𝛼 = 𝑍 ∩ 𝛼 and
𝑍 ∩ 𝑆′ ∩ 𝛼 ̸= ∅. This is a contradiction. �

Let 𝑆 be given by the preceding claim. We shall focus on constructing a sequence
⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ witnessing Dl*𝑆(Π1

2) such that, in addition, |𝑁𝛼| = |𝛼| for every 𝛼 ∈ 𝑆.
It will then immediately follow that the sequence ⟨𝑁 ′

𝛼 | 𝛼 ∈ 𝑆′⟩ defined by letting
𝑁 ′

𝛼 := 𝑁𝛼 for 𝛼 ∈ 𝑆, and 𝑁 ′
𝛼 := 𝐻𝛼+ for 𝛼 ∈ 𝑆′ ∖ 𝑆 will witness the validity of

Dl*𝑆′(Π1
2).

Here we go. As 𝑆 is non-ineffable, fix a sequence 𝑍⃗ = ⟨𝑍𝛼 | 𝛼 ∈ 𝑆⟩ with 𝑍𝛼 ⊆ 𝛼
for all 𝛼 ∈ 𝑆, such that, for every 𝑍 ⊆ 𝜅, {𝛼 ∈ 𝑆 | 𝑍 ∩ 𝛼 = 𝑍𝛼} is nonstationary.

As we have a sequence 𝑀⃗ = ⟨𝑀𝛽 | 𝛽 < 𝜅+⟩ such that ⟨𝐻𝜅+ ,∈, 𝑀⃗⟩ |= LCC(𝜅, 𝜅+],
for each 𝛼 ∈ 𝑆, we may define 𝑆𝛼 to be the set of all 𝛽 ∈ 𝛼+ satisfying the following
list of conditions:

i) ⟨𝑀𝛽 ,∈, 𝑀⃗ � 𝛽⟩ |= LCC(𝛼),

ii) ⟨𝑀𝛽 ,∈⟩ |= ZF− & 𝛼 is the largest cardinal,
iii) ⟨𝑀𝛽 ,∈⟩ |= 𝑟(𝛼) & 𝑆 ∩ 𝛼 is stationary,
iv) ⟨𝑀𝛽 ,∈⟩ |= Θ(𝑥, 𝑦, 𝑎 ∩ 𝛼) defines a global well-order,

v) 𝑍⃗ � (𝛼+ 1) /∈𝑀𝛽 .

Then, consider the set

𝐷 := {𝛼 ∈ 𝑆 | 𝑆𝛼 ̸= ∅ & 𝑆𝛼 has no largest element}.
Define a function 𝑓 : 𝑆 → 𝜅 as follow. For every 𝛼 ∈ 𝐷, let 𝑓(𝛼) := sup(𝑆𝛼); for

every 𝛼 ∈ 𝑆∖𝐷, let 𝑓(𝛼) be the least 𝛾 < 𝜅 such that𝑀𝛾 sees 𝛼, and 𝑍⃗�(𝛼+1) ∈𝑀𝛾 .

Claim 2.15.2. 𝑓 is well-defined. Furthermore, for all 𝛼 ∈ 𝑆, 𝛼 < 𝑓(𝛼) < 𝛼+.

Proof. Let 𝛼 ∈ 𝑆 be arbitrary.
I Suppose 𝛼 ∈ 𝐷. By Lemma 2.14(1),

⋃︀
𝛽<𝛼+ 𝑀𝛽 = 𝑀𝛼+ = 𝐻𝛼+ , thus there

exists 𝛽 < 𝛼+ such that 𝑍⃗ � (𝛼+ 1) ∈𝑀𝛽 and hence condition (v) in the definition
of 𝑆𝛼 implies that 𝑓(𝛼) ≤ 𝛽 < 𝛼+.
I Suppose 𝛼 /∈ 𝐷. We need to find some 𝛾 < 𝛼+ such that 𝑀𝛾 sees 𝛼, and

𝑍⃗ � (𝛼 + 1) ∈ 𝑀𝛾 . Let B⃗ witness LCC(𝜅, 𝜅+] at 𝜅+ with respect to ℱ := ∅. As in

the previous case, we can find an infinite 𝛽 < 𝛼+ such that 𝑍⃗ � (𝛼+ 1) ∈𝑀𝛽 . Now,
let 𝛾 < 𝜅+ be such that clps(B𝛽+1) = ⟨𝑀𝛾 ,∈, . . .⟩. By Clauses (2)(a) and (3)(c) of
Definition 2.10, 𝑀𝛾 ∩ OR = 𝛾 and |𝑀𝛾 | = |𝐵𝛽+1| = |𝛽 + 1| < 𝛼+, so that 𝛾 < 𝛼+.
Also, by Clause (3)(c) of Definition 2.10, 𝛽 + 1 ⊆ 𝐵𝛽+1, so that 𝛽 + 1 ⊆ 𝑀𝛾 and

𝑍⃗ � (𝛼 + 1) ∈ 𝑀𝛽 ⊆ 𝑀𝛾 . Finally, as ⟨𝐵𝛽+1,∈⟩ ≺ ⟨𝑀𝜅+ ,∈⟩ and the latter is a

model of ZF−, the Mostowski collapse of the former is p.r.-closed. Recalling that
𝛼+ 1 < 𝛽 < 𝛾, we altogether infer that 𝑀𝛾 sees 𝛼. �

Define 𝑁⃗ = ⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ by letting 𝑁𝛼 := 𝑀𝑓(𝛼) for all 𝛼 ∈ 𝑆. It follows from
the preceding Claim together with Lemma 2.14(2) that |𝑁𝛼| = |𝛼| for all 𝛼 ∈ 𝑆.

In the course of the rest of the proof, we shall occasionally take witnesses to
LCC(𝜅, 𝜅+] with respect to a finite sequence ℱ = ⟨(𝐹𝑛, 𝑘𝑛) | 𝑛 ∈ 4⟩; for this, we
introduce the following piece of notation:

ℱ𝑋 := ⟨(𝑋, 1), (𝑎, 1), (𝑆, 1), (𝑍⃗, 2)⟩.
Claim 2.15.3. Let 𝑋 ⊆ 𝜅. Then there exists a club 𝐶 ⊆ 𝜅 such that, for all
𝛼 ∈ 𝐶 ∩ 𝑆, 𝑋 ∩ 𝛼 ∈ 𝑁𝛼.

Proof. Let ℬ⃗ = ⟨ℬ𝛼 | 𝛼 < 𝜅+⟩ witness LCC(𝜅, 𝜅+] at 𝜅+ with respect to ℱ𝑋 .
For each 𝛼 < 𝜅, let 𝛽(𝛼) be such that clps(B𝛼) = ⟨𝑀𝛽(𝛼),∈, . . .⟩, and let 𝑗𝛼 :

𝑀𝛽(𝛼) → 𝐵𝛼 denote the inverse of the collapsing map. Let

𝐶 := {𝛼 < 𝜅 | 𝐵𝛼 ∩ 𝜅 = 𝛼}.
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Subclaim 2.15.3.1. 𝐶 is a club.

Proof. To see that 𝐶 is closed in 𝜅, fix an arbitrary 𝛼 < 𝜅 with sup(𝐶∩𝛼) = 𝛼 > 0.
As ⟨𝐵𝛽 | 𝛽 < 𝜅+⟩ is ⊆-increasing and continuous, we have

𝛼 =
⋃︁

𝛽∈(𝐶∩𝛼)

𝛽 =
⋃︁

𝛽∈(𝐶∩𝛼)

(𝐵𝛽 ∩ 𝜅) =
⋃︁
𝛽<𝛼

(𝐵𝛽 ∩ 𝜅) = 𝐵𝛼 ∩ 𝜅.

