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Abstract

Working under large cardinal assumptions such as supercompactness, we
study the Borel-reducibility between equivalence relations modulo restrictions
of the non-stationary ideal on some fixed cardinal k. We show the consis-

4\t
tency of E;\‘_Clu’]j , the relation of equivalence modulo the non-stationary

ideal restricted to S /’\\++ in the space ()\++)A++, being continuously reducible to

EQ,A++
At-club’

to S ii " in the space 22" Then we show that for « ineffable Erzég , the relation

of equivalence modulo the non-stationary ideal restricted to regular cardinals
in the space 2%, is E%—complete. We finish by showing, for H%—indeseribable
k, that the isomorphism relation between dense linear orders of cardinality x
is ¥1-complete.

the relation of equivalence modulo the non-stationary ideal restricted

1 Introduction

Throughout this article we assume that x is an uncountable cardinal that satisfies
k<" = k. The equivalence relations modulo (restrictions of) the non-stationary
ideal have provided a very useful tool, and a main focus of study, in generalized
descriptive set theory. In [FHK14] it was shown that the relation of equivalence
modulo the non-stationary ideal is not a Borel relation, and that if V' = L, then
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it is not Aj. The equivalence relation modulo the non-stationary ideal restricted
to a stationary set S, denoted Eé’“ (see Definition 1.3), is useful when it comes to
studying the complexity of the isomorphism relations of first order theories (=7, see
Definition 1.5). In [FHK14] it was proved that, under some cardinality assumptions,
Eg’,f is Borel reducible to =, for every first order stable unsuperstable theory T,
where S% is the set of A-cofinal ordinals below x. Similar results were obtained in
[FHK14] for the other non-classifiable theories. This motivates the study of the
Borel-reducibility properties of Eg’“.

Theorem 1.1 ([FHK14], Theorem 56). The following is consistent: For all station-
ary S and S’, Eg’” is Borel reducible to E;’,H if and only if S C 5’.

Theorem 1.2 ([FHK14], Theorem 55). The following is consistent: E;ﬁf is Borel

reducible to E;g?

In [HK] the authors used the Borel-reducibility properties of the equivalence
relation modulo the non-stationary ideal to prove that in L, all 3{ equivalence
relations are reducible to =py,o, where DLO is the theory of dense linear orderings
without end points, which means that this equivalence relation is on top of the
Borel-reducibility hierarchy among Y}-equivalence relations, i.e. it is Xi-complete.
This result stands in contrast to the classical, countable case, x = w, for which it
is known that all other isomorphism relations are reducible to =pro [FS89], but far
from all Y{-equivalence relations are reducible to it; even some Borel-equivalence
relations such as F are not reducible to any isomorphism relations in the countable
case. So the question remained: is the ¥1-completeness of =pr o just a manifestation
of the pathological behaviour of L or is it a more robust property in the generalised
realm? One of the contributions of this paper is that the ¥1-completeness of py ¢ is
indeed a rather robust phenomenon and holds whenever x has certain large cardinal
properties (Theorem 3.10).

It was asked in [FHK15] and in [KLLS16, Question 3.46] whether or not the
equivalence relation modulo the non-stationary ideal on the Baire space can be
reduced to the Cantor space for some fixed cofinality: in our notation, whether
or not Eg;: < Egﬁ“ We approach the problem by proving several results in this
direction. Our results have the forms

Ry 2,k
ESﬁ < ESﬁ* )

K,K 2,k
ESS < Ereg(n) ’



and

KK 2,K
Ergtn) S Erdgloy:

where p* is larger than p and reg(k) is the set of regular cardinals below r, for
k Mahlo. These results are obtained under various assumptions and sometimes in
forcing extensions.

Many of the results in the area of reducibility of equivalence relations modulo
non-stationary ideals use combinatorial principles, like <, and other reflection prin-
ciples. In this paper we bring also some large cardinal principles into the picture.

The generalized Baire space is the set " with the bounded topology. For every
¢ € k<", the set

[l ={nexr"|¢Cn}
is a basic open set. The open sets are of the form | J X where X is a collection of
basic open sets. The collection of x-Borel subsets of k" is the smallest set which
contains the basic open sets and is closed under unions and intersections of length .

Since in this paper we do not consider any other kind of Borel sets besides x-Borel,
we will omit the prefix “k-".

The generalized Cantor space is the subspace 2% C k" with the relative sub-
space topology. For X|Y € {k" 2"}, we say that a function f: X — Y is Borel
if for every open set A C Y the inverse image f~'[A] is a Borel subset of X.
Let E; and E5 be equivalence relations on X and Y respectively. We say that
E, is Borel reducible to FE if there is a Borel function f: X — Y that satisfies
(n,€) € By < (f(n), f(&)) € Ey. We call f a reduction of Ey to Ey. This is denoted
by Ey <p E,, and if f is continuous, then we say that E; is continuously reducible
to Es, which is denoted by E; <. FEs.

