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Abstract

Working under large cardinal assumptions such as supercompactness, we
study the Borel-reducibility between equivalence relations modulo restrictions
of the non-stationary ideal on some fixed cardinal κ. We show the consis-

tency of Eλ
++,λ++

λ-club , the relation of equivalence modulo the non-stationary

ideal restricted to Sλ
++

λ in the space (λ++)λ
++

, being continuously reducible to

E2,λ++

λ+-club
, the relation of equivalence modulo the non-stationary ideal restricted

to Sλ
++

λ+ in the space 2λ
++

. Then we show that for κ ineffable E2,κ
reg , the relation

of equivalence modulo the non-stationary ideal restricted to regular cardinals
in the space 2κ, is Σ1

1-complete. We finish by showing, for Π1
2-indescribable

κ, that the isomorphism relation between dense linear orders of cardinality κ
is Σ1

1-complete.

1 Introduction

Throughout this article we assume that κ is an uncountable cardinal that satisfies
κ<κ = κ. The equivalence relations modulo (restrictions of) the non-stationary
ideal have provided a very useful tool, and a main focus of study, in generalized
descriptive set theory. In [FHK14] it was shown that the relation of equivalence
modulo the non-stationary ideal is not a Borel relation, and that if V = L, then
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it is not ∆1
1. The equivalence relation modulo the non-stationary ideal restricted

to a stationary set S, denoted E2,κ
S (see Definition 1.3), is useful when it comes to

studying the complexity of the isomorphism relations of first order theories (∼=T , see
Definition 1.5). In [FHK14] it was proved that, under some cardinality assumptions,
E2,κ
Sκω

is Borel reducible to ∼=T for every first order stable unsuperstable theory T ,
where Sκλ is the set of λ-cofinal ordinals below κ. Similar results were obtained in
[FHK14] for the other non-classifiable theories. This motivates the study of the
Borel-reducibility properties of E2,κ

S .

Theorem 1.1 ([FHK14], Theorem 56). The following is consistent: For all station-
ary S and S ′, E2,κ

S is Borel reducible to E2,κ
S′ if and only if S ⊆ S ′.

Theorem 1.2 ([FHK14], Theorem 55). The following is consistent: E2,ω2

S
ω2
ω

is Borel

reducible to E2,ω2

S
ω2
ω1

.

In [HK] the authors used the Borel-reducibility properties of the equivalence
relation modulo the non-stationary ideal to prove that in L, all Σ1

1 equivalence
relations are reducible to ∼=DLO, where DLO is the theory of dense linear orderings
without end points, which means that this equivalence relation is on top of the
Borel-reducibility hierarchy among Σ1

1-equivalence relations, i.e. it is Σ1
1-complete.

This result stands in contrast to the classical, countable case, κ = ω, for which it
is known that all other isomorphism relations are reducible to ∼=DLO [FS89], but far
from all Σ1

1-equivalence relations are reducible to it; even some Borel-equivalence
relations such as E1 are not reducible to any isomorphism relations in the countable
case. So the question remained: is the Σ1

1-completeness of ∼=DLO just a manifestation
of the pathological behaviour of L or is it a more robust property in the generalised
realm? One of the contributions of this paper is that the Σ1

1-completeness of ∼=DLO is
indeed a rather robust phenomenon and holds whenever κ has certain large cardinal
properties (Theorem 3.10).

It was asked in [FHK15] and in [KLLS16, Question 3.46] whether or not the
equivalence relation modulo the non-stationary ideal on the Baire space can be
reduced to the Cantor space for some fixed cofinality: in our notation, whether
or not Eκ,κ

Sκµ
6 E2,κ

Sκµ
. We approach the problem by proving several results in this

direction. Our results have the forms

Eκ,κ
Sκµ
6 E2,κ

Sκµ∗
,

Eκ,κ
Sκµ
6 E2,κ

reg(κ),
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and
Eκ,κ

reg(κ) 6 E2,κ
reg(κ),

where µ∗ is larger than µ and reg(κ) is the set of regular cardinals below κ, for
κ Mahlo. These results are obtained under various assumptions and sometimes in
forcing extensions.

Many of the results in the area of reducibility of equivalence relations modulo
non-stationary ideals use combinatorial principles, like 3, and other reflection prin-
ciples. In this paper we bring also some large cardinal principles into the picture.

The generalized Baire space is the set κκ with the bounded topology. For every
ζ ∈ κ<κ, the set

[ζ] = {η ∈ κκ | ζ ⊂ η}
is a basic open set. The open sets are of the form

⋃
X where X is a collection of

basic open sets. The collection of κ-Borel subsets of κκ is the smallest set which
contains the basic open sets and is closed under unions and intersections of length κ.
Since in this paper we do not consider any other kind of Borel sets besides κ-Borel,
we will omit the prefix “κ-”.

The generalized Cantor space is the subspace 2κ ⊂ κκ with the relative sub-
space topology. For X, Y ∈ {κκ, 2κ}, we say that a function f : X → Y is Borel
if for every open set A ⊆ Y the inverse image f−1[A] is a Borel subset of X.
Let E1 and E2 be equivalence relations on X and Y respectively. We say that
E1 is Borel reducible to E2 if there is a Borel function f : X → Y that satisfies
(η, ξ) ∈ E1 ⇔ (f(η), f(ξ)) ∈ E2. We call f a reduction of E1 to E2. This is denoted
by E1 6B E2, and if f is continuous, then we say that E1 is continuously reducible
to E2, which is denoted by E1 6c E2.

For every stationary S ⊂ κ, we define the equivalence relation modulo the non-
stationary ideal restricted to a stationary set S, on the space λκ for λ ∈ {2, κ}:

Definition 1.3. For every stationary S ⊂ κ and λ ∈ {2, κ}, we define Eλ,κ
S as the

relation

Eλ,κ
S = {(η, ξ) ∈ λκ × λκ | {α < κ | η(α) 6= ξ(α)} ∩ S is not stationary}.

Note that E2,κ
S can be identified with the equivalence relation on the power set of

κ in which two sets A and B are equivalent if their symmetric difference restricted
to S is non-stationary. This can be done by identifying a set A ⊂ κ with its
characteristic function.
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For every regular cardinal µ < κ, we denote {α < κ | cf(α) = µ} by Sκµ . A set
C is µ-club if it is unbounded and closed under µ-limits. For brevity, when S = Sκµ ,

we will denote Eλ,κ
Sκµ

by Eλ,κ
µ-club. Note that (f, g) ∈ Eλ,κ

µ-club if and only if the set

{α < κ | f(α) = g(α)} contains a µ-club.
For a Mahlo cardinal κ, the set reg(κ) = {α < κ | α a regular cardinal} is

stationary. We will denote the equivalence relation Eλ,κ
reg(κ) by Eλ,κ

reg .

Given an equivalence relation E on X ∈ {κκ, 2κ}, we can define the λ-product
relation of E for any 0 < λ < κ. The λ-product relation ΠλE is the relation defined
on Xλ × Xλ by η ΠλE ξ if ηγ E ξγ holds for every γ < λ, where η = (ηγ)γ<λ
and ξ = (ξγ)γ<λ. We endow the space Xλ, X ∈ {κκ, 2κ}, with the box topology
generated by the basic open sets:

{Πα<λOα | ∀α < λ (Oα is an open set in X)}.

One of the motivations to study Borel reducibility in generalized Baire spaces
is the connection with model theory. This connection consists in the possibility
to study the Borel reducibility of the isomorphism relation of theories by coding
structures with universe κ via elements of κκ. We may fix this coding, relative to
a given countable relational vocabulary L = {Pn | n < ω}, as in the following
definition.