To see that 𝐶 is unbounded in 𝜅, fix an arbitrary 𝜀 < 𝜅, and we shall find 𝛼 ∈ 𝐶
above 𝜀. Recall that, by Clause (3)(c) of Definition 2.10, for each 𝛽 < 𝜅, 𝛽 ⊆ 𝐵𝛽

and |𝐵𝛽 | = |𝛽| < 𝜅. It follow that we may recursively construct an increasing
sequence of ordinals ⟨𝛼𝑛 | 𝑛 < 𝜔⟩ such that:

∙ 𝛼0 := sup(𝐵𝜀 ∩ 𝜅), and, for all 𝑛 < 𝜔:
∙ sup(𝐵𝛼𝑛

∩ 𝜅) < 𝛼𝑛+1 < 𝜅.

In particular, sup(𝐵𝛼𝑛
∩𝜅) ∈ 𝛼𝑛+1 for all 𝑛 < 𝜔. Consequently, for 𝛼 := sup𝑛<𝜔 𝛼𝑛,

we have that 𝛼 < 𝜅, and

𝐵𝛼 ∩ 𝜅 =
⋃︁
𝑛<𝜔

(𝐵𝛼𝑛 ∩ 𝜅) ≤
⋃︁
𝑛<𝜔

𝛼𝑛+1 ≤
⋃︁
𝑛<𝜔

(𝐵𝛼𝑛+2 ∩ 𝜅) = 𝛼,

so that 𝛼 ∈ 𝐶 ∖ (𝜀+ 1). �

To see that the club 𝐶 is as sought, let 𝛼 ∈ 𝐶 ∩ 𝑆 be arbitrary, and we shall
verify that 𝑋 ∩ 𝛼 ∈ 𝑁𝛼.

Since ℬ⃗ witnesses LCC(𝜅, 𝜅+] at 𝜅+ with respect to ℱ𝑋 , for each 𝑌 in {𝑋, 𝑎, 𝑆},
we have that

⟨𝐵𝛼,∈, 𝑌 ∩𝐵𝛼⟩ ≺ ⟨𝑀𝜅+ ,∈, 𝑌 ⟩ |= ∃𝑦((𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝜅 ∧ 𝑌 (𝑧))),

therefore each of 𝑋, 𝑎, 𝑆 is a definable element of 𝐵𝛼. So, as, for all 𝑌 ∈ 𝐵𝛼∩𝒫(𝜅),
𝑗−1
𝛼 (𝑌 ) = 𝑌 ∩ 𝛼, we infer that 𝑋 ∩ 𝛼, 𝑎 ∩ 𝛼, and 𝑆 ∩ 𝛼 are all in 𝑀𝛽(𝛼). We will

show that 𝛽(𝛼) < 𝑓(𝛼), from which it will follow that 𝑋 ∩ 𝛼 ∈ 𝑁𝛼.

Subclaim 2.15.3.2. 𝛽(𝛼) < 𝑓(𝛼)

Proof. The analysis splits into two cases: 𝛼 ∈ 𝐷 and 𝛼 /∈ 𝐷.

I Suppose 𝛼 ∈ 𝐷. As B𝛼 ≺ ⟨𝑀𝜅+ ,∈, 𝑀⃗ ,ℱ𝑋⟩ and rng(𝑗𝛼) = 𝐵𝛼, we infer that

𝑗𝛼 forms an elementary embedding from ⟨𝑀𝛽(𝛼),∈, . . .⟩ to ⟨𝑀𝜅+ ,∈, 𝑀⃗ ,ℱ𝑋⟩ with
𝑗𝛼(𝛼) = 𝜅. As we have

I) ⟨𝑀𝜅+ ,∈, 𝑀⃗ � 𝜅⟩ |= LCC(𝜅),
II) ⟨𝑀𝜅+ ,∈⟩ |= ZF− & 𝜅 is the largest cardinal,

III) ⟨𝑀𝜅+ ,∈⟩ |= 𝑟(𝜅) & 𝑆 ∩ 𝜅 is stationary,
IV) ⟨𝑀𝜅+ ,∈⟩ |= Θ(𝑥, 𝑦, 𝑎 ∩ 𝜅) defines a global well-order.

it follows that 𝛽(𝛼) satisfies clauses (i),(ii),(iii) and (iv) of the definition of 𝑆𝛼.

It remains to show that 𝑍⃗ � (𝛼 + 1) /∈ 𝑀𝛽(𝛼), and it will follow that 𝛽(𝛼) ∈ 𝑆𝛼.

Towards a contradiction, suppose that 𝑍⃗ � (𝛼+ 1) ∈𝑀𝛽(𝛼). We have

⟨𝑀𝜅+ ,∈⟩ |= ∀𝑍 ⊆ 𝜅 ∃𝐸 club in 𝜅 (∀𝛾 ∈ 𝐸 ∩ 𝑆 → 𝑍 ∩ 𝛾 ̸= 𝑍𝛾),

and hence

⟨𝑀𝛽(𝛼),∈⟩ |= ∀𝑍 ⊆ 𝛼 ∃𝐸 club in 𝛼 (∀𝛾 ∈ 𝐸 ∩ 𝑆 → 𝑍 ∩ 𝛾 ̸= 𝑍𝛾).

In particular, using 𝑍 := 𝑍𝛼, we find some 𝐸 such that

⟨𝑀𝛽(𝛼),∈⟩ |= 𝐸 is a club in 𝛼 (∀𝛾 ∈ 𝐸 ∩ 𝑆 → 𝑍𝛼 ∩ 𝛾 ̸= 𝑍𝛾).

Let 𝐸* := 𝑗𝛼(𝐸) and 𝑍* := 𝑗𝛼(𝑍𝛼), so that

⟨𝑀𝜅+ ,∈⟩ |= 𝐸* is a club in 𝜅 (∀𝛾 ∈ 𝐸* ∩ 𝑆 → 𝑍* ∩ 𝛾 ̸= 𝑍𝛾).
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Then 𝑍*∩𝛼 = 𝑗𝛼(𝑍𝛼)∩𝛼 = 𝑍𝛼, and hence 𝛼 /∈ 𝐸* (recall that 𝛼 ∈ 𝑆). Likewise
𝐸* ∩ 𝛼 = 𝑗𝛼(𝐸) ∩ 𝛼 = 𝐸, and hence 𝛼 ∈ acc(𝐸*) ⊆ 𝐸*. This is a contradiction.
I If 𝛼 /∈ 𝐷, then the above argument shows that for every ordinal 𝛾 < 𝜅 with

𝑍⃗ � (𝛼+ 1) ∈𝑀𝛾 , we have 𝛾 > 𝛽(𝛼), so that 𝛽(𝛼) < 𝑓(𝛼). �

This completes the proof of Claim 2.15.3. �

We are left with addressing Clause (3) of Definition 2.6.

Claim 2.15.4. The sequence ⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ reflects Π1
2-sentences.

Proof. We need to show that whenever ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ |= 𝜑, with 𝜑 = ∀𝑋∃𝑌 𝜙 a
Π1

2-sentence, for every club 𝐸 ⊆ 𝜅, there is 𝛼 ∈ 𝐸 ∩ 𝑆, such that

⟨𝛼,∈, (𝐴𝑛 ∩ (𝛼𝑚(A𝑛)))𝑛∈𝜔⟩ |=𝑁𝛼
𝜑.

But by adding 𝐸 to the list (𝐴𝑛)𝑛∈𝜔 of predicates, and by slightly extending the
first-order formula 𝜙 to also assert that 𝐸 is unbounded, we would get that any
ordinal 𝛼 satisfying the above equation will also satisfy that 𝛼 is an accumulation
point of the closed set 𝐸, so that 𝛼 ∈ 𝐸. It follows that if any Π1

2-sentence valid
in a structure of the form ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ reflects to some ordinal 𝛼′ ∈ 𝑆, then any
Π1

2-sentence valid in a structure of the form ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ reflects stationarily
often in 𝑆.