For every stationary S C k, we define the equivalence relation modulo the non-
stationary ideal restricted to a stationary set S, on the space A\* for A € {2, k}:

Definition 1.3. For every stationary S C & and A € {2, s}, we define E3" as the
relation

E" ={(n,&) € N x X\ | {a < k| n(a) # &()} NS is not stationary}.

Note that Eg’” can be identified with the equivalence relation on the power set of
# in which two sets A and B are equivalent if their symmetric difference restricted
to S is non-stationary. This can be done by identifying a set A C k with its
characteristic function.



For every regular cardinal 1 < x, we denote {a < & | cf(a) = u} by Sj;i. A set
C'is p-club if it is unbounded and closed under p-limits. For brevity, when S = S

e
we will denote Eg; by El;\_’flub. Note that (f,g) € E;‘_’flub if and only if the set
{a < k| f(a) = g(a)} contains a p-club.

For a Mahlo cardinal k, the set reg(k) = {a < K | a aregular cardinal} is
stationary. We will denote the equivalence relation Efe’g(ﬁ) by E;\eg

Given an equivalence relation E on X € {k" 2%}, we can define the A\-product
relation of E for any 0 < A < k. The A-product relation II, F is the relation defined
on X* x X* by n ILE € if n, E &, holds for every v < A, where = (1,),<x
and & = (&,),<x. We endow the space X*, X € {x* 2"}, with the box topology

generated by the basic open sets:
{I14<AO, | Va < A (O, is an open set in X)}.

One of the motivations to study Borel reducibility in generalized Baire spaces
is the connection with model theory. This connection consists in the possibility
to study the Borel reducibility of the isomorphism relation of theories by coding
structures with universe x via elements of k*. We may fix this coding, relative to
a given countable relational vocabulary £ = {P, | n < w}, as in the following
definition.

Definition 1.4. Fix a bijection 7: k<“ — k. For every n € k" define the L-
structure A, with universe x as follows: For every relation P, with arity n, every
tuple (aq,as,...,a,) in K™ satisfies

(a,l7a2,. .. ,an) € P;:n — n(ﬂ(mua’IJCLQ?' o 7an)) 2 L.

When we describe a complete theory T' in a vocabulary £’ C L, we think of it
as a complete L-theory extending T'U {Vz—P,(z)| P, € L\L'}.

Definition 1.5 (The isomorphism relation). Assume 7" is a complete first order
theory in a countable vocabulary. We define = as the relation

{(,8) e " x w" | (Ay E T, A E T, Ay = Ac) or (A T, Ae = T)}-

In the second section we will study the reducibility between different cofinalities,
and in the last section we will study the reducibility of Ef; and Efég. Here is the
list of the main results in this article:



(Theorem 2.11) Suppose  is a 11} -indescribable cardinal for some \ < k and

[ ]
V = L. Then there is a forcing extension where k is collapsed to become AT+
AT AT 22Tt
and E/\—club <c E>\+—club'

e (Corollary 2.14) Let kg < k3 < -++ < K, < -+ be a sequence of supercompact
cardinals. There is a generic extension V|G| in which k, = X, for alln > 2
and such that: EJ25 <. B0, and for everyn > 2 and every 0 < k <n—3,
B e <e B ey
This corollary follows from [[JS], Theorem 1.3] and gives a model (different
from L or the one in Theorem 1.2) in which reducibility between different

cofinalities holds.

e (Theorem 3.5) Suppose S = S% for some reqular cardinal A < k, or S = reg(k)
and k weakly compact. If k has the weakly compact diamond (Definition 3.2),
then EG" <. E%%

reg*

e (Corollary 3.6) Suppose V. = L and k is weakly compact. Then Eﬁ;g is Y-
complete.

e (Corollary 3.7) Suppose k is a weakly ineffable cardinal. Then E%F <. E%:

reg — reg *

e (Theorem 3.8) If s is a Ily-indescribable cardinal, then Eor is ¥1-complete.

e (Corollary 3.9) Suppose « is an ineffable cardinal (or weakly ineffable and T13-
indescribable). Then E%F is ¥l-complete.

reg

e (Theorem 3.10) Let DLO be the theory of dense linear orderings without end
points. If k is a I-indescribable cardinal, then =pro is X1-complete.

2 Reducibility between different cofinalities

In [FHK14] the authors studied the reducibility between the relations Ei’_'zlub and
2,)\++

N upe 10 this section we con-

showed in particular the consistency of Ei;\;g <., F
tinue along these lines.

Definition 2.1. We say that a set X C k strongly reflects to a set Y C & if for all
stationary Z C X there exist stationary many o € Y with Z N « stationary in a.



In [FHK14, Theorem 55] it is proved that: If x is a weakly compact cardinal,
then S% strongly reflects to reg(k), for any regular cardinal A < k. This result can
be generalized to II3-indescribable cardinals:

Definition 2.2. A cardinal « is [I3-indescribable (for A < k) if whenever A C V
and o is a II; sentence such that

(fo-i-)\a G,A, (V:‘f-‘rf | 5 < A)) IZ g,

then for some a < k,
(Va+/\7 €>A N Vom (Va+§ : 6 < A)) ): g

Note that, in Definition 2.2, the existence of some o < k at which the required
reflection is effected is equivalent to the existence of stationary many such o < &.