Definition 1.4. Fix a bijection π : κ<ω → κ. For every η ∈ κκ define the L-
structure Aη with universe κ as follows: For every relation Pm with arity n, every
tuple (a1, a2, . . . , an) in κn satisfies

(a1, a2, . . . , an) ∈ PAηm ⇐⇒ η(π(m, a1, a2, . . . , an)) > 1.

When we describe a complete theory T in a vocabulary L′ ⊆ L, we think of it
as a complete L-theory extending T ∪ {∀x̄¬Pn(x̄) |Pn ∈ L\L′}.

Definition 1.5 (The isomorphism relation). Assume T is a complete first order
theory in a countable vocabulary. We define ∼=T as the relation

{(η, ξ) ∈ κκ × κκ | (Aη |= T,Aξ |= T,Aη ∼= Aξ) or (Aη 6|= T,Aξ 6|= T )}.

In the second section we will study the reducibility between different cofinalities,
and in the last section we will study the reducibility of Eκ,κ

reg and E2,κ
reg . Here is the

list of the main results in this article:
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• (Theorem 2.11) Suppose κ is a Πλ+

1 -indescribable cardinal for some λ < κ and
V = L. Then there is a forcing extension where κ is collapsed to become λ++

and Eλ++,λ++

λ-club ≤c E2,λ++

λ+-club.

• (Corollary 2.14) Let κ2 < κ3 < · · · < κn < · · · be a sequence of supercompact
cardinals. There is a generic extension V [G] in which κn = ℵn for all n > 2
and such that: Eω2,ω2

ω-club ≤c E
ω2,ω2

ω1-club
, and for every n > 2 and every 0 ≤ k ≤ n−3,

Eωn,ωn
ωk-club

≤c Eωn,ωn
ωn−1-club

.

This corollary follows from [[JS], Theorem 1.3] and gives a model (different
from L or the one in Theorem 1.2) in which reducibility between different
cofinalities holds.

• (Theorem 3.5) Suppose S = Sκλ for some regular cardinal λ < κ, or S = reg(κ)
and κ weakly compact. If κ has the weakly compact diamond (Definition 3.2),
then Eκ,κ

S ≤c E2,κ
reg .

• (Corollary 3.6) Suppose V = L and κ is weakly compact. Then E2,κ
reg is Σ1

1-
complete.

• (Corollary 3.7) Suppose κ is a weakly ineffable cardinal. Then Eκ,κ
reg ≤c E2,κ

reg .

• (Theorem 3.8) If κ is a Π1
2-indescribable cardinal, then Eκ,κ

reg is Σ1
1-complete.

• (Corollary 3.9) Suppose κ is an ineffable cardinal (or weakly ineffable and Π1
2-

indescribable). Then E2,κ
reg is Σ1

1-complete.

• (Theorem 3.10) Let DLO be the theory of dense linear orderings without end
points. If κ is a Π1

2-indescribable cardinal, then ∼=DLO is Σ1
1-complete.

2 Reducibility between different cofinalities

In [FHK14] the authors studied the reducibility between the relations E2,κ
µ-club and

showed in particular the consistency of E2,λ++

λ-club ≤c E
2,λ++

λ+-club. In this section we con-
tinue along these lines.

Definition 2.1. We say that a set X ⊂ κ strongly reflects to a set Y ⊂ κ if for all
stationary Z ⊂ X there exist stationary many α ∈ Y with Z ∩ α stationary in α.
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In [FHK14, Theorem 55] it is proved that: If κ is a weakly compact cardinal,
then Sκλ strongly reflects to reg(κ), for any regular cardinal λ < κ. This result can
be generalized to Πλ

1 -indescribable cardinals:

Definition 2.2. A cardinal κ is Πλ
1 -indescribable (for λ < κ) if whenever A ⊂ Vκ

and σ is a Π1 sentence such that

(Vκ+λ,∈, A, (Vκ+ξ | ξ < λ)) |= σ,

then for some α < κ,

(Vα+λ,∈, A ∩ Vα, (Vα+ξ : ξ < λ)) |= σ

Note that, in Definition 2.2, the existence of some α < κ at which the required
reflection is effected is equivalent to the existence of stationary many such α < κ.

Lemma 2.3. Suppose κ is a Πλ
1-indescribable cardinal. There are λ many disjoint

stationary subsets of κ, 〈Sγ〉γ<λ, such that for every γ < λ, Sγ ⊆ reg(κ) and κ
strongly reflects to Sγ.

Proof. Let S∗β denote the set of all the Πβ
1 -indescribable cardinals below κ. Since “κ

is Πβ
1 -indescribable” is a Π1 property of the structure (Vκ+λ,∈, (Vκ+ξ | ξ < λ)), the

set S∗β is stationary for every β < λ.
Let us show that for every stationary set X ⊆ κ,

B = {α ∈ S∗β | X ∩ α is stationary in α}

is stationary. Let C be a club in κ. The sentence

(C is unbounded in κ) ∧ (X is stationary in κ) ∧ (κ is Πβ
1 -indescribable)

is a Π1 property of the structure (Vκ+λ,∈, X, C, (Vκ+ξ | ξ < λ)). By reflection, there
is γ < κ such that C ∩ γ is unbounded in γ, and hence γ ∈ C, X ∩ γ is stationary
in γ, and γ is Πβ

1 -indescribable. We conclude that C ∩B 6= ∅.
Let us denote S∗β\S∗β+1 by Sβ. Let us show that for every stationary set X ⊆ κ,

{α ∈ Sβ | X ∩ α is stationary in α}

is stationary. Let C be a club in κ. Since {α ∈ S∗β | X ∩ α is stationary in α} is
stationary, we can pick γ ∈ C ∩ {α ∈ S∗β | X ∩ α is stationary in α} such that γ is
minimal.
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Claim 2.3.1. γ is not Πβ+1
1 -indescribable.

Proof. Suppose, towards a contradiction, that γ is Πβ+1
1 -indescribable. The sentence

(C ∩ γ is unbounded in γ) ∧ (X ∩ γ is stationary in γ) ∧ (γ is Πβ
1 -indescribable)

is a Π1 property of the structure (Vγ+β+1,∈, X ∩ γ, C ∩ γ, (Vγ+ξ | ξ < β + 1)). By
reflection, there is γ′ < γ such that C ∩ γ′ is unbounded in γ′, X ∩ γ′ is stationary
in γ′, and γ′ is Πβ

1 -indescribable. This contradicts the minimality of γ.

We conclude that Sβ is stationary and {α ∈ Sβ | X ∩ α is stationary in α} is
stationary, for every β < λ.

The notion of 3-reflection was introduced in [FHK14] in order to find reductions
between equivalence relations modulo non-stationary ideals (see below).

Definition 2.4 (3-reflection). Let X, Y be subsets of κ and suppose Y consists of
ordinals of uncountable cofinality. We say that X 3-reflects to Y if there exists a
sequence 〈Dα〉α∈Y such that:

• Dα ⊂ α is stationary in α for all α ∈ Y .

• if Z ⊂ X is stationary, then {α ∈ Y | Dα = Z ∩ α} is stationary.

Theorem 2.5 ([FHK14], Theorem 59). Suppose V = L and that X ⊆ κ and
Y ⊆ reg(κ). If X strongly reflects to Y , then X 3-reflects to Y .

Theorem 2.6 ([FHK14], Theorem 58). If X 3-reflects to Y , then E2,κ
X ≤c E

2,κ
Y .