Thus, let 𝐴⃗ = (𝐴𝑛)𝑛∈𝜔, be a sequence of finitary predicates on 𝜅, and let 𝜙 be

a first-order sentence in the language of ⟨𝜅,∈, 𝐴⃗,𝑋, 𝑌 ⟩, where 𝑋 ⊆ 𝜅𝑝, 𝑌 ⊂ 𝜅𝑞 for

some integers 𝑝, 𝑞, such that ⟨𝜅,∈, 𝐴⃗⟩ |= ∀𝑋∃𝑌 𝜙. Note that by Convention 2.4 and
since 𝑀𝜅+ = 𝐻𝜅+ , this means that

⟨𝜅,∈, 𝐴⃗⟩ |=𝑀𝜅+ ∀𝑋∃𝑌 𝜙.

Let 𝛾 be the least ordinal such that 𝑍⃗, 𝐴⃗, 𝑆 ∈ 𝑀𝛾 . Note that 𝜅 < 𝛾 < 𝜅+.

Let ℒ be the first-order language of Set Theory augmented by a predicate
˙⃗
𝑀 and

constants 𝛾̇, 𝑎̇,
˙⃗
𝑍, 𝜅̇, 𝑆̇, 𝐴̇𝑛 for 𝑛 ∈ 𝜔, and let 𝑇 be the theory consisting of the

following axioms:

A) LCC(𝜅̇),
B) ZF− & 𝜅̇ is the largest cardinal,

C) 𝑟(𝜅̇) & 𝑆̇ is stationary in 𝜅̇,
D) Θ(𝑥, 𝑦, 𝑎̇) defines a global well-order,

E) ⟨𝜅̇,∈, (𝐴̇𝑛)𝑛∈𝜔⟩ |= ∀𝑋∃𝑌 𝜙,

F)
˙⃗
𝑍 witness that 𝑆̇ is not ineffable,

G) 𝛾̇ is the least such that {𝑍⃗, (𝐴̇𝑛)𝑛∈𝜔, 𝑆̇} ∈ ˙⃗
𝑀(𝛾̇).

Let ∆ denote the set of all 𝛿 ≤ 𝜅+ such that 𝛿 > 𝛾 and ⟨𝑀𝛿,∈, 𝑀⃗ �𝛿⟩ |= 𝑇 where

𝛾̇, 𝑎̇,
˙⃗
𝑍, 𝜅̇, 𝑆̇, 𝐴̇𝑛 for 𝑛 ∈ 𝜔 are interpreted as 𝛾, 𝑎, 𝑍⃗, 𝜅, 𝑆,𝐴𝑛 for 𝑛 ∈ 𝜔, and

˙⃗
𝑀 as

𝑀⃗ � 𝛿. In other words, ∆ denotes the set of all 𝛿 ≤ 𝜅+ such that:

a) ⟨𝑀𝛿,∈, 𝑀⃗ � 𝛿⟩ |= LCC(𝜅),4

b) ⟨𝑀𝛿,∈⟩ |= ZF− & 𝜅 is the largest cardinal,
c) ⟨𝑀𝛿,∈⟩ |= 𝑟(𝜅) & 𝑆 is stationary in 𝜅,
d) ⟨𝑀𝛿,∈⟩ |= Θ(𝑥, 𝑦, 𝑎) defines a global well-order,
e) ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ |=𝑀𝛿

∀𝑋∃𝑌 𝜙,

f) ⟨𝑀𝛿,∈⟩ |= 𝑍⃗ witness that 𝑆 is not ineffable, and
g) 𝛿 > 𝛾.

4In particular, 𝛿 > 𝜅.
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By the fact that 𝛿 := 𝜅+ satisfies Clauses (a)–(g) above, it follows from Lemma 2.14(3)
that otp(∆ ∩ 𝜅+) = 𝜅+, so we may let {𝛿𝑛 | 𝑛 < 𝜔} denote the increasing enumer-
ation of the first 𝜔 many elements of ∆.

Let 𝑛 < 𝜔. As ⟨𝑀𝛿𝑛+1 ,∈⟩ |= |𝛿𝑛| = 𝜅, we may fix in 𝑀𝛿𝑛+1 a sequence B⃗𝑛 =
⟨ℬ𝑛,𝛼 | 𝛼 < 𝜅⟩ witnessing LCC(𝜅, 𝜅+] at 𝛿𝑛 with respect to ℱ∅ such that, moreover,

⟨𝑀𝛿𝑛+1 ,∈, 𝑀⃗ � 𝛿𝑛+1⟩ |= “B⃗𝑛 is the <Θ-least such witness”.

For every 𝑛 < 𝜔, let 𝐶𝑛 := {𝛼 < 𝜅 | 𝐵𝑛,𝛼 ∩ 𝜅 = 𝛼}. Then, let

𝛼′ := min((
⋂︁
𝑛∈𝜔

𝐶𝑛) ∩ 𝑆).

For every 𝑛 < 𝜔, let 𝛽𝑛 be such that clps(B𝑛,𝛼′) = ⟨𝑀𝛽𝑛
,∈, . . .⟩.

Since for each formula 𝜙 ∈ 𝑇 and every ordinal 𝛿 < 𝜅+, we have that

“⟨𝑀𝛿,∈, 𝑀⃗ � 𝛿⟩ |= 𝜙”

is a ∆ZF−

1 formula on the parameters 𝛿, 𝑀⃗ , 𝛾, 𝑎, 𝑍⃗, 𝜅, 𝑆, (𝐴𝑛)𝑛∈𝜔, 𝜙,5 it follows that

“∀𝜙(𝜙 ∈ 𝑇 → ⟨𝑀𝛿,∈, 𝑀⃗ � 𝛿⟩ |= 𝜙)”(1)

is a ∆ZF−

1 formula in the same parameters plus 𝑇 . Assuming the formulae were
arithmetized in a sufficiently simple way that 𝑇 ⊆ 𝑉𝜔, it follows that 𝑇 ∈ 𝐻𝜔1 =
𝑀𝜔1 , so that 𝑇 ∈𝑀𝛿𝑛 for every 𝑛 < 𝜔.

As 𝑀𝛿𝑛+1
is transitive and as the formula of Equation (1) is ∆ZF−

1 , it follows
that, for all 𝛿 ∈𝑀𝛿𝑛+1 ∩ OR,

(⟨𝑀𝛿,∈, 𝑀⃗ � 𝛿⟩ |=⟨𝑀𝛿𝑛+1
,∈,𝑀⃗�𝛿𝑛+1⟩ 𝑇 ),with

˙⃗
𝑀 interpreted as 𝑀⃗ � 𝛿

iff

(⟨𝑀𝛿,∈, 𝑀⃗ � 𝛿⟩ |= 𝑇 ),with
˙⃗
𝑀 interpreted as 𝑀⃗ � 𝛿.

Thus 𝑀𝛿𝑛+1
believes that there are exactly 𝑛 ordinals 𝛿 such that Clauses (a)–(g)

hold for 𝑀𝛿, i.e.

⟨𝑀𝛿𝑛+1
,∈, 𝑀⃗�𝛿𝑛+1⟩ |= “|{𝛿 | ⟨𝑀𝛿,∈, 𝑀⃗�𝛿⟩ |= 𝑇 with

˙⃗
𝑀 interpreted as 𝑀⃗�𝛿}| = 𝑛”,

while 𝑀𝛿𝑛 believes that there are exactly 𝑛− 1 such ordinals.
Our next task is to show that the above discussion about 𝑀𝛿𝑛+1

and 𝑀𝛿𝑛 works
also for 𝑀𝛽𝑛+1

and 𝑀𝛽𝑛
. For this, let 𝑗𝑛 : 𝑀𝛽𝑛

→ 𝐵𝑛,𝛼′ denote the inverse of the
Mostowski collapse.