Lemma 2.3. Suppose k is a [13-indescribable cardinal. There are X many disjoint
stationary subsets of k, (Sy)y<r, such that for every v < A, S, C reg(k) and &
strongly reflects to S.,.

Proof. Let S5 denote the set of all the Hf -indescribable cardinals below . Since “k

is ITY-indescribable” is a II; property of the structure Ve, €, (Ve | € < A)), the
set 53 is stationary for every 8 < A.
Let us show that for every stationary set X C k,

B ={a € S;| X Nais stationary in a}
is stationary. Let C' be a club in x. The sentence
(C'is unbounded in k) A (X is stationary in &) A (s is IT?-indescribable)

is a IT; property of the structure (Viyy, €, X, C, (Viie | £ < A)). By reflection, there
is v < k such that C' N~ is unbounded in 7, and hence v € C, X N~ is stationary
in v, and 7 is Hf -indescribable. We conclude that C' N B # (.

Let us denote S5\Sj,, by Ss. Let us show that for every stationary set X C &,

{a € S5 | X Na is stationary in o}

is stationary. Let C' be a club in k. Since {a € S; | X N« is stationary in a} is
stationary, we can pick v € CN{a € S | X Na is stationary in «} such that ~ is
minimal.



Claim 2.3.1. v s not Hf“—mdescm’bable.

Proof. Suppose, towards a contradiction, that ~ is Hf *1indescribable. The sentence
(C'N is unbounded in v) A (X N is stationary in 7) A (v is IT5-indescribable)

is a II; property of the structure (Vi4:1,€, X Ny, C N7y, (Vige | € < +1)). By
reflection, there is v/ < v such that C' N+’ is unbounded in v/, X N~/ is stationary
in +/, and v/ is Hf -indescribable. This contradicts the minimality of . ]

We conclude that Sz is stationary and {a € Sz | X N «a is stationary in a} is
stationary, for every § < A. m

The notion of O-reflection was introduced in [FHK14] in order to find reductions
between equivalence relations modulo non-stationary ideals (see below).

Definition 2.4 (O-reflection). Let X, Y be subsets of k and suppose Y consists of
ordinals of uncountable cofinality. We say that X <-reflects to Y if there exists a
sequence (D,)q.cy such that:

e D, C « is stationary in « for all a € Y.
e if Z C X is stationary, then {a« € Y | D, = Z N a} is stationary.

Theorem 2.5 ([FHK14], Theorem 59). Suppose V. = L and that X C Kk and
Y Creg(k). If X strongly reflects to Y, then X O-reflects to Y.

Theorem 2.6 ([FHK14], Theorem 58). If X O-reflects to Y, then EY* <. Ey".

O-reflection also implies some reductions for the relations Ez_’flub on the space
k". To show this, we first need to introduce some definitions.

Definition 2.7. For every ao < k with v < cf(a) define EJ2,, | o by:

Elqw To={(n¢) € k" x x| 3C C a a vy-club, VB € C,n(B) = £(B)}-
Proposition 2.8. Suppose v < A < K are reqular cardinals. If ST strongly reflects

K KyK K,k
to SY, then ET o <c EX -



Proof. Suppose that for every stationary set S C 57 it holds that
{a € S§ | SN a is stationary in o}

is a stationary set, and define F': k* — k" by

fa(n), if cf (o) = A

Fn)(a) {O, otherwise.
where f,(n) is a code in x\{0} for the (E]2],, | @)-equivalence class of 7.

Let us prove that if (,£) € EJ,,, then (F(n), F(§)) € EYd,,- Suppose (1,§) €
EX oy There is a y-club where 7 and & coincide and so there is a club C' such
that for all @« € C'N S the functions 1 and £ are (E';_’flub [ o)-equivalent. Thus,
by the definition of F, for all « € C' N SY, F(n)(a) = F(£)(a). We conclude that
(F(n), F(€)) € B3t

Let us prove that if (n,&) ¢ E7,,, then (F(n), FI(§)) ¢ EYf,,- Suppose that
(7,§) ¢ EJ 4y, Then there is a stationary S C S¥ on which n(a) # §(a). Since
A ={a € S| SNais stationary in a} is stationary and for all « € A, f,(n) #

fa(&), we conclude that (F'(n), F(§)) ¢ EX - O]

Corollary 2.9. Suppose v < A\ < k are reqular cardinals. If S5 <-reflects to SY,
then

. 2.k 2.k
(i) E'y—club <c¢ EX ciup-

.. KK KK
(ii) E'y—club <c EX b

Proof. (i) Follows from Theorem 2.6.

(ii) By the definition of O-reflection, SF O-reflecting to S§ implies that for all
S C 8% the set {av € SY | S N« is stationary in a} is a stationary set. The
result follows from Proposition 2.8.

O
In [FHK14], the consistency of Sf\‘++ O-reflecting to Sf\‘I+ was shown. This gives
. . At AT At AT
a model in which By o <. E3f  and By o0 <. By 0.