3-reflection also implies some reductions for the relations Eκ,κ
µ-club on the space

κκ. To show this, we first need to introduce some definitions.

Definition 2.7. For every α < κ with γ < cf(α) define Eκ,κ
γ-club � α by:

Eκ,κ
γ-club � α = {(η, ξ) ∈ κκ × κκ | ∃C ⊆ α a γ-club,∀β ∈ C, η(β) = ξ(β)}.

Proposition 2.8. Suppose γ < λ < κ are regular cardinals. If Sκγ strongly reflects
to Sκλ , then Eκ,κ

γ-club ≤c E
κ,κ
λ-club.
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Proof. Suppose that for every stationary set S ⊂ Sκγ it holds that

{α ∈ Sκλ | S ∩ α is stationary in α}

is a stationary set, and define F : κκ → κκ by

F (η)(α) =

{
fα(η), if cf(α) = λ

0, otherwise.

where fα(η) is a code in κ\{0} for the (Eκ,κ
γ-club � α)-equivalence class of η.

Let us prove that if (η, ξ) ∈ Eκ,κ
γ-club, then (F (η), F (ξ)) ∈ Eκ,κ

λ-club. Suppose (η, ξ) ∈
Eκ,κ
γ-club. There is a γ-club where η and ξ coincide and so there is a club C such

that for all α ∈ C ∩ Sκλ the functions η and ξ are (Eκ,κ
γ-club � α)-equivalent. Thus,

by the definition of F , for all α ∈ C ∩ Sκλ , F (η)(α) = F (ξ)(α). We conclude that
(F (η), F (ξ)) ∈ Eκ,κ

λ-club.
Let us prove that if (η, ξ) /∈ Eκ,κ

γ-club, then (F (η), F (ξ)) /∈ Eκ,κ
λ-club. Suppose that

(η, ξ) /∈ Eκ,κ
γ-club. Then there is a stationary S ⊂ Sκγ on which η(α) 6= ξ(α). Since

A = {α ∈ Sκλ | S ∩ α is stationary in α} is stationary and for all α ∈ A, fα(η) 6=
fα(ξ), we conclude that (F (η), F (ξ)) /∈ Eκ,κ

λ-club.

Corollary 2.9. Suppose γ < λ < κ are regular cardinals. If Sκγ 3-reflects to Sκλ ,
then

(i) E2,κ
γ-club ≤c E

2,κ
λ-club.

(ii) Eκ,κ
γ-club ≤c E

κ,κ
λ-club.

Proof. (i) Follows from Theorem 2.6.

(ii) By the definition of 3-reflection, Sκγ 3-reflecting to Sκλ implies that for all
S ⊆ Sκγ the set {α ∈ Sκλ | S ∩ α is stationary in α} is a stationary set. The
result follows from Proposition 2.8.

In [FHK14], the consistency of Sλ
++

λ 3-reflecting to Sλ
++

λ+ was shown. This gives

a model in which E2,κ
λ-club ≤c E

2,κ
λ+-club and Eλ++,λ++

λ-club ≤c Eλ++,λ++

λ+-club .

Theorem 2.10 ([FHK14], Theorem 55). Suppose that κ is a weakly compact cardinal
and V = L. Then:

(i) E2,κ
λ-club ≤c E2,κ

reg holds for all regular λ < κ.
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(ii) For every regular λ < κ there is a forcing extension where κ is collapsed to

become λ++ and E2,λ++

λ-club ≤c E
2,λ++

λ+-club.

The proof of this theorem can be generalised using Lemma 2.3 to show the

consistency of Eλ++,λ++

λ-club ≤c E2,λ++

λ+-club:

Theorem 2.11. Suppose κ is a Πλ+

1 -indescribable cardinal and that V = L. Then

there is a forcing extension where κ is collapsed to become λ++ and Eλ++,λ++

λ-club ≤c
E2,λ++

λ+-club.

Proof. Let us collapse κ to λ++ with the Levy collapse

P = {f : reg(κ)→ κ<λ
+ | rang(f(µ)) ⊂ µ, |{µ | f(µ) 6= ∅}| ≤ λ}

where f ≥ g if and only if f(µ) ⊆ g(µ) for all µ ∈ reg(κ). Let us define Pµ and Pµ
for all µ by: Pµ = {f ∈ P | sprt(f) ⊂ µ} and Pµ = {f ∈ P | sprt(f) ⊂ κ\µ}. It is
known that all regular λ < µ ≤ κ satisfy:

(i) if µ > λ+, then Pµ has the µ-c.c.,

(ii) Pµ and Pµ are <λ+-closed,

(iii) P = Pκ 
 λ++ = κ̌,

(vi) if µ < κ, then P 
 cf(µ̌) = λ+,

(v) if p ∈ P, σ a name, and p 
 “σ is a club in λ++”, then there is a club E ⊂ κ
such that p 
 Ě ⊂ σ.

Claim 2.11.1. There is a sequence 〈Sγ〉γ<λ+ of disjoint stationary subsets of Sλ
++

λ+

such that in V [G] Sλ
++

λ 3-reflects to Sγ for every γ < λ+.

Proof. Let G be a P-generic over V , and define Gµ = G ∩ Pµ and Gµ = G ∩ Pµ.
So Gµ is Pµ-generic over V , Gµ is Pµ-generic over V [Gµ], and V [G] = V [Gµ][Gµ].

Let S∗β denote the set of all Πβ
1 -indescribable cardinals below κ and Sβ = S∗β\S∗β+1.

We will show that Sλ
++

λ 3-reflects to SVβ for all β < λ+. Let us fix β < λ+ and
denote by Y the set SVβ . By Lemma 2.3 we know that SVβ is stationary and by (v),
it remains stationary in V [G]. By (i) we know that there are no antichains of length
µ in Pµ, and since |Pµ| = µ we conclude that there are at most µ antichains. On
the other hand, there are µ+ many subsets of µ. Hence, there is a bijection

hµ : µ+ → {σ | σ is a nice Pµ name for a subset of µ}
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for each µ ∈ reg(κ) such that µ > λ+, where a nice Pµ name for a subset of µ̌ is of
the form

⋃
{{α̌}×Aα | α ∈ B} with B ⊂ µ̌ and Aα an antichain in Pµ. Notice that

the nice Pµ names for subsets of µ̌ are subsets of Vµ. Let us define

Dµ =

{
[hµ([(∪G)(µ+)](0))]G if this set is stationary

µ otherwise.

We will show that 〈Dµ〉µ∈Y is the needed 3-sequence in V [G].
Suppose, towards a contradiction, that there are a stationary set S ⊂ Sλ

++

λ and
a club C ⊂ λ++ (in V [G]) such that for all α ∈ C ∩ Y , Dα 6= S ∩ α. By (v) there
is a club C0 ⊂ C such that C0 ∈ V . Let Ṡ be a nice name for S and p a condition
such that p forces that Ṡ is stationary. We will show that

H = {q < p | q 
 Dµ = Ṡ ∩ µ̌ for some µ ∈ C0}

is dense below p, which is a contradiction. Let us slightly redefine P.
Let P∗ = {q | ∃r ∈ P (r � sprt(r) = q)}. Clearly P ∼= P∗, P∗ ⊆ Vκ, and

P∗µ = P∗ ∩ Vµ, where P∗µ = {q | ∃r ∈ Pµ (r � sprt(r) = q)}. It can be verified that
the properties mentioned above also hold for P∗µ. From now on denote P∗µ by Pµ.
Let r be a condition stronger than p and

R = (P× {0}) ∪ (Ṡ × {1}) ∪ (C0 × {2} ∪ ({r} × {3})).