Subclaim 2.15.4.1. Let 𝑛 ∈ 𝜔. Then 𝑗−1
𝑛 (𝛾) = 𝑗−1

0 (𝛾).

Proof. Since 𝑗−1
𝑛 (𝑍⃗) = 𝑍⃗ �𝛼′, 𝑗−1

𝑛 (𝐴⃗) = 𝐴⃗ �𝛼′ and 𝑗−1
𝑛 (𝑆) = 𝑆 ∩𝛼′, it follows from

⟨𝑀𝛿𝑛 ,∈, 𝑀⃗ � 𝛿𝑛⟩ |= 𝛾 is the least ordinal with {𝑍⃗, 𝐴⃗, 𝑆} ⊆𝑀𝛾 ,

that

⟨𝑀𝛽𝑛
,∈, 𝑀⃗ � 𝛽𝑛⟩ |= 𝑗−1

𝑛 (𝛾) is the least ordinal with {𝑍⃗ � 𝛼′, 𝐴⃗ � 𝛼′, 𝑆 ∩ 𝛼′} ⊆𝑀𝛾 .

Now, let 𝛾 be such that

⟨𝑀𝛽0
,∈, 𝑀⃗ � 𝛽0⟩ |= 𝛾 is the least ordinal such that {𝑍⃗ � 𝛼′, 𝐴⃗ � 𝛼′, 𝑆 ∩ 𝛼′} ⊆𝑀𝛾 .

Since 𝑀⃗ is continuous, it follows that 𝛾 is a successor ordinal, that is, 𝛾 = sup(𝛾)+1.

So ⟨𝑀𝛽0
,∈, 𝑀⃗ � 𝛽0⟩ satisfies the conjunction of the two:

∙ {𝑍⃗ � 𝛼′, 𝐴⃗ � 𝛼′, 𝑆 ∩ 𝛼′} ⊆𝑀𝛾 , and

∙ {𝑍⃗ � 𝛼′, 𝐴⃗ � 𝛼′, 𝑆 ∩ 𝛼′} ̸⊆𝑀sup(𝛾).

5See [Dra74, Chapter 3, S5].
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But the two are ∆0-formulas on the parameters 𝑍⃗ �𝛼′, 𝐴⃗�𝛼′, 𝑆∩𝛼′,𝑀𝛾 and 𝑀sup(𝛾),
which are all elements of 𝑀𝛽0

. Therefore,

⟨𝑀𝛽𝑛
,∈, 𝑀⃗ � 𝛽𝑛⟩ |= 𝛾 is the least ordinal such that {𝑍⃗ � 𝛼′, 𝐴⃗ � 𝛼′, 𝑆 ∩ 𝛼′} ⊆𝑀𝛾 ,

so that 𝑗−1
𝑛 (𝛾) = 𝛾 = 𝑗−1

0 (𝛾). �

Denote 𝛾 := 𝑗−1
0 (𝛾). Hence if we interpret 𝜅̇, 𝛾̇,

˙⃗
𝑍, 𝑆̇, 𝐴𝑘 for 𝑘 ∈ 𝜔 as 𝛼′, 𝛾, 𝑍⃗ �

𝛼′, 𝑆∩𝛼′, 𝐴𝑘 �𝛼′ for 𝑘 ∈ 𝜔, respectively, then 𝑀𝛽𝑛+1
believes that there are exactly

𝑛 ordinals 𝛽 such that ⟨𝑀𝛽 ,∈, 𝑀⃗ �𝛽⟩ |= 𝑇 with
˙⃗
𝑀 interpreted as 𝑀⃗ �𝛽, while 𝑀𝛽𝑛

believes that there are exactly 𝑛− 1 such ordinals.

Thus, as the sequence 𝑀⃗ is ⊆-increasing, it follows that for all 𝑘 < 𝑛 < 𝜔,
𝛽𝑘 < 𝛽𝑛 and 𝑗𝑛(𝑀𝛽𝑘

) = 𝑀𝛿𝑘 .

Subclaim 2.15.4.2. 𝛽′ := sup𝑛∈𝜔 𝛽𝑛 is equal to sup(𝑆𝛼′).

Proof. For each 𝑛 < 𝜔, as clps(B𝑛,𝛼′) = ⟨𝑀𝛽𝑛 ,∈, . . .⟩, the proof of Subclaim 2.15.3.2,
establishing that 𝛽(𝛼) ∈ 𝑆𝛼, makes clear that 𝛽𝑛 ∈ 𝑆𝛼′ .

We now turn to argue that 𝛽′ /∈ 𝑆𝛼′ by showing that ⟨𝑀𝛽′ ,∈⟩ ̸|= ZF−. Note that
{𝛽𝑛 | 𝑛 < 𝜔} is a definable subset of 𝛽′ since it can be defined as the first 𝜔 ordinals
to satisfy Clauses (a)–(g), replacing 𝜅 by 𝛼′. So if ⟨𝑀𝛽′ ,∈⟩ were to model ZF−, we
would get that sup𝑛<𝜔 𝛽𝑛 is in 𝑀𝛽′ , contradicting the fact that 𝑀𝛽′ ∩ OR = 𝛽′.

Next, suppose that 𝛽 > 𝛽′ and 𝛽 ∈ 𝑆𝛼′ . In particular, ⟨𝑀𝛽 ,∈⟩ |= ZF−, and
⟨𝛽𝑛 | 𝑛 < 𝜔⟩ ∈ 𝑀𝛽 , so that ⟨𝑀𝛽𝑛 | 𝑛 ∈ 𝜔⟩ ∈ 𝑀𝛽 . We will reach a contradiction to
Clause (iii) of the definition of 𝑆𝛼′ , asserting, in particular, that 𝑆∩𝛼′ is stationary
in ⟨𝑀𝛽 ,∈⟩.

For each 𝑛 < 𝜔, we have that ⟨𝑀𝛿𝑛+1
,∈, 𝑀⃗ � 𝛿𝑛+1⟩ |= Ψ(𝐶𝑛, 𝛿𝑛, B⃗𝑛, 𝜅), where

Ψ(𝐶𝑛, 𝛿𝑛, B⃗n, 𝜅) is the conjunction of the following two formulas:

∙ 𝐶𝑛 = {𝛼 < 𝜅 | 𝐵𝑛,𝛼 ∩ 𝜅 = 𝛼}, and

∙ B⃗𝑛 is the <Θ-least witness for LCC(𝜅) at 𝛿𝑛 with respect to ℱ∅.

Therefore, for 𝐶𝑛 := 𝑗−1
𝑛+1(𝐶𝑛) and B𝑛 := 𝑗−1

𝑛+1(B⃗𝑛), we have

⟨𝑀𝛽𝑛+1
,∈, 𝑀⃗ � 𝛽𝑛+1⟩ |= Ψ(𝐶𝑛, 𝛽𝑛,B𝑛, 𝛼

′).

In particular, 𝐶𝑛 = 𝑗−1
𝑛+1(𝐶𝑛) = 𝐶𝑛 ∩ 𝛼′. Recalling that 𝛼′ = min((

⋂︀
𝑛∈𝜔 𝐶𝑛) ∩ 𝑆),

we infer that
⋂︀

𝑛<𝜔 𝐶𝑛 is disjoint from 𝑆 ∩ 𝛼′. Thus, to establish that 𝑆 ∩ 𝛼′ is
nonstationary, it suffices to verify the two:

(1) ⟨𝐶𝑛 | 𝑛 < 𝜔⟩ belongs to 𝑀𝛽 ;

(2) for every 𝑛 < 𝜔, ⟨𝑀𝛽 ,∈⟩ |= 𝐶𝑛 is a club in 𝛼′.