Theorem 2.10 ([FHK14], Theorem 55). Suppose that k is a weakly compact cardinal
and V = L. Then:

(i) EY",.. <. E%% holds for all reqular \ < k.

reg

8



(ii) For every regular A < k there is a forcing extension where k is collapsed to

4+ 22Tt 22T+
become X and EY ' <c BN -

The proof of this theorem can be generalised using Lemma 2.3 to show the

. AT AT 2.\ T+
consistency of B\ 4.7 <¢ B

Theorem 2.11. Suppose K is a H{‘+ -indescribable cardinal and that V' = L. Then

. . . . Attt At
there is a forcing extension where K is collapsed to become Xt and E <c
E2’A++

At -club”

Proof. Let us collapse k to AT" with the Levy collapse

P={f: reg(r) = k™" | rang(f()) C p, {p | F(n) # O} < A}

where f > g if and only if f(u) C g(p) for all o € reg(x). Let us define P, and P*
for all p by: P, = {f € P | sprt(f) C pu} and P* = {f € P | sprt(f) C x\pu}. It is
known that all regular A < p < k satisty:

(i) if g > AT, then P, has the p-c.c.,

(ii) P, and P* are <A*-closed,

(iii) P =P, IF AT = &,

(vi) if u < K, then P IF cf (i) = AT,

(v) if p € P, 0 a name, and p IF “o is a club in AT*”, then there is a club £ C &
such that pIF F C o.

Claim 2.11.1. There is a sequence (Sy),<x+ of disjoint stationary subsets of S))\‘fr
such that in V[G] Sy O-reflects to S., for every y < \*.

Proof. Let G be a P-generic over V, and define G, = GNP, and G* = G NP~
So G, is P,-generic over V, G" is P*-generic over V[G,], and V[G] = VI[G,][G"].
Let Sj denote the set of all I1}-indescribable cardinals below & and Sg = S5\Sh41-
We will show that S} O-reflects to Sy for all f < A*. Let us fix # < AT and
denote by Y the set SY. By Lemma 2.3 we know that SY is stationary and by (v),
it remains stationary in V[G]. By (i) we know that there are no antichains of length
p in P,, and since |P,| = p we conclude that there are at most p antichains. On
the other hand, there are u* many subsets of u. Hence, there is a bijection

h,: u= — {o | o is a nice P, name for a subset of u}

9



for each p € reg(x) such that ;> A", where a nice P, name for a subset of j is of
the form (J{{a} x A, | @ € B} with B C f1 and A, an antichain in P,. Notice that
the nice P, names for subsets of /i are subsets of V,,. Let us define

D — (R ([(UG) (1)) (0))]g  if this set is stationary
e 7 otherwise.

We will show that (D,),ey is the needed $-sequence in V[G].

Suppose, towards a contradiction, that there are a stationary set S C Sf\‘++ and
a club C' C A™* (in V[G]) such that for all « € CNY, D, # SNa. By (v) there
is a club Cy  C such that Cy € V. Let S be a nice name for S and p a condition
such that p forces that S is stationary. We will show that

H={q<pl|qlFD,= S0 for some u € Cy}

is dense below p, which is a contradiction. Let us slightly redefine P.

Let P* = {q | Ir € P(r | sprt(r) = q)}. Clearly P = P* P* C V,, and
Pr =P NV, where P} = {q | Ir € P, (r | sprt(r) = q)}. It can be verified that
the properties mentioned above also hold for ;. From now on denote P}, by P,.
Let r be a condition stronger than p and

R=(Px{0})U(Sx {1})U(Cox {2} U ({r} x {3})).

Let YAy be the formula:

If A is closed and unbounded and t < r are arbitrary, then there exists ¢ < r and
a € A such that ¢ Fp & € S.

Clearly, YAy says r I (S is stationary). By (v) it is enough to quantify over
club sets in V. Notice that t < r, ¢ < t, A is a club, and a € A are first order

expressible using R as a parameter. The definition of & is recursive in a:

a={(7,1p) | v <o}

and it is absolute for V. Then ¢ IFp & € S is equivalent to saying that for each
¢ < q there exists ¢” < ¢ with (&,¢") € S, and this is first order expressible using
R as a parameter. Therefore VAyp is a II; property of the structure (V, €, R), even
more

(VA@) A (k is TT%-indescribable)

10



is a II; property of the structure (Viia+, €, R, (Ve | € < A1)). By reflection, there
isu<k Hf -indescribable, such that u € Cy, r € P,,, and

(Via+, €, R, (Vige | €< AT)) EVAp.