Let ∀Aϕ be the formula:
If A is closed and unbounded and t < r are arbitrary, then there exists q < r and

α ∈ A such that q 
P α̌ ∈ Ṡ.
Clearly, ∀Aϕ says r 
 (Ṡ is stationary). By (v) it is enough to quantify over

club sets in V . Notice that t < r, q < t, A is a club, and α ∈ A are first order
expressible using R as a parameter. The definition of α̌ is recursive in α:

α̌ = {(γ̌, 1P) | γ < α}

and it is absolute for Vκ. Then q 
P α̌ ∈ Ṡ is equivalent to saying that for each
q′ < q there exists q′′ < q′ with (α̌, q′′) ∈ Ṡ, and this is first order expressible using
R as a parameter. Therefore ∀Aϕ is a Π1 property of the structure (Vκ,∈, R), even
more

(∀Aϕ) ∧ (κ is Πβ
1 -indescribable)
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is a Π1 property of the structure (Vκ+λ+ ,∈, R, (Vκ+ξ | ξ < λ+)). By reflection, there

is µ < κ Πβ
1 -indescribable, such that µ ∈ C0, r ∈ Pµ, and

(Vµ+λ+ ,∈, R, (Vµ+ξ | ξ < λ+)) |= ∀Aϕ.

In the same way as in Claim 2.3.1, we can show that there is there is µ < κ Πβ
1 -

indescribable that is not Πβ+1
1 -indescribable, i.e. (µ̌G ∈ Y )V [G], such that µ ∈ C0,

r ∈ Pµ, and (Vµ+λ+ ,∈, R, (Vµ+ξ | ξ < λ+)) |= ∀Aϕ. Notice that α ∈ S ∩ µ implies

that (α̌, q̌) ∈ Ṡ for some q ∈ Pµ. Let Ṡµ = Ṡ ∩ Vµ, thus r 
Pµ (Ṡµ is stationary).
Let us define q as follows: dom(q) = dom(r) ∪ {µ+}, q � µ = r � µ and q(µ+) = f ,
dom(f) = {0}, and f(0) = h−1

µ (Ṡµ). Since Pµ is <λ+-closed and does not kill

stationary subsets of Sλ
++

λ , (Ṡµ)Gµ is stationary in V [G], and by the way we chose

µ, (Ṡµ)Gµ = (Ṡµ)G. Therefore q 
P (Ṡµ is stationary), and by the definition of Dµ

(in V [G]) we conclude that q 
P Ṡµ = Dµ. Finally, by the way we chose µ, we get
that (Ṡµ)G = S ∩ µ. We conclude that H is dense below p, a contradiction.

From now on in this proof, we will work in V [G]. In particular, κ will be λ++.

Claim 2.11.2. Eκ,κ
λ-club ≤c Πλ+ E2,κ

λ-club.

Proof. Let H be a bijection from κ to 2λ
+

. Define F : κκ → (2κ)λ
+

by F(f) =
(fγ)γ<λ+ , where fγ(α) = H(f(α))(γ) for every γ < λ+ and α < κ. Let us show that
F is a reduction of Eκ,κ

λ-club to Πλ+ E2,κ
λ-club.

Clearly f(α) = g(α) implies H(f(α)) = H(g(α)) and fγ(α) = gγ(α) for every
γ < λ+. Therefore, f Eκ,κ

λ-club g implies that for all γ < λ+, fγ E
2,κ
λ-club gγ holds. So

f Πλ+ E2,κ
λ-club g.

Suppose that for every γ < λ+ there is Cγ, a λ-club, such that fγ(α) = gγ(α)
holds for every α ∈ Cγ. Since the intersection of less than κ λ-club sets is a λ-club
set, there is a λ-club C on which the functions fγ and gγ coincide for every γ < λ+.
Therefore H(f(α))(γ) = H(g(α))(γ) holds for every γ < λ+ and every α ∈ C, so
H(f(α)) = H(g(α)) for every α ∈ C. Since H is a bijection, we can conclude that
f(α) = g(α) for every α ∈ C, and hence f Eκ,κ

λ-club g.

By Claim 2.11.1, there is a sequence 〈Sγ〉γ<λ+ of disjoint stationary subsets of
Sκλ+ such that Sκλ 3-reflects to Sγ for all γ < λ+. Let 〈Dγ

α〉α∈Sγ be a sequence that
witnesses that Sκλ 3-reflects to Sγ.

For every η ∈ κκ define F (η) by:

F (η)(α) =

{
1 if there is γ < λ+ with α ∈ Sγ and F(η)−1

γ [1] ∩Dγ
α stationary in α

0 otherwise
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where (F(η)γ)γ<λ+ = F(η) and where F is the reduction given by Claim 2.11.2.
Suppose η, ξ are not Eκ,κ

λ-club-equivalent. By Claim 2.11.2 there exists γ < λ+

such that F(η)−1
γ [1]∆F(ξ)−1

γ [1] is stationary. Therefore, either F(η)−1
γ [1]\F(ξ)−1

γ [1]
or F(ξ)−1

γ [1]\F(η)−1
γ [1] is stationary. Without loss of generality, let us assume that

F(η)−1
γ [1]\F(ξ)−1

γ [1] is stationary. Since Sκλ 3-reflects to Sγ,

A = {α ∈ Sγ | (F(η)−1
γ [1]\F(ξ)−1

γ [1]) ∩ α = Dγ
α}

is stationary and Dγ
α is stationary in α, and therefore A ⊆ F (η)−1[1]. On the

other hand, for every α in A we have F(ξ)−1
γ [1] ∩ Dγ

α = ∅, so A ∩ F (ξ)−1[1] = ∅
and we conclude that A ⊆ F (η)−1[1]∆F (ξ)−1[1]. Therefore F (η)−1[1]∆F (ξ)−1[1] is

stationary, and F (η) and F (ξ) are not E2,λ++

λ+-club-equivalent.

Suppose F (η) and F (ξ) are not E2,λ++

λ+-club-equivalent, so F (η)−1[1]∆F (ξ)−1[1] is
stationary. Since λ+ < κ, by Fodor’s lemma we know that there exists γ < λ+

such that {α ∈ Sγ | F (η)(α) 6= F (ξ)(α)} is stationary. Hence, the symmet-
ric difference of the sets {α ∈ Sγ | F(η)−1

γ [1] ∩ Dγ
α is stationary in α} and {α ∈

Sγ | F(ξ)−1
γ [1] ∩ Dγ

α is stationary in α} is stationary. For simplicity, let us de-
note by Aη the set {α ∈ Sγ | F(η)−1

γ [1] ∩ Dγ
α is stationary in α} and Aξ the set

{α ∈ Sγ | F(ξ)−1
γ [1] ∩ Dγ

α is stationary in α}. Therefore, either Aη\Aξ or Aξ\Aη
is stationary. Without loss of generality we can assume that Aη\Aξ is station-
ary. Hence,

⋃
α∈Aη\Aξ(F(η)−1

γ [1] ∩ Dγ
α)\F(ξ)−1

γ [1] is stationary and is contained in

F(η)−1
γ [1]∆F(ξ)−1

γ [1]. By Claim 2.11.2 we conclude that η and ξ are not Eκ,κ
λ-club-

equivalent.

Notice that Theorem 2.11 implies the consistency of

E2,λ++

λ-club ≤c Eλ++,λ++

λ-club ≤c E2,λ++

λ+-club ≤c Eλ++,λ++

λ+-club .