As ⟨𝑀𝛽𝑛
| 𝑛 ∈ 𝜔⟩ ∈𝑀𝛽 , we can define ⟨B𝑛 | 𝑛 ∈ 𝜔⟩ using that, for all 𝑛 ∈ 𝜔,

⟨𝑀𝛽𝑛+1
,∈, 𝑀⃗ � 𝛽𝑛+1⟩ |= “B𝑛 is the <Θ-least to witness LCC(𝛼′) at 𝛽𝑛

with respect to ⟨(∅, 1), (𝑎 ∩ 𝛼′, 1), (𝑆 ∩ 𝛼′, 1), (𝑍⃗ � 𝛼′, 2)⟩”.

This takes care of Clause (1), and shows that ⟨𝑀𝛽𝑛+1
,∈⟩ |= 𝐶𝑛 is a club in 𝛼′.

Since 𝑀𝛽 is transitive and the formula expressing that 𝐶𝑛 is a club is ∆0, we have
also taken care of Clause (2). �

It follows that 𝛼′ ∈ 𝐷 and 𝑓(𝛼′) = sup(𝑆𝛼′) = 𝛽′.6 Finally, as, for every 𝑛 < 𝜔,
we have

⟨𝛼′,∈, 𝐴⃗ � 𝛼′⟩ |=𝑀𝛽𝑛
∀𝑋∃𝑌 𝜙,

we infer that 𝑁𝛼′ = 𝑀𝑓(𝛼′) = 𝑀𝛽′ =
⋃︀

𝑛∈𝜔𝑀𝛽𝑛
is such that

⟨𝛼′,∈, 𝐴⃗ � 𝛼′⟩ |=𝑁𝛼′ ∀𝑋∃𝑌 𝜙. �

6Notice that the argument of this claim also showed that 𝐷 is stationary.
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This completes the proof of Theorem 2.15. �

As a corollary we have found a strong combinatorial axiom that holds everywhere
(including at ineffable sets) in canonical models of Set Theory (including Gödel’s
constructible universe).

Corollary 2.16. If 𝐿[𝐸] is an iterable extender model with Jensen 𝜆-indexing
having no subcompact cardinals, then for every regular uncountable cardinal 𝜅 and
every stationary 𝑆 ⊆ 𝜅, Dl*𝑆(Π1

2) holds.

Proof. By Lemma 2.13 and Theorem 2.15. �

3. Universality of inclusion modulo nonstationary

Throughout this section, 𝜅 denotes a regular uncountable cardinal satisfying
𝜅<𝜅 = 𝜅. Here, we will be proving Theorems B and C. Before we can do that, we
shall need to establish a transversal lemma, as well as fix some notation and coding
that will be useful when working with structures of the form ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩.

Proposition 3.1 (Transversal lemma). Suppose that ⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ is a Dl*𝑆(Π1
2)-

sequence, for a given stationary 𝑆 ⊆ 𝜅. For every Π1
2-sentence 𝜑, there exists a

transversal ⟨𝜂𝛼 | 𝛼 ∈ 𝑆⟩ ∈
∏︀

𝛼∈𝑆 𝑁𝛼 satisfying the following.
For every 𝜂 ∈ 𝜅𝜅, whenever ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ |= 𝜑, there are stationarily many

𝛼 ∈ 𝑆 such that

(i) 𝜂𝛼 = 𝜂 � 𝛼, and
(ii) ⟨𝛼,∈, (𝐴𝑛 ∩ (𝛼𝑚(A𝑛)))𝑛∈𝜔⟩ |=𝑁𝛼 𝜑.

Proof. Let 𝑐 : 𝜅 × 𝜅 ↔ 𝜅 be some primitive-recursive pairing function. For each
𝛼 ∈ 𝑆, fix a surjection 𝑓𝛼 : 𝜅 → 𝑁𝛼 such that 𝑓𝛼[𝛼] = 𝑁𝛼 whenever |𝑁𝛼| = |𝛼|.
Then, for all 𝑖 < 𝜅, as 𝑓𝛼(𝑖) ∈ 𝑁𝛼, we may define a set 𝜂𝑖𝛼 in 𝑁𝛼 by letting

𝜂𝑖𝛼 :=

{︃
{(𝛽, 𝛾) ∈ 𝛼× 𝛼 | 𝑐(𝑖, 𝑐(𝛽, 𝛾)) ∈ 𝑓𝛼(𝑖)} if 𝑖 < 𝛼;

∅ otherwise.

We claim that for every Π1
2-sentence 𝜑, there exists 𝑖(𝜑) < 𝜅 for which ⟨𝜂𝑖(𝜑)𝛼 |

𝛼 ∈ 𝑆⟩ satisfies the conclusion of our proposition. Before we prove this, let us make
a few reductions.

First of all, it is clear that for every Π1
2-sentence 𝜑 = ∀𝑋∃𝑌 𝜙, there exists a

large enough 𝑛′ < 𝜔 such that all predicates mentioned in 𝜙 are in {𝜖,X,Y,A𝑛 |
𝑛 < 𝑛′}. So the only structures of interest for 𝜑 are in fact ⟨𝛼,∈, (𝐴𝑛)𝑛<𝑛′⟩, where
𝛼 ≤ 𝜅. Let 𝑚′ := max{𝑚(A𝑛) | 𝑛 < 𝑛′}. Then, by a trivial manipulation of 𝜙, we
may assume that the only structures of interest for 𝜑 are in fact ⟨𝛼,∈, 𝐴0⟩, where
𝑛′ ≤ 𝛼 ≤ 𝜅 and 𝑚(A0) = 𝑚′ + 1.

Having the above reductions in hand, we now fix a Π1
2-sentence 𝜑 = ∀𝑋∃𝑌 𝜙

and positive integers 𝑚 and 𝑘 such that the only predicates mentioned in 𝜙 are in
{𝜖,X,Y,A0}, 𝑚(A0) = 𝑚 and 𝑚(Y) = 𝑘.

Claim 3.1.1. There exists 𝑖 < 𝜅 satisfying the following. For all 𝜂 ∈ 𝜅𝜅 and
𝐴 ⊆ 𝜅𝑚, whenever ⟨𝜅,∈, 𝐴⟩ |= 𝜑, there are stationarily many 𝛼 ∈ 𝑆 such that

(i) 𝜂𝑖𝛼 = 𝜂 � 𝛼, and
(ii) ⟨𝛼,∈, 𝐴 ∩ (𝛼𝑚)⟩ |=𝑁𝛼 𝜑.

Proof. Suppose not. Then, for every 𝑖 < 𝜅, we may fix 𝜂𝑖 ∈ 𝜅𝜅, 𝐴𝑖 ⊆ 𝜅𝑚 and a
club 𝐶𝑖 ⊆ 𝜅 such that ⟨𝜅,∈, 𝐴𝑖⟩ |= 𝜑, but, for all 𝛼 ∈ 𝐶𝑖 ∩ 𝑆, one of the two fails:

(i) 𝜂𝑖𝛼 = 𝜂𝑖 � 𝛼, or
(ii) ⟨𝛼,∈, 𝐴𝑖 ∩ (𝛼𝑚)⟩ |=𝑁𝛼

𝜑.

Let
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∙ 𝑍 := {𝑐(𝑖, 𝑐(𝛽, 𝛾)) | 𝑖 < 𝜅, (𝛽, 𝛾) ∈ 𝜂𝑖},
∙ 𝐴 := {(𝑖, 𝛿1, . . . , 𝛿𝑚) | 𝑖 < 𝜅, (𝛿1, . . . , 𝛿𝑚) ∈ 𝐴𝑖}, and
∙ 𝐶 :=

a
𝑖<𝜅{𝛼 ∈ 𝐶𝑖 | 𝜂𝑖[𝛼] ⊆ 𝛼}.