In the same way as in Claim 2.3.1, we can show that there is there is y < & Hf—
indescribable that is not IT) -indescribable, i.e. (jig € Y)Y, such that u € Cy,
r € P, and (Vyia+, €, R, (Vige | € < AT)) = VAp. Notice that a € SN p implies
that (&,q) € S for some ¢ € P,. Let Su = SN V,, thus r IFp, (Su is stationary).
Let us define ¢ as follows: dom(q) = dom(r)U{u*}, ¢ [ p=r [ pand q(pu*) = f,
dom(f) = {0}, and f(0) = h;l(SM). Since P* is <AT-closed and does not kill

stationary subsets of S}, (SM>G# is stationary in V[G], and by the way we chose

i, (SM)GH = (S,)a. Therefore q IFp (S, is stationary), and by the definition of D,
(in V[G]) we conclude that ¢ IFp Su = D,. Finally, by the way we chose u, we get

that (S,)q = S N . We conclude that H is dense below p, a contradiction. O

From now on in this proof, we will work in V[G]. In particular, x will be AT*.
Claim 2.11.2. By, < I EY", .

Proof. Let H be a bijection from s to 2*". Define F: x* — (2°)*" by F(f) =
(fy)y<r+, where f,(a) = H(f())(7) for every v < A" and a < k. Let us show that
F is a reduction of E{7 \ to I+ Eij'zlub.

Clearly f(a) = g(a) implies H(f(a)) = H(g(a)) and f,(a) = g,(c) for every

v < A*. Therefore, f EY% . g implies that for all v < X\*, £, E g holds. So

f e EX, 9-

Suppose that for every v < AT there is C,, a A-club, such that f,(a) = g,(a)
holds for every a € C.,. Since the intersection of less than x A-club sets is a A-club
set, there is a A-club C' on which the functions f, and g, coincide for every v < A™.
Therefore H(f(a))(y) = H(g(«))(7y) holds for every v < AT and every a € C, so
H(f(a)) = H(g()) for every a € C. Since H is a bijection, we can conclude that
f(a) = g(a) for every a € C, and hence f EV7 4 g. O

By Claim 2.11.1, there is a sequence (S,),<x+ of disjoint stationary subsets of
Sy such that S§ O-reflects to S, for all v < A*. Let (D])acs, be a sequence that
witnesses that S§ <-reflects to S,

For every n € k" define F(n) by:

1 if there is v < AT with « € S, and F(n);'[1] N DY stationary in «

0 otherwise

F(n)(a) = {

11



where (F(n)y)y<x+ = F(n) and where F is the reduction given by Claim 2.11.2.

Suppose 7, £ are not E\7  -equivalent. By Claim 2.11.2 there exists 7 < AT
such that F(n);'[1 ]A}"(f);l[l] is stationary. Therefore, either F(n);'[1]\F(£);*[1]
or F(§ ) dit ]\}" (n ) [1] is stationary. Without loss of generality, let us assume that
Fn); [ NF(6); [ ] is stationary. Since Sy O-reflects to S,

A={aeS, | (Fo); INFE;' 1) na =D}

is stationary and D] is stationary in «, and therefore A C F(n)~![1]. On the
other hand, for every o in A we have F(§);'[1]N DY = 0, so AN F(&§)7'[1] =0
and we conclude that A C F(n) 1]AF(¢)7!1]. Therefore F(n) [1]AF(&)71[1] is
stationary, and F'(n) and F(§) are not Eif‘ +1+ ,-equivalent.

Suppose F(n) and F(§) are not E/\+ jb equivalent, so F(n) '[1JAF(£)7'[1] is
stationary. Since AT < k, by Fodor’s lemma we know that there exists v < A*
such that {o € 9, | F( o) # F(&)(a )} is stationary. Hence, the symmet-
ric difference of the sets {a € S, | F(n);'[1] N DY is stationary in o} and {a €

Sy | F();'[1] N D is stationary in a} is stationary. For simplicity, let us de-
note by A, the set {a € S, | F(n);'[1] N DY is stationary in o} and A the set
{a € S, | ]—"( );'[1] N DY is stationary in o}. Therefore, either A,\A¢ or A¢\A,
is stationary. Wlthout loss of generality we can assume that A,\A is station-
ary. Hence, U%An\A5 (Fm;' 1] N DY\F(£)5'[1] is stationary and is contained in
F(n); JAF(€)5'[1]. By Claim 2.11.2 we conclude that n and & are not EYy,-
equivalent. O

Notice that Theorem 2.11 implies the consistency of

2,2t AT AT 2.\t + AT AT
E)\ club <ec E)\ club <c E>\+ club <c E>\+ club

In particular, for A = w we get the expression

E2 w9 Ewg ;w2 S

w-club — w-club

E2 wa < sz ;w2
4

wi-club —¢ wi-club*

Question 2.12. Is it consistent that
2,k KK 2,k
E> <. EZ <c EVow

y-club =€ y-club =€

holds for all v, A < k and v < A?

12



We will finish this section by showing that the reduction E*7217% <. E:jffﬁlb can
be obtained using other reflection principles. Specifically, full reflection implies this
reduction. For stationary subsets S and A of k, we say that S reflects fully in A
if the set {o € A | S N« is non-stationary in a} is non-stationary. Notice that if
S C S reflects fully in S, then the set {a € S§ | SN a is stationary in a} is a

stationary set.