In particular, for λ = ω we get the expression

E2,ω2

ω-club ≤c Eω2,ω2

ω-club ≤c E2,ω2

ω1-club ≤c Eω2,ω2

ω1-club.

Question 2.12. Is it consistent that

E2,κ
γ-club �c Eκ,κ

γ-club �c E2,κ
λ-club

holds for all γ, λ < κ and γ < λ?

12



We will finish this section by showing that the reduction Eω2,ω2

ω-club ≤c E
ω2,ω2

ω1-club can
be obtained using other reflection principles. Specifically, full reflection implies this
reduction. For stationary subsets S and A of κ, we say that S reflects fully in A
if the set {α ∈ A | S ∩ α is non-stationary in α} is non-stationary. Notice that if
S ⊂ Sκγ reflects fully in Sκλ , then the set {α ∈ Sκλ | S ∩ α is stationary in α} is a
stationary set.

Theorem 2.13 ([JS], Theorem 1.3). Let κ2 < κ3 < · · · < κn < · · · be a sequence of
supercompact cardinals. There is a generic extension V [G] in which κn = ℵn for all
n > 2 and such that:

(i) Every stationary set S ⊂ Sω2
ω reflects fully in Sω2

ω1
.

(ii) For every 2 < n and every 0 ≤ k ≤ n−3, every stationary set S ⊂ Sωnωk reflects
fully in Sωnωn−1

.

In the generic extension of 2.13 it holds that ω<ωii = ωi for all i < ω (see [[JS],
Theorem 1.3]).

Corollary 2.14. Let κ2 < κ3 < · · · < κn < · · · be a sequence of supercompact
cardinals. There is a generic extension V [G] in which κn = ℵn for all n > 2 and
such that: Eω2,ω2

ω-club ≤c E
ω2,ω2

ω1-club
, and for every n > 2 and every 0 ≤ k ≤ n − 3,

Eωn,ωn
ωk-club

≤c Eωn,ωn
ωn−1-club

.

In [JS] it was also proved that Theorem 2.13 (ii) is optimal, in the sense that it
cannot be improved to include the case k = n − 2 [JS, Proposition 1.6]. The best
possible reduction we can get using only full reflection is the one in Corollary 2.14.
By a Σ1

1-completeness result, it is known that the following is consistent:

∀k < n− 1 (Eωn,ωn
ωk-club ≤c Eωn,ωn

ωn−1-club),

see Theorem 3.1 below.

3 Σ1
1-completeness

An equivalence relation E on X ∈ {κκ, 2κ} is Σ1
1 if E is the projection of a closed set

in X2 × κκ and it is Σ1
1-complete if every Σ1

1 equivalence relation is Borel reducible
to it. The study of Σ1

1 and Σ1
1-complete equivalence relations is an important area of

generalised descriptive set theory, because e.g. the isomorphism relation on classes of
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models is always Σ1
1. The same holds, in fact, in classical descriptive set theory, but

the behaviour of Σ1
1 complete relations there is different. For example, in the classical

setting (κ = ω) the isomorphism relation is never Σ1
1-complete, while in generalised

descriptive set theory this is often the case (see for example [HK, FHK14]).

Theorem 3.1 ([HK], Theorem 7). Suppose V = L and κ > ω. Then Eκ,κ
µ-club is

Σ1
1-complete for every regular µ < κ.

We know that Eκ,κ
λ-club � α is an equivalence relation for every α < κ with cf(α) >

λ. Let us define the following relation:

(η, ξ) ∈ Eκ,κ
reg � α⇔ {β ∈ reg(α) | η(β) 6= ξ(β)} is not stationary.

It is easy to see that Eκ,κ
reg � α is an equivalence relation.

Definition 3.2 (Weakly compact diamond). This notion was originally defined in
[Sun93]. Let κ > ω be a cardinal. The weakly compact ideal is generated by the
sets of the form {α < κ | 〈Vα,∈, U ∩ Vα〉 |= ¬ϕ} where U ⊂ Vκ and ϕ is a Π1

1-
sentence such that 〈Vκ,∈, U〉 |= ϕ. One can define a diamond principle with respect
to this ideal (rather than the non-stationary ideal). A set A ⊂ κ is said to be weakly
compact, if it does not belong to the weakly compact ideal. Note that κ is weakly
compact if and only if there exists A ⊂ κ which is weakly compact, i.e. the weakly
compact ideal is proper. For weakly compact S ⊂ κ, the S-weakly compact diamond,
WCκ(S), is the statement that there exists a sequence (Aα)α<κ such that for every
A ⊂ S the set

{α < κ | A ∩ α = Aα}
is weakly compact. We denote WCκ = WCκ(κ).

For a survey on weakly compact diamonds, see [Hel03].

Fact 3.3. The main facts that we will use are the following:

• If κ is weakly compact and V = L, then WCκ holds.

• If κ is weakly ineffable (same as almost ineffable), then WCκ holds.

See [Hel03] for proofs and references.

Lemma 3.4. Let κ be a weakly compact cardinal. The weakly compact diamond
WCκ implies the following principle WC∗κ. There exists a sequence 〈fα〉α∈reg(κ) such
that

14



• fα : α→ α,

• for all g ∈ κκ and stationary Z ⊂ κ the set

{α ∈ reg(κ) | g �α = fα ∧ α ∩ Z is stationary}

is stationary.

Proof. For the sake of this proof we view functions f : α→ α as subsets of α× α.
Let (Aα)α<κ be the WCκ-sequence and let π : κ× κ→ κ be a bijection. Let Cπ

be the set {α < κ | π[α×α] = α}. It is standard to verify that Cπ is a club. For all
α ∈ reg(κ) let fα = π−1[Aα] if α ∈ Cπ and π−1[Aα] is a function (i.e. for all β < α
there exists exactly one γ such that (β, γ) ∈ π−1[Aα]) and otherwise set fα to be
arbitrary. Let us show that this sequence is as desired. Let g ∈ κκ be a function
and Z stationary. Let Cg be the set {α < κ | g[α] ⊂ α} which is again a club. The
set

{α < κ | π[g] ∩ α = Aα}

is weakly compact and so is

{α ∈ Cg ∩ Cπ | π[g] ∩ α = Aα}.

But since α ∈ Cπ ∩ Cg, we have π[g] ∩ α = π[g ∩ (α× α)], so this set is equal to

S = {α ∈ Cg ∩ Cπ | g ∩ (α× α) = π−1[Aα]}
= {α ∈ Cg ∩ Cπ | g �α = fα}.

By the weak compactness of S, the stationarity of Z is reflected to a stationary
subset S ′ ⊂ S, so Z ∩ α is stationary for all α ∈ S ′.

Theorem 3.5. Suppose S = Sκλ for some λ regular cardinal, or S = reg(κ) and κ is
a weakly compact cardinal. If κ has the weakly compact diamond, then Eκ,κ

S ≤c E2,κ
reg .