Fix a variable 𝑖 that does not occur in 𝜙. Define a first-order sentence 𝜓 mentioning
only the predicates in {𝜖,X,Y,A1} with 𝑚(A1) = 1 + 𝑚 and 𝑚(Y) = 1 + 𝑘 by
replacing all occurrences of the form A0(𝑥1, . . . , 𝑥𝑚) and Y(𝑦1, . . . , 𝑦𝑘) in 𝜙 by
A1(𝑖, 𝑥1, . . . , 𝑥𝑚) and Y(𝑖, 𝑦1, . . . , 𝑦𝑘), respectively. Then, let 𝜙′ := ∀𝑖(𝜓), and
finally let 𝜑′ := ∀𝑋∃𝑌 𝜙′, so that 𝜑′ is a Π1

2-sentence.
A moment reflection makes it clear that ⟨𝜅,∈, 𝐴⟩ |= 𝜑′. Thus, let 𝑆′ denote the

set of all 𝛼 ∈ 𝑆 such that all of the following hold:

(1) 𝛼 ∈ 𝐶;
(2) 𝑐[𝛼× 𝛼] = 𝛼;
(3) 𝑍 ∩ 𝛼 ∈ 𝑁𝛼;
(4) |𝑁𝛼| = |𝛼|.
(5) ⟨𝛼,∈, 𝐴 ∩ (𝛼𝑚+1)⟩ |=𝑁𝛼

𝜑′;

By hypothesis, 𝑆′ is stationary. For all 𝛼 ∈ 𝑆′, by Clauses (3) and (4), we have
𝑍∩𝛼 ∈ 𝑁𝛼 = 𝑓𝛼[𝛼], so, by Fodor’s lemma, there exists some 𝑖 < 𝜅 and a stationary
𝑆′′ ⊆ 𝑆′ ∖ (𝑖+ 1) such that, for all 𝛼 ∈ 𝑆′′:

(3’) 𝑍 ∩ 𝛼 = 𝑓𝛼(𝑖).

Let 𝛼 ∈ 𝑆′′. By Clause (5), we in particular have

(5’) ⟨𝛼,∈, 𝐴𝑖 ∩ (𝛼𝑚)⟩ |=𝑁𝛼
𝜑.

Also, by Clause (1), we have 𝛼 ∈ 𝐶𝑖, and so we must conclude that 𝜂𝑖 � 𝛼 ̸= 𝜂𝑖𝛼.
However, 𝜂𝑖[𝛼] ⊆ 𝛼, and 𝑍 ∩ 𝛼 = 𝑓𝛼(𝑖), so that, by Clause (2),

𝜂𝑖 � 𝛼 = 𝜂𝑖 ∩ (𝛼× 𝛼) = {(𝛽, 𝛾) ∈ 𝛼× 𝛼 | 𝑐(𝑖, 𝑐(𝛽, 𝛾)) ∈ 𝑓𝛼(𝑖)} = 𝜂𝑖𝛼.

This is a contradiction. �

This completes the proof of Proposition 3.1. �

Proposition 3.2. Let 𝛼 be an ordinal, and let 𝑋 be a subset of 𝛼× 𝛼. There is a
first-order sentence 𝜓fnc using 𝑋 as a predicate such that:

𝑋 ∈ 𝛼𝛼 iff ⟨𝛼,∈, 𝑋⟩ |= 𝜓fnc.

Proof. Let 𝜓fnc := ∀𝛽∃𝛾(𝑋(𝛽, 𝛾) ∧ (∀𝛿(𝑋(𝛽, 𝛿) → 𝛿 = 𝛾))). �

Proposition 3.3. Let 𝛼 be an ordinal. Suppose that 𝜑 is a Σ1
1-sentence involv-

ing a predicate 𝐴 and two binary predicates 𝑋0, 𝑋1. Denote 𝑅𝜑 := {(𝑋0, 𝑋1) |
⟨𝛼,∈, 𝐴,𝑋0, 𝑋1⟩ |= 𝜑}. Then there are Π1

2-sentences 𝜓Reflexive and 𝜓Transitive such
that:

(1) 𝑅𝜑 ⊇ {(𝜂, 𝜂) | 𝜂 ∈ 𝛼𝛼} iff ⟨𝛼,∈, 𝐴⟩ |= 𝜓Reflexive;
(2) 𝑅𝜑 is transitive iff ⟨𝛼,∈, 𝐴⟩ |= 𝜓Transitive.

Proof. (1) Fix a first-order sentence 𝜓fnc such that 𝑋0 ∈ 𝛼𝛼 iff ⟨𝛼,∈, 𝑋0⟩ |=
𝜓fnc. Now, let 𝜓Reflexive be ∀𝑋0∀𝑋1((𝜓fnc ∧ (𝑋1 = 𝑋0)) → 𝜑).

(2) Fix a Σ1
1-sentence 𝜑′ involving 𝐴 and binary predicates 𝑋1, 𝑋2 and a Σ1

1-
sentence 𝜑′′ involving 𝐴 and binary predicates 𝑋0, 𝑋2 such that

{(𝑋1, 𝑋2) | ⟨𝛼,∈, 𝐴,𝑋1, 𝑋2⟩ |= 𝜑′} = 𝑅𝜑 = {(𝑋0, 𝑋2) | ⟨𝛼,∈, 𝐴,𝑋0, 𝑋2⟩ |= 𝜑′′}.

Now, let 𝜓Transitive := ∀𝑋0∀𝑋1∀𝑋2((𝜑 ∧ 𝜑′) → 𝜑′′). �

Definition 3.4. Denote by Lev3(𝜅) the set of level sequences in 𝜅<𝜅 of length 3:

Lev3(𝜅) :=
⋃︁
𝜏<𝜅

𝜅𝜏 × 𝜅𝜏 × 𝜅𝜏 .
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Fix an injective enumeration {ℓ𝛿 | 𝛿 < 𝜅} of Lev3(𝜅). For each 𝛿 < 𝜅, we denote
ℓ𝛿 = (ℓ0𝛿 , ℓ

1
𝛿 , ℓ

2
𝛿). We then encode each 𝑇 ⊆ Lev3(𝜅) as a subset of 𝜅5 via:

𝑇ℓ := {(𝛿, 𝛽, ℓ0𝛿(𝛽), ℓ1𝛿(𝛽), ℓ2𝛿(𝛽)) | 𝛿 < 𝜅, ℓ𝛿 ∈ 𝑇, 𝛽 ∈ dom(ℓ0𝛿)}.
We now prove Theorem C.

Theorem 3.5. Suppose Dl*𝑆(Π1
2) holds for a given stationary 𝑆 ⊆ 𝜅.

For every analytic quasi-order 𝑄 over 𝜅𝜅, there is a 1-Lipschitz map 𝑓 : 𝜅𝜅 → 2𝜅

reducing 𝑄 to ⊆𝑆.

Proof. Let 𝑄 be an analytic quasi-order over 𝜅𝜅. Fix a tree 𝑇 on 𝜅<𝜅 × 𝜅<𝜅 × 𝜅<𝜅

such that 𝑄 = pr([𝑇 ]), that is,

(𝜂, 𝜉) ∈ 𝑄 ⇐⇒ ∃𝜁 ∈ 𝜅𝜅 ∀𝜏 < 𝜅 (𝜂 � 𝜏, 𝜉 � 𝜏, 𝜁 � 𝜏) ∈ 𝑇.

By Proposition 3.2, for each 𝑖 < 3, we may fix a first-order sentence 𝜓𝑖
fnc using

binary predicates 𝑋0, 𝑋1, 𝑋2, and a predicate 𝐴 of arity 5, such that, for each 𝑖 < 3,

𝑋𝑖 ∈ 𝜅𝜅 iff ⟨𝜅,∈, 𝐴,𝑋0, 𝑋1, 𝑋2⟩ |= 𝜓𝑖
fnc.