Theorem 2.13 ([JS], Theorem 1.3). Let ky < k3 < -+ < K, < --- be a sequence of
supercompact cardinals. There is a generic extension V[G] in which k, = N, for all
n > 2 and such that:

(i) Every stationary set S C S&* reflects fully in S52.

ii) For every 2 < n and every 0 < k < n—3, every stationary set S C S*" reflects
(i) o
Jully in Sz .

In the generic extension of 2.13 it holds that w " = w; for all i < w (see [[JS],
Theorem 1.3]).

Corollary 2.14. Let ko < k3 < --- < K, < --- be a sequence of supercompact
cardinals. There is a generic extension V[G] in which k, = R, for alln > 2 and
such that: E**7% <. E2%2  and for every n > 2 and every 0 < k < n — 3,

w-club w1 -club?

Ewn sWn < EWTL sWn

wg-club —=¢ “wy,_1-club*

In [JS] it was also proved that Theorem 2.13 (ii) is optimal, in the sense that it
cannot be improved to include the case k = n — 2 [JS, Proposition 1.6]. The best
possible reduction we can get using only full reflection is the one in Corollary 2.14.
By a Yi-completeness result, it is known that the following is consistent:

Vk<n—1(E"0 <. ES9m 1),

wg-club —¢ wn—1-club

see Theorem 3.1 below.

3 Yl-completeness

An equivalence relation F on X € {x~, 2%} is ¥l if F' is the projection of a closed set
in X? x k" and it is X1-complete if every 31 equivalence relation is Borel reducible
to it. The study of X1 and X{-complete equivalence relations is an important area of
generalised descriptive set theory, because e.g. the isomorphism relation on classes of
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models is always ¥1. The same holds, in fact, in classical descriptive set theory, but
the behaviour of 3 complete relations there is different. For example, in the classical
setting (k = w) the isomorphism relation is never X{-complete, while in generalised
descriptive set theory this is often the case (see for example [HK, FHK14]).

Theorem 3.1 ([HK], Theorem 7). Suppose V' = L and k > w. Then E7,, is
Y1-complete for every reqular p < k.

We know that E{ | «is an equivalence relation for every a < k with ¢f(a) >
A. Let us define the following relation:

(n,€) € Exg [ = {B € reg(a) | n(B) # £(8)} is not stationary.

It is easy to see that Efyy [ « is an equivalence relation.

Definition 3.2 (Weakly compact diamond). This notion was originally defined in
[Sun93]. Let k > w be a cardinal. The weakly compact ideal is generated by the
sets of the form {a < k | (V,,€,UNV,) E —¢} where U C V, and ¢ is a II}-
sentence such that (V,, €,U) = ¢. One can define a diamond principle with respect
to this ideal (rather than the non-stationary ideal). A set A C k is said to be weakly
compact, if it does not belong to the weakly compact ideal. Note that x is weakly
compact if and only if there exists A C x which is weakly compact, i.e. the weakly
compact ideal is proper. For weakly compact S C k, the S-weakly compact diamond,
WC,(9), is the statement that there exists a sequence (Aa)a<y such that for every
A C S the set
{a<k|ANna=A.}

is weakly compact. We denote WC,, = WC, (k).

For a survey on weakly compact diamonds, see [Hel03].
Fact 3.3. The main facts that we will use are the following:

o [f Kk is weakly compact and V = L, then WC,, holds.

o [f k is weakly ineffable (same as almost ineffable), then WC, holds.
See [Hel03] for proofs and references.

Lemma 3.4. Let k be a weakly compact cardinal. The weakly compact diamond
WC,, implies the following principle WCy.. There exists a sequence (fa)acreg(x) Such
that

14



o fo:a—aq,
e for all g € k" and stationary Z C k the set
{a€reg(k) | gla = fa NanNZ is stationary}

18 Stationary.

Proof. For the sake of this proof we view functions f: o — « as subsets of a x a.

Let (An)a<r be the WC,-sequence and let m: k X k — K be a bijection. Let Cy
be the set {o < K | [ X a] = a}. Tt is standard to verify that C; is a club. For all
a € reg(k) let f, = 7 1A,] if « € C and 771[A,] is a function (i.e. for all 8 < «
there exists exactly one « such that (8,7v) € 7 '[A,]) and otherwise set f, to be
arbitrary. Let us show that this sequence is as desired. Let g € k" be a function
and Z stationary. Let C, be the set {a < k| gla] C a} which is again a club. The
set

{a<k|mglna=A,}

is weakly compact and so is
{ae CyNCr | mlglNna=A,}.
But since a € C N Cy, we have 7[g] N = 7[g N (o X )], so this set is equal to

S = {aeCnCylgn(axa)=r"[A}
= {angﬂCﬂngé:fa}-

By the weak compactness of S, the stationarity of Z is reflected to a stationary
subset S" C S, so Z N« is stationary for all a € 5. O

Theorem 3.5. Suppose S =S¥ for some \ regular cardinal, or S = reg(k) and k is

a weakly compact cardinal. If k has the weakly compact diamond, then Eg" <. Efég.