Proof. Let 〈fα〉α<κ be a sequence that witnesses WC∗κ of Lemma 3.4. Let gα : κ→ κ
be the function defined by gα �α = fα and gα(β) = 0 for all β > α. Let us define
F : κκ → 2κ by

F (η)(α) =

{
1 if α ∈ reg(κ), Eκ,κ

S �α is an equivalence relation, and (η, gα) ∈ Eκ,κ
S �α

0 otherwise.
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(Recall Definition 2.7 for Eκ,κ
S � α.) Let us prove that if (η, ξ) ∈ Eκ,κ

S , then
(F (η), F (ξ)) ∈ E2,κ

reg . Suppose (η, ξ) ∈ Eκ,κ
S . Note that F (η)(α) = F (ξ)(α) = 0

for all α /∈ reg(κ), so it is sufficient to show that the set

{α ∈ reg(κ) | F (η)(α) 6= F (ξ)(α)}

is non-stationary. Now, there is a club D such that D ∩ {α ∈ S | η(α) 6= ξ(α)}
is non-stationary. So, letting C be the club of the limit points of D, it holds that
for all α ∈ C ∩ reg(κ), the functions η and ξ are Eκ,κ

S �α-equivalent. Thus, by the
definition of F , at the points of the set C ∩ reg(κ) the functions F (η) and F (ξ) will
get the same value.

Now let us prove that if (η, ξ) /∈ Eκ,κ
S , then (F (η), F (ξ)) /∈ E2,κ

reg . Suppose that
(η, ξ) /∈ Eκ,κ

S . Then there is a stationary Z ⊂ S on which η(α) 6= ξ(α). By
Lemma 3.4, there is a stationary set A ⊆ reg(κ) such that for all α ∈ A we have
that Z ∩ α is stationary and η �α = fα. This means that

{β < α | η(β) 6= ξ(β)}

is stationary, and so (η, ξ) /∈ Eκ,κ
S �α holds for all α ∈ A. However η �α = fα implies

that (η, gα) ∈ Eκ,κ
S �α, and so by transitivity (ξ, gα) /∈ Eκ,κ

S �α. Hence we get that
F (η)(α) = 1, but F (ξ)(α) = 0. This holds for all α ∈ A and A is stationary, so
(F (η), F (ξ)) /∈ E2,κ

reg .

Corollary 3.6. Suppose V = L and κ is weakly compact. Then E2,κ
reg is Σ1

1-complete.

Proof. This follows from Theorem 3.1, Fact 3.3 and Theorem 3.5.

Corollary 3.7. Suppose κ is a weakly ineffable cardinal. Then Eκ,κ
reg ≤c E2,κ

reg .

Proof. The result follows from Theorem 3.5 and Fact 3.3

Theorem 3.8. If κ is a Π1
2-indescribable cardinal, then Eκ,κ

reg is Σ1
1-complete.

Remark. Here the notion of Π1
2–indescribability is the usual one, not to be confused

with the Πλ
1–indescribability from Definition 2.2.

Proof. Let E be a Σ1
1 equivalence relation on κκ. Then there is a closed set C on

κκ×κκ×κκ such that η E ξ if and only if there exists θ ∈ κκ such that (η, ξ, θ) ∈ C.
Let us define U = {(η � α, ξ � α, θ � α) | (η, ξ, θ) ∈ C ∧α < κ}, and for every γ < κ
define

Cγ = {(η, ξ, θ) ∈ γγ × γγ × γγ | ∀α < γ (η � α, ξ � α, θ � α) ∈ U}.
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Let Eγ ⊂ γγ × γγ be the relation defined by (η, ξ) ∈ Eγ if and only if there exists
θ ∈ γγ such that (η, ξ, θ) ∈ Cγ. Notice that Eγ is not neccesarly an equivalence
relation. Let us define the reduction by

F (η)(α) =

{
fα(η) if Eα is an equivalence relation and η � α ∈ αα

0 otherwise.

where fα(η) is a code in κ\{0} for the Eα-equivalence class of η.
Let us prove that if (η, ξ) ∈ E, then (F (η), F (ξ)) ∈ Eκ,κ

reg . Suppose (η, ξ) ∈ E.
Then there is θ ∈ κκ such that (η, ξ, θ) ∈ C and for all α < κ we have that
(η � α, ξ � α, θ � α) ∈ U . On the other hand, we know that there is a club D such
that for all α ∈ D ∩ reg(κ), η � α, ξ � α, θ � α ∈ αα. We conclude that for all
α ∈ D ∩ reg(κ), if Eα is an equivalence relation, then (η, ξ) ∈ Eα. Therefore, for all
α ∈ D ∩ reg(κ), F (η)(α) = F (ξ)(α), so (F (η), F (ξ)) ∈ Eκ,κ

reg . Let us prove that if
(η, ξ) /∈ E, then (F (η), F (ξ)) /∈ Eκ,κ

reg . Suppose η, ξ ∈ κκ are such that (η, ξ) /∈ E.
We know that there is a club D such that for all α ∈ D ∩ reg(κ), η � α, ξ � α ∈ αα.

Notice that because C is closed (η, ξ) /∈ E is equivalent to

∀θ ∈ κκ (∃α < κ (η � α, ξ � α, θ � α) /∈ U),

so the sentence (η, ξ) /∈ E is a Π1
1 property of the structure (Vκ,∈, U, η, ξ). On the

other hand, the sentence ∀ζ1, ζ2, ζ3 ∈ κκ[((ζ1, ζ2) ∈ E ∧ (ζ2, ζ3) ∈ E)→ (ζ1, ζ3) ∈ E]
is equivalent to the sentence ∀ζ1, ζ2, ζ3, θ1, θ2 ∈ κκ[∃θ3 ∈ κκ(ψ1 ∨ ψ2 ∨ ψ3)], where
ψ1, ψ2 and ψ3 are, respectively, the formulas ∃α1 < κ (ζ1 � α1, ζ2 � α1, θ1 � α1) /∈ U ,
∃α2 < κ (ζ2 � α2, ζ3 � α2, θ2 � α2) /∈ U , and ∀α3 < κ (ζ1 � α3, ζ3 � α3, θ3 � α3) ∈ U .
Therefore, the sentence ∀ζ1, ζ2, ζ3 ∈ κκ[((ζ1, ζ2) ∈ E ∧ (ζ2, ζ3) ∈ E) → (ζ1, ζ3) ∈ E]
is a Π1

2 property of the structure (Vκ,∈, U).
The sentence ∀ζ1, ζ2 ∈ κκ[(ζ1, ζ2) ∈ E → (ζ2, ζ1) ∈ E] is equivalent to the

sentence ∀ζ1, ζ2, θ1 ∈ κκ[∃θ2 ∈ κκ(ψ1 ∨ ψ2)], where ψ1 and ψ2 are, respectively, the
formula ∃α1 < κ (ζ1 � α1, ζ2 � α1, θ1 � α1) /∈ U , and the formula ∀α2 < κ (ζ2 �
α2, ζ1 � α2, θ2 � α2) ∈ U .

Therefore, the sentence ∀ζ1, ζ2 ∈ κκ[(ζ1, ζ2) ∈ E → (ζ2, ζ1) ∈ E] is a Π1
2 property

of the structure (Vκ,∈, U).
The sentence ∀ζ ∈ κκ[(ζ, ζ) ∈ E] is equivalent to the following sentence

∀ζ ∈ κκ[∃θ ∈ κκ(∀α < κ (ζ � α, ζ � α, θ � α) ∈ U)].

Therefore, the sentence ∀ζ ∈ κκ[(ζ, ζ) ∈ E] is a Π1
2 property of the structure (Vκ,∈

, U).
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It follows that the sentence

(D is unbounded in κ)∧((η, ξ) /∈ E)∧(E is an equivalence relation)∧(κ is regular)

is a Π1
2 property of the structure (Vκ,∈, U, η, ξ). By Π1

2 reflection, we know that
there are stationary many γ ∈ reg(κ) such that γ is a limit point of D, Eγ is an
equivalence relation, and (η � γ, ξ � γ) /∈ Eγ. We conclude that there are stationary
many γ ∈ reg(κ) such that fγ(η) 6= fγ(ξ), and hence (F (η), F (η)) /∈ Eκ,κ

reg .