Now, define a first-order sentence 𝜙𝑄 in the above-mentioned language to be the
conjunction of four formulas: 𝜓0

fnc, 𝜓
1
fnc, 𝜓

2
fnc, and

∀𝜏∃𝛿∀𝛽 ∈ 𝜏 [∃𝛾0∃𝛾1∃𝛾2(𝑋0(𝛽, 𝛾0) ∧ 𝑋1(𝛽, 𝛾1) ∧ 𝑋2(𝛽, 𝛾2) ∧ 𝐴(𝛿, 𝛽, 𝛾0, 𝛾1, 𝛾2))].

Let 𝐴 := 𝑇ℓ. Evidently, for all 𝜂, 𝜉, 𝜁 ∈ 𝒫(𝜅× 𝜅), we get that

⟨𝜅,∈, 𝐴, 𝜂, 𝜉, 𝜁⟩ |= 𝜙𝑄

iff (𝜂, 𝜉, 𝜁 ∈ 𝜅𝜅) and (for all 𝜏 < 𝜅, there is 𝛿 < 𝜅 such that ℓ𝛿 = (𝜂 � 𝜏, 𝜉 � 𝜏, 𝜁 � 𝜏) is
in 𝑇 ). Let 𝜑𝑄 := ∃𝑋2(𝜙𝑄). Then 𝜑𝑄 is a Σ1

1-sentence involving predicats 𝐴,𝑋0, 𝑋1

for which the induced binary relation

𝑅𝜑𝑄
:= {(𝜂, 𝜉) ∈ (𝒫(𝜅× 𝜅))2 | ⟨𝜅,∈, 𝐴, 𝜂, 𝜉⟩ |= 𝜑𝑄}

coincides with the quasi-order 𝑄. Now, appeal to Proposition 3.3 with 𝜑𝑄 and 𝐴
to receive the corresponding Π1

2-sentences 𝜓Reflexive and 𝜓Transitive. Then, consider
the following two Π1

2-sentences:

∙ 𝜓0
𝑄 := 𝜓Reflexive ∧ 𝜓Transitive ∧ 𝜑𝑄, and

∙ 𝜓1
𝑄 := 𝜓Reflexive ∧ 𝜓Transitive ∧ ¬(𝜑𝑄).

Let 𝑁⃗ = ⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ be a Dl*𝑆(Π1
2)-sequence. Appeal to Proposition 3.1 with

the Π1
2-sentence 𝜓1

𝑄, to obtain a corresponding transversal ⟨𝜂𝛼 | 𝛼 ∈ 𝑆⟩ ∈
∏︀

𝛼∈𝑆 𝑁𝛼.
Note that we may assume that, for all 𝛼 ∈ 𝑆, 𝜂𝛼 ∈ 𝛼𝛼, as this does not harm the
key feature of the chosen transversal.7

For each 𝜂 ∈ 𝜅𝜅, let

𝑍𝜂 := {𝛼 ∈ 𝑆 | 𝐴 ∩ 𝛼5 and 𝜂 � 𝛼 are in 𝑁𝛼}.
Claim 3.5.1. Suppose 𝜂 ∈ 𝜅𝜅. Then 𝑆 ∖ 𝑍𝜂 is nonstationary.

Proof. Fix primitive-recursive bijections 𝑐 : 𝜅2 ↔ 𝜅 and 𝑑 : 𝜅5 ↔ 𝜅. Given 𝜂 ∈ 𝜅𝜅,
consider the club 𝐷0 of all 𝛼 < 𝜅 such that:

∙ 𝜂[𝛼] ⊆ 𝛼;
∙ 𝑐[𝛼× 𝛼] = 𝛼;
∙ 𝑑[𝛼× 𝛼× 𝛼× 𝛼× 𝛼] = 𝛼.

Now, as 𝑐[𝜂] is a subset of 𝜅, by the choice 𝑁⃗ , we may find a club 𝐷1 ⊆ 𝜅 such
that, for all 𝛼 ∈ 𝐷1 ∩ 𝑆, 𝑐[𝜂] ∩ 𝛼 ∈ 𝑁𝛼. Likewise, we may find a club 𝐷2 ⊆ 𝜅 such
that, for all 𝛼 ∈ 𝐷2 ∩ 𝑆, 𝑑[𝐴] ∩ 𝛼 ∈ 𝑁𝛼.

For all 𝛼 ∈ 𝑆 ∩𝐷0 ∩𝐷1 ∩𝐷2, we have

7For any 𝛼 such that 𝜂𝛼 is not a function from 𝛼 to 𝛼, simply replace 𝜂𝛼 by the constant
function from 𝛼 to {0}.
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∙ 𝑐[𝜂 � 𝛼] = 𝑐[𝜂 ∩ (𝛼× 𝛼)] = 𝑐[𝜂] ∩ 𝑐[𝛼× 𝛼] = 𝑐[𝜂] ∩ 𝛼 ∈ 𝑁𝛼, and
∙ 𝑑[𝐴 ∩ 𝛼5] = 𝑑[𝐴] ∩ 𝑑[𝛼5] = 𝑑[𝐴] ∩ 𝛼 ∈ 𝑁𝛼.

As 𝑁𝛼 is p.r.-closed, it then follows that 𝜂 �𝛼 and 𝐴∩𝛼5 are in 𝑁𝛼. Thus, we have
shown that 𝑆 ∖ 𝑍𝜂 is disjoint from the club 𝐷0 ∩𝐷1 ∩𝐷2. �

For all 𝜂 ∈ 𝜅𝜅 and 𝛼 ∈ 𝑍𝜂, let:

𝒫𝜂,𝛼 := {𝑝 ∈ 𝛼𝛼 ∩𝑁𝛼 | ⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝑝, 𝜂 � 𝛼⟩ |=𝑁𝛼
𝜓0
𝑄}.

Finally, define a function 𝑓 : 𝜅𝜅 → 2𝜅 by letting, for all 𝜂 ∈ 𝜅𝜅 and 𝛼 < 𝜅,

𝑓(𝜂)(𝛼) :=

{︃
1 if 𝛼 ∈ 𝑍𝜂 and 𝜂𝛼 ∈ 𝒫𝜂,𝛼;

0 otherwise.

Claim 3.5.2. 𝑓 is 1-Lipschitz.

Proof. Let 𝜂, 𝜉 be two distinct elements of 𝜅𝜅. Let 𝛼 ≤ ∆(𝜂, 𝜉) be arbitrary.
As 𝜂 � 𝛼 = 𝜉 � 𝛼, we have 𝛼 ∈ 𝑍𝜂 iff 𝛼 ∈ 𝑍𝜉. In addition, as 𝜂 � 𝛼 = 𝜉 � 𝛼,

𝒫𝜂,𝛼 = 𝒫𝜉,𝛼 whenever 𝛼 ∈ 𝑍𝜂. Thus, altogether, 𝑓(𝜂)(𝛼) = 1 iff 𝑓(𝜉)(𝛼) = 1. �

Claim 3.5.3. Suppose (𝜂, 𝜉) ∈ 𝑄. Then 𝑓(𝜂) ⊆𝑆 𝑓(𝜉).

Proof. As (𝜂, 𝜉) ∈ 𝑄, let us fix 𝜁 ∈ 𝜅𝜅 such that, for all 𝜏 < 𝜅, (𝜂 � 𝜏, 𝜉 � 𝜏, 𝜁 � 𝜏) ∈ 𝑇 .
Define a function 𝑔 : 𝜅→ 𝜅 by letting, for all 𝜏 < 𝜅,

𝑔(𝜏) := min{𝛿 < 𝜅 | ℓ𝛿 = (𝜂 � 𝜏, 𝜉 � 𝜏, 𝜁 � 𝜏)}.
As (𝑆 ∖ 𝑍𝜂), (𝑆 ∖ 𝑍𝜉) and (𝑆 ∖ 𝑍𝜁) are nonstationary, let us fix a club 𝐶 ⊆ 𝜅 such
that 𝐶 ∩ 𝑆 ⊆ 𝑍𝜂 ∩ 𝑍𝜉 ∩ 𝑍𝜁 . Consider the club 𝐷 := {𝛼 ∈ 𝐶 | 𝑔[𝛼] ⊆ 𝛼}. We shall
show that, for every 𝛼 ∈ 𝐷 ∩ 𝑆, if 𝑓(𝜂)(𝛼) = 1 then 𝑓(𝜉)(𝛼) = 1.