Proof. Let (fa)a<r be asequence that witnesses WC? of Lemma 3.4. Let go: £ — K
be the function defined by g, [ @ = f, and ¢,(8) = 0 for all 5§ > «a. Let us define
F: r" — 2" by

1if a € reg(k), E¢" [« is an equivalence relation, and (1, go) € Eg" [«

F(n)(a) = {

0 otherwise.
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(Recall Definition 2.7 for Eg" [ a.) Let us prove that if (n,£) € EJ", then
(F(n), F(S)) € Exg. Suppose (n,§) € Eg". Note that F(n)(e) = F(£)(a) = 0
for all o ¢ reg(k), so it is sufficient to show that the set

{a € reg(r) [ F(n)(a) # F()()}

is non-stationary. Now, there is a club D such that DN {a € S | n(a) # &(a)}
is non-stationary. So, letting C' be the club of the limit points of D, it holds that
for all & € C'Nreg(k), the functions n and £ are EY" | a-equivalent. Thus, by the
definition of F', at the points of the set C' Nreg(x) the functions F(n) and F(§) will
get the same value.

Now let us prove that if (n,&) ¢ Eg", then (F(n), F(£)) ¢ E%". Suppose that

reg*
(n,€) ¢ EJ". Then there is a stationary Z C S on which n(a) # &(«). By
Lemma 3.4, there is a stationary set A C reg(x) such that for all & € A we have

that Z N« is stationary and n[a = f,. This means that

{6 <aln(B)#£0)}

is stationary, and so (1, ) ¢ ES" [« holds for all o« € A. However n[a = f, implies
that (,9.) € E5" [ @, and so by transitivity (£, 9,) ¢ E¢" [ . Hence we get that
F(n)(a) = 1, but F(§)(er) = 0. This holds for all @« € A and A is stationary, so

(F(n), F(§)) ¢ Ex- 0

Corollary 3.6. Suppose V = L and k is weakly compact. Then E%~

31
res 18 Mj-complete.

Proof. This follows from Theorem 3.1, Fact 3.3 and Theorem 3.5. O]

Corollary 3.7. Suppose k is a weakly ineffable cardinal. Then Ef5 <. E%%

reg — reg *
Proof. The result follows from Theorem 3.5 and Fact 3.3 m

Theorem 3.8. If x is a [1i-indescribable cardinal, then Els 1s Y1-complete.

Remark. Here the notion of TI3-indescribability is the usual one, not to be confused
with the II}-indescribability from Definition 2.2.

Proof. Let E be a 3 equivalence relation on x*. Then there is a closed set C' on
K" X k" x k" such that n F £ if and only if there exists # € " such that (n,&,0) € C.
Let us define U = {(n [ o, [ 0,6 [ @) | (0,£,6) € C Aa < w}, and for every v <
define

Cy={(n&0) ey xV xy" | Va<y(nla,§la,ba)eU}.
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Let E, C 7Y x 47 be the relation defined by (n,€) € E, if and only if there exists
6 € +7 such that (n,£,0) € C,. Notice that E, is not neccesarly an equivalence
relation. Let us define the reduction by

fo(n) if E, is an equivalence relation and n | a € a®

Fme) = {O otherwise.
where f,(n) is a code in xk\{0} for the E,-equivalence class of 7.

Let us prove that if (n,{) € E, then (F(n), F'(§)) € Elsy. Suppose (1,§) € E.
Then there is § € k" such that (n,&,0) € C and for all @ < k we have that
M a,& a0 a)eU. On the other hand, we know that there is a club D such
that for all @ € DNreg(k), n [ a, £ | a, § [ a € a®. We conclude that for all
a € DNreg(k), if £, is an equivalence relation, then (1,§) € E,. Therefore, for all
a € DNreg(k), F(n)(a) = F(§)(a), so (F(n), F(§)) € Efg. Let us prove that if
(n,€) & E, then (F(n), F(§)) ¢ Ery. Suppose n, { € k" are such that (n,§) ¢ E.
We know that there is a club D such that for all « € DNreg(k), n [ «, £ | a € a*.

Notice that because C'is closed (1,£) ¢ E is equivalent to
Voer Fa<r(nlalladla)dl)

so the sentence (1,€) ¢ E is a II] property of the structure (V,, €,U,n,£). On the
other hand, the sentence Vi, (s, (3 € K%[((C1,(2) € E A (C2,(3) € E) — (¢1,(3) € E|
is equivalent to the sentence V(i, (2, (3,061,602 € k*[305 € K"(¢1 V o V 13)], where
Y, ¥y and 13 are, respectively, the formulas oy < k ({3 [ aq, G [ a1,6, [ 1) € U,
dan < K (CQ [aQ,Cg rOé2,¢92 rOéz) ¢ U, and Vag < k (Cl [043,(3 rag,eg rO(3> eU.
Therefore, the sentence V(y, (2, (3 € K%[((C1, () € E A ((,(3) € E) — ((1,(3) € E|
is a II3 property of the structure (Vy, €,U).