Corollary 3.9. Suppose κ is an ineffable cardinal, or weakly ineffable and Π1
2 in-

describable. Then E2,κ
reg is Σ1

1-complete.

Proof. An ineffable cardinal is both weakly ineffable and Π1
2-indescribable. So the

result follows by combining Corollary 3.7 and Theorem 3.8.

We will finish this article with a model theoretic result.

Theorem 3.10. Let DLO be the theory of dense linear orderings without end points.
If κ is a Π1

2-indescribable cardinal, then ∼=DLO is Σ1
1-complete.

Proof. By Theorem 3.8 it is enough to show that Eκ,κ
reg ≤c∼=DLO. To show this, first

we will construct models of DLO, AF(f), for every f : κ → κ, such that f Eκ,κ
reg g if

and only if AF(f) ∼= AF(g). After that we construct the reduction of Eκ,κ
reg to ∼=DLO.

Let us take the language L′ = {L,C,<,R}, with L and C as unary predi-
cates, and < and R as binary relations. Let K be the class of L′-structures
A = (dom(A), L, C,<,R) that satisfy the following conditions:

• L ∩ C = ∅.

• L ∪ C = dom(A).

• < ⊆ L× L is a dense linear order without end points on L.

• R ⊆ L× C.

• Let us denote by R−(y, x) the formula ¬R(y, x). For all x ∈ C, it holds that
R(A, x)∪R−(A, x) = L, R(A, x) has no largest element, and R−(A, x) has no
least element and they are non-empty.

Let us define the following partial order � on K. We say that A � B iff:

• A ⊆ B,
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• for all x ∈ CA, R(B, x) = {y ∈ LB | ∃z ∈ R(A, x), y < z} and
R−(B, x) = {y ∈ LB | ∃z ∈ R−(A, x), z < y},

• for all x ∈ CB\CA there are y ∈ R(B, x) and z ∈ R−(B, x) such that for all
a ∈ LA, a < y ∨ a > z.

Notice that it is possible to have a chain A0 � A1 � · · · of length α in K, and
a structure C ∈ K, such that

⋃
i<αAi ∈ K, Ai � C holds for all i < α, and⋃

i<αAi 6� C. But all other requirements of AEC’s are satisfied, as one can easily
see, in particular for every chain A0 � A1 � · · · of length α in K,

⋃
i<αAi ∈ K.

Claim 3.10.1. (K,�) has the amalgamation property and the joint embedding prop-
erty.

Proof. The joint embedding property is easily seen to follow from the amalgamation
property. For the amalgamation property, let A,B, C ∈ K be such that A � B and
A � C hold. Without loss of generality, we can assume that dom(B) ∩ dom(C) =
dom(A). Let us construct D with dom(D) equals to dom(B)∪dom(C), LD = LB∪LC,
and CD = CB ∪ CC. To define <D and RD, first define <′=<B ∪ <C. For every
two elements b, c ∈ LD define b <D c if either b <′ c, or there is a ∈ LA such that
b <′ a <′ c, or b ∈ LB, c ∈ LC and there is no a ∈ LA such that c <′ a <′ b. For
every x ∈ CA, R(D, x) = R(B, x) ∪R(C, x). For all x ∈ CB\CA, y ∈ R(D, x) if and
only if there exists z ∈ LB such that z ∈ R(B, x) and y <D z. For all x ∈ CC\CA,
y ∈ R(D, x) if and only if there exists z ∈ LC such that z ∈ R(C, x) and y <D z. It
is clear that D ∈ K, and B � D and C � D.

Let us denote by A1⊕A0 A2 the structure D, in Claim 3.10.1, that witnesses the
amalgamation property for the structures A0 � A1 and A0 � A2. For every ordinal
α, let us denote by α∗ the set α ordered by the reverse order <∗, i.e., β <∗ γ if
γ ∈ β. Let us order the members of Q× α∗ by: (r1, α1) <∗α (r2, α2) iff α1 <

∗ α2, or
α1 = α2 and r1 <

Q r2.
Let K<κ be the collection of all members of K of size less than κ. For every

A ∈ K<κ, denote by {A(i)}i<κ an enumeration of all the strong extensions of A,
i.e. A � B, of size less than κ (up to isomorphism over A). Let Π: κ → κ × κ,
Π(α) = (pr1(Π(α)), pr2(Π(α))) be a bijection such that pr1(Π(i)) ≤ i for all i. Given
a function f : κ→ reg(κ), let us construct the following sequence of models:

• Af0 = (Q, ∅, <, ∅).
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• For a successor ordinal, let D = Afi ⊕Af
pr1(Π(i))

Afpr1(Π(i))(pr2(Π(i))). Define

LA
f
i+1 = LD ∪ Q, CA

f
i+1 = CD, <A

f
i+1=<D ∪ <Q ∪{(x, y) | x ∈ LD ∧ y ∈ Q},

and RA
f
i+1 = RD. Clearly Afi+1 ∈ K.

• For i a limit ordinal, let D =
⋃
j<iA

f
j . Define LA

f
i = LD ∪ (Q × f(i)∗),

CA
f
i = CD ∪ {x}, <A

f
i =<D ∪ <∗f(i) ∪{(a, b) | a ∈ LD ∧ b ∈ Q × f(i)∗}, and

RA
f
i = RD ∪ {(y, x) | y ∈ LD}. Clearly Afi ∈ K.

Define Afκ by
⋃
j<κA

f
j . Then Af = (LA

f
κ , <A

f
κ) is a model of DLO.

Notice that if i < κ and C ∈ K, |C| < κ, are such that Afi � C, then there
is j < κ such that Afi (j) = C. Therefore there is l < κ such that Π(l) = (i, j),
Afpr1(Π(l)) = Afi , and Afpr1(Π(l))(pr2(Π(l))) = C. We conclude that if i < κ and

C ∈ K<κ are such that Afi � C, then there is j < κ and a strong embedding
F : C → Afj such that F (C) � Afj and F � Afi = id. Now we will show that if f
and g are functions from κ into reg(κ) such that f � (κ\ reg(κ)) = g � (κ\ reg(κ)),
then f Eκ,κ

reg g if and only if Af ∼= Ag. First of all, let us prove that (f, g) ∈ Eκ,κ
reg

implies Af ∼= Ag. Suppose (f, g) ∈ Eκ,κ
reg . Then there is a club C such that for all

α ∈ C ∩ reg(κ), f(α) = g(α). Since f � (κ\ reg(κ)) = g � (κ\ reg(κ)), we have that
for all α ∈ C, f(α) = g(α). By the way the models Afα and Agα were constructed
for α a limit ordinal, we know that if α is such that f(α) = g(α) and there is an
isomorphism F :

⋃
i<αA

f
i →

⋃
i<αA

g
i , then there is an isomorphism G : Afα → Agα

such that F ⊆ G. For all i < κ construct αi < κ and a strong embedding Fi such
that the following hold:

(i) For every i < κ there is some γ ∈ C such that αi < γ < αi+1.

(ii) For all i < j < κ, fi ⊆ fj.

(iii) The following holds for every limit ordinal β < κ:

• for every even 0 < i < ω, dom(Fβ+i) = Afαβ+i
, and Fβ+i(Afαβ+i

) �
Agαβ+i+1

,

• for every odd 0 < i < ω, rang(Fβ+i) = Agαβ+i
, and F−1

β+i(Agαβ+i
) � Afαβ+i+1

,

• αβ =
⋃
i<β αi, dom(Fβ) = Afαβ , and rang(Fβ) = Agαβ .