Fix an arbitrary 𝛼 ∈ 𝐷 ∩ 𝑆 satisfying 𝑓(𝜂)(𝛼) = 1. In effect, the following three
conditions are satisfied:

(1) ⟨𝛼,∈, 𝐴 ∩ 𝛼5⟩ |=𝑁𝛼
𝜓Reflexive,

(2) ⟨𝛼,∈, 𝐴 ∩ 𝛼5⟩ |=𝑁𝛼
𝜓Transitive, and

(3) ⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝜂𝛼, 𝜂 � 𝛼⟩ |=𝑁𝛼 𝜑𝑄.

In addition, since 𝛼 is a closure point of 𝑔, by definition of 𝜙𝑄, we have

⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝜂 � 𝛼, 𝜉 � 𝛼, 𝜁 � 𝛼⟩ |= 𝜙𝑄.

As 𝛼 ∈ 𝑆 and 𝜙𝑄 is first-order,8

⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝜂 � 𝛼, 𝜉 � 𝛼, 𝜁 � 𝛼⟩ |=𝑁𝛼
𝜙𝑄,

so that, by definition of 𝜑𝑄,

⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝜂 � 𝛼, 𝜉 � 𝛼⟩ |=𝑁𝛼 𝜑𝑄.

By combining the preceding with clauses (2) and (3) above, we infer that the
following holds, as well:

(4) ⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝜂𝛼, 𝜉 � 𝛼⟩ |=𝑁𝛼 𝜑𝑄.

Altogether, 𝑓(𝜉)(𝛼) = 1, as sought. �

Claim 3.5.4. Suppose (𝜂, 𝜉) ∈ 𝜅𝜅 × 𝜅𝜅 ∖𝑄. Then 𝑓(𝜂) ̸⊆𝑆 𝑓(𝜉).

Proof. As (𝑆 ∖𝑍𝜂) and (𝑆 ∖𝑍𝜉) are nonstationary, let us fix a club 𝐶 ⊆ 𝜅 such that
𝐶 ∩ 𝑆 ⊆ 𝑍𝜂 ∩ 𝑍𝜉. As 𝑄 is a quasi-order and (𝜂, 𝜉) /∈ 𝑄, we have:

(1) ⟨𝜅,∈, 𝐴⟩ |= 𝜓Reflexive,
(2) ⟨𝜅,∈, 𝐴⟩ |= 𝜓Transitive, and
(3) ⟨𝜅,∈, 𝐴, 𝜂, 𝜉⟩ |= ¬(𝜑𝑄).

8𝑁𝛼 is transitive and rud-closed (in fact, p.r.-closed), so that 𝑁𝛼 |= GJ (see [Mat06, SOther
remarks on GJ]). Now, by [Mat06, SThe cure in GJ, proposition 10.31], Sat is ΔGJ

1 .
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so that, altogether,

⟨𝜅,∈, 𝐴, 𝜂, 𝜉⟩ |= 𝜓1
𝑄.

Then, by the choice of the transversal ⟨𝜂𝛼 | 𝛼 ∈ 𝑆⟩, there is a stationary subset
𝑆′ ⊆ 𝑆 ∩ 𝐶 such that, for all 𝛼 ∈ 𝑆′:

(1’) ⟨𝛼,∈, 𝐴 ∩ 𝛼5⟩ |=𝑁𝛼
𝜓Reflexive,

(2’) ⟨𝛼,∈, 𝐴 ∩ 𝛼5⟩ |=𝑁𝛼
𝜓Transitive,

(3’) ⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝜂 � 𝛼, 𝜉 � 𝛼⟩ |=𝑁𝛼 ¬(𝜑𝑄), and
(4’) 𝜂𝛼 = 𝜂 � 𝛼.

By Clauses (3’) and (4’), we have that 𝜂𝛼 /∈ 𝒫𝜉,𝛼, so that 𝑓(𝜉)(𝛼) = 0.
By Clauses (1’),(2’) and (4’), we have that 𝜂𝛼 ∈ 𝒫𝜂,𝛼, so that 𝑓(𝜂)(𝛼) = 1.
Altogether, {𝛼 ∈ 𝑆 | 𝑓(𝜂)(𝛼) > 𝑓(𝜉)(𝛼)} covers the stationary set 𝑆′, so that

𝑓(𝜂) ̸⊆𝑆 𝑓(𝜉). �

This completes the proof of Theorem 3.5 �

Theorem B now follows as a corollary.

Corollary 3.6. Assume that 𝜅 is a regular uncountable cardinal and GCH holds.
Then there is a (<𝜅)-directed-closed, 𝜅+−𝑐𝑐 notion of forcing P such that, in 𝑉 P,
GCH holds and for every analytic quasi-order 𝑄 over 𝜅𝜅 and every stationary 𝑆 ⊆ 𝜅,
𝑄 →˓1 ⊆𝑆.

Proof. By Fact 2.12, Theorem 2.15 and Theorem 3.5. �

Remark 3.7. A quasi-order E over a space 𝑋 ∈ {2𝜅, 𝜅𝜅} is said to be Σ1
1-complete

iff it is analytic and, for every analytic quasi-order 𝑄 over 𝑋, there exists a 𝜅-Borel
function 𝑓 : 𝑋 → 𝑋 reducing 𝑄 to E. As Lipschitz =⇒ continuous =⇒ 𝜅-Borel,
the conclusion of Corollary 3.6 gives that each ⊆𝑆 is a Σ1

1-complete quasi-order.
Such a consistency was previously only known for 𝑆’s of one of two specific forms,
and the witnessing maps were not Lipschitz.

4. Concluding remarks

Remark 4.1. By [HKM18, Corollary 4.5], in 𝐿, for every successor cardinal 𝜅 and
every theory (not necessarily complete) 𝑇 over a countable relational language,
the corresponding equivalence relation ∼=𝑇 over 2𝜅 is either ∆1

1 or Σ1
1-complete.

This dissatisfying dichotomy suggests that 𝐿 is a singular universe, unsuitable for
studying the correspondence between generalized descriptive set theory and model-
theoretic complexities. However, using Theorem 3.5, it can be verified that the
above dichotomy holds as soon as 𝜅 is a successor of an uncountable cardinal 𝜆 =
𝜆<𝜆 in which Dl*𝑆(Π1

2) holds for both 𝑆 := 𝜅 ∩ cof(𝜔) and 𝑆 := 𝜅 ∩ cof(𝜆). This
means that the dichotomy is in fact not limited to 𝐿 and can be forced to hold
starting with any ground model.

Remark 4.2. Let =𝑆 denote the symmetric version of ⊆𝑆 . It is well known that, in
the special case 𝑆 := 𝜅 ∩ cof(𝜔), =𝑆 is a 𝜅-Borel* equivalence relation [MV93, S6].
It thus follows from Theorem 3.5 that if Dl*𝑆(Π1

2) holds for 𝑆 := 𝜅 ∩ cof(𝜔), then
the class of Σ1

1 sets coincides with the class of 𝜅-Borel* sets. Now, as the proof of
[HK18, Theorem 3.1] establishes that the failure of the preceding is consistent with,

e.g., 𝜅 = ℵ2 = 22
ℵ0

, which in turn, by [Gre76, Lemma 2.1], implies that ♢*
𝑆 holds,

we infer that the hypothesis Dl*𝑆(Π1
2) of Theorem 3.5 cannot be replaced by ♢*

𝑆 . We
thus feel that we have identified the correct combinatorial principle behind a line
of results that were previously obtained under the heavy hypothesis of “𝑉 = 𝐿”.
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