We will construct these sequences by induction. For i = 0, take α0 = 0 and F0 = id.
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Successor case: Suppose β is a limit ordinal or zero, and 0 ≤ i < ω are such
that αβ+i and Fβ+i are constructed such that (i), (ii), and (iii) are satisfied. Let
us start with the case when i is odd. Choose αβ+i+1 such that (i) holds. Since
F−1(Agαβ+i

) � Afαβ+i+1
, there are C ∈ K<κ and F ⊇ Fβ+i such that Agαβ+i

� C and

F : Afαβ+i+1
→ C is an isomorphism. By the observation we made above, there is

j < κ and a strong embedding G : C → Agj such that G(C) � Agj and G � Agαβ+i
= id.

Define Fαβ+i+1
= G ◦ Fαβ+i

. Clearly Fαβ+i+1
satisfies conditions (ii) and (iii). The

case when i is even is similar to the odd case.
Limit case: Suppose β is a limit ordinal such that for all i < β, αi and Fi

are constructed such that (i), (ii), and (iii) are satisfied. By (i), we know that
αβ =

⋃
i<β αi is a limit point of C, so f(αβ) = g(αβ). On the other hand, by

conditions (ii) and (iii) we know that⋃
i<β

Fi :
⋃
i<β

Afαi →
⋃
i<β

Agαi

is an isomorphism. Therefore, there is an isomorphism G : Afα → Agα such that⋃
i<β Fi ⊆ G. We conclude that Fαβ = G satisfies (ii) and (iii).

Finally, notice that ⋃
i<κ

Fi :
⋃
i<κ

Afαi →
⋃
i<κ

Agαi

is an isomorphism. We conclude that Af and Ag are isomorphic.
Let us prove that Af ∼= Ag implies (f, g) ∈ Eκ,κ

reg . Suppose, towards a contra-
diction, that (f, g) /∈ Eκ,κ

reg and there is an isomorphism F : Af → Ag. Since F is

an isomorphism, there is a club C such that F (
⋃
i<αA

f
i ) =

⋃
i<αA

g
i holds for all

α ∈ C. Since (f, g) /∈ Eκ,κ
reg , C ∩ {α ∈ reg(κ) | f(α) 6= g(α)} is nonempty. Take

α ∈ C ∩ {γ ∈ reg(κ) | f(γ) 6= g(γ)}. We know that F (
⋃
i<αA

f
i ) =

⋃
i<αA

g
i and

f(α) 6= g(α). Hence, the co-initiality of {a ∈ Af | ∀b ∈
⋃
i<αA

f
i (b <

Af a)} with

respect to <A
f

is f(α). Since F is an isomorphism and F (
⋃
i<αA

f
i ) =

⋃
i<αA

g
i , the

co-initiality of {a ∈ Ag | ∀b ∈
⋃
i<αA

g
i (b <

Ag a)} with respect to <A
g

is also f(α).
We conclude that f(α) = cf(g(α)), so f(α) = g(α), a contradiction. To finish with
the construction of the models, let us define AF(f) for all f : κ→ κ. Fix a bijection
G : κ→ reg(κ). Define F : κκ → κκ by

F(f)(α) =

{
G(f(α)) if α ∈ reg(κ)

0 otherwise
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Clearly f Eκ,κ
reg g if and only if F(f) Eκ,κ

reg F(g), and F(f) Eκ,κ
reg F(g) if and only if

AF(f) and AF(g) are isomorphic. Now we will construct a reduction of Eκ,κ
reg to ∼=DLO

by coding the models AF(f) by functions η : κ→ κ.
Clearly the models AF(f) satisfy that

F(f) � α = F(g) � α⇔ AF(f)
α = AF(g)

α .

For every f ∈ κκ define Cf ⊆ Card ∩ κ such that for all α ∈ Cf , it holds that for

every β < α, |AF(f)
β | < |AF(f)

α |. For every f ∈ κκ and α ∈ Cf choose a bijection

Eα
f : dom(AF(f)

α ) → |AF(f)
α | such that for all β < α in Cf it holds that Eβ

f ⊆ Eα
f .

Then
⋃
α∈Cf E

α
f = Ef is such that Ef : dom(AF(f)) → κ is a bijection, and for

every f, g ∈ κκ and α < κ the following holds: If F(f) � α = F(g) � α, then

Ef � dom(AF(f)
α ) = Eg � dom(AF(g)

α ). Let π be the bijection in Definition 1.4.
Define the function G by:

G(F(f))(α) =

{
1 if α = π(m, a1, . . . , an) and AF(f) |= Pm(E−1

f (a1), . . . , E−1
f (an))

0 in the other case.

To show that G is continuous, let [η � α] be a basic open set and ξ ∈ G−1[[η � α]].
There is β ∈ Cξ such that for all γ < α, if γ = π(m, a1, a2, . . . , an), then E−1

ξ (ai) is

an element of dom(Aξβ) for all i ≤ n. Since for all ζ ∈ [ξ � β] it holds that Aξβ = Aζβ,
for every γ < α such that γ = π(m, a1, a2, . . . , an), it holds that

Aξ |= Pm(E−1
ξ (a1), E−1

ξ (a2), . . . , E−1
ξ (an))

if and only if
Aζ |= Pm(E−1

ζ (a1), E−1
ζ (a2), . . . , E−1

ζ (an))

We conclude that G(ζ) ∈ [η � α], and G ◦ F is a continuous reduction of Eκ,κ
reg to

∼=DLO.

4 Further research

In this paper we showed for various equivalence relations in various models of set
theory, and sometimes in ZFC under certain cardinality assumptinos, that they
are Σ1

1-complete. In particular the equivalence relation modulo the non-stationary
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ideal is Σ1
1-complete if κ is an ineffable cardinal. This, and related equivalence

relations, play a role in model theory as exemplified by Theorem 3.10 which shows
how generalized descriptive set theory is different from the classical study where
κ = ω and the isomorphism relation of countable structures is never Σ1

1-complete.
This was also the original motivation for studying such fine grained questions as
whether Eκ,κ

µ−club can be reduced to E2,κ
µ−club for some µ < κ. How much more can

one prove in ZFC for κ > ω? For successor cardinals the answer is partially known:
starting from V = L for every successor cardinal κ there exists a GCH and cardinal
preserving forcing notion such that in the extension the equivalence relation modulo
the non-stationary ideal is not Σ1

1-complete. The following questions remain open.

Question 4.1. Is it consistent that the isomorphism relation on graphs or dense
linear orders is not Σ1

1-complete for some κ > ω? Of course κ cannot be Π1
2-

indescribable by Theorem 3.10.

Question 4.2. Is it consistent for some cardinal κ and a regular µ < κ that Eκ,κ
µ is

not reducible to E2,κ
µ ? Note: it has been shown [FHK14] that it is consistent that

E2,κ
S is not reducible to E2,κ

S′ for S ′ \ S stationary which implies the consistency of
e.g. Eκ,κ

µ 66B E2,κ
µ′ for µ 6= µ′.

Question 4.3. Is it consistent that κ is inaccessible and E2,κ
S is not Σ1

1-complete
for some stationary S ⊂ κ? What about κ weakly compact and S = Sκµ for some
regular µ < κ? Note: it follows from the result of [FWZ15] that it is consistent that
E2,κ
κ is not Σ1

1-complete (in fact ∆1
1) for successor κ.
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