The sentence V(i,( € k"[((1,() € E — ((2,¢1) € E] is equivalent to the
sentence V(y, (o, 01 € k"[305 € k(11 V 1by)], where ¢y and 1y are, respectively, the
formula Jo; < kK (¢ | 1,8 [ aq,01 [ aq) ¢ U, and the formula Vay < k (¢ |
s, (i [ ag, b [ ag) €U.

Therefore, the sentence V(y, (2 € k*[((1,¢2) € E — ({2, (1) € E] is a II; property
of the structure (V,, €,U).

The sentence V¢ € £"[((, () € E] is equivalent to the following sentence

V(e k[0 € k" (Va <k (] a,( [ a,0 ] ) € U).

Therefore, the sentence V¢ € k*[(¢, () € E] is a I} property of the structure (Vj, €
U).
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It follows that the sentence
(D is unbounded in k) A((n,€) ¢ E)A(E is an equivalence relation) A ( is regular)

is a I} property of the structure (V,,€,U,n,&). By II} reflection, we know that
there are stationary many 7 € reg(x) such that v is a limit point of D, E, is an
equivalence relation, and (1 [ v,& [ v) ¢ E,. We conclude that there are stationary

many 7 € reg(r) such that f,(n) # f,(¢), and hence (F(n), F'(n)) & Efg. O

Corollary 3.9. Suppose k is an ineffable cardinal, or weakly ineffable and T1} in-

describable. Then E%f is Yi-complete.

Proof. An ineffable cardinal is both weakly ineffable and II3-indescribable. So the
result follows by combining Corollary 3.7 and Theorem 3.8. O

We will finish this article with a model theoretic result.

Theorem 3.10. Let DLO be the theory of dense linear orderings without end points.
If k is a I-indescribable cardinal, then =pro is X1-complete.

Proof. By Theorem 3.8 it is enough to show that Ef* <.Zp1o. To show this, first

reg

we will construct models of DLO, A7) for every f: k — &, such that f By g it

€

and only if A7) =2 A7) After that we construct the reduction of E%* to Zpro.

reg

Let us take the language £ = {L,C,<,R}, with L and C as unary predi-
cates, and < and R as binary relations. Let K be the class of L'-structures
A = (dom(A), L,C, <, R) that satisfy the following conditions:

e LNC =1.
o LUC =dom(A).
e < C L x L is a dense linear order without end points on L.

RCLxC.

Let us denote by R~ (y,x) the formula =R(y,z). For all x € C, it holds that
R(A,z)UR (A,z) = L, R(A, x) has no largest element, and R~ (A, z) has no
least element and they are non-empty.

Let us define the following partial order < on K. We say that A < B iff:
« ACB,
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e forallz € CA R(B,z)={y € LP |3z € R(A,z),y < z} and
R (B,z)={yeLP|3z€ R (A,x),2 <y},

e for all z € CB\C4 there are y € R(B,z) and z € R~ (B, x) such that for all
a€lA a<yVa>z.

Notice that it is possible to have a chain Ay < A; < --- of length « in K, and
a structure C € K, such that |J,_, A € K, A =< C holds for all i < «, and
Uica Ai 2 C. But all other requirements of AEC’s are satisfied, as one can easily
see, in particular for every chain Ay < A; < --- of length a in K, |J,_, A; € K.

Claim 3.10.1. (K, %) has the amalgamation property and the joint embedding prop-
erty.

<o

Proof. The joint embedding property is easily seen to follow from the amalgamation
property. For the amalgamation property, let A, B,C € K be such that A < B and
A < C hold. Without loss of generality, we can assume that dom(B) N dom(C) =
dom(A). Let us construct D with dom(D) equals to dom(B)Udom(C), LP = LPULE,
and CP = CP U CC. To define <P and RP, first define <'=<® U <. For every
two elements b, c € LP define b <P c if either b <’ ¢, or there is @ € L such that
b<'a<'c orbe LB ¢ e L° and there is no a € LA such that ¢ <’ a <’ b. For
every x € C4, R(D,x) = R(B,x) U R(C,z). For all z € C¥\C4, y € R(D, x) if and
only if there exists z € L? such that z € R(B, ) and y <P z. For all x € C\C4,
y € R(D, ) if and only if there exists z € L® such that z € R(C,z) and y <P z. It
is clear that D € K, and B <D and C < D. O

Let us denote by A; @4, Az the structure D, in Claim 3.10.1, that witnesses the
amalgamation property for the structures Ay < A; and Ay < A,. For every ordinal
a, let us denote by a* the set o ordered by the reverse order <*, ie., f <* v if
v € (. Let us order the members of Q x a* by: (r1, 1) <** (rq, o) iff ay <* a, or
ap = ag and r; <97y,

Let K., be the collection of all members of K of size less than x. For every
A € K, denote by {A(i)}ic, an enumeration of all the strong extensions of A,
ie. A <X B, of size less than x (up to isomorphism over A). Let II: kK — K X k,
() = (pri(Il(«)), pra2(II(c))) be a bijection such that prq(I1(7)) < i for all i. Given
a function f: K — reg(k), let us construct the following sequence of models:

b A(J)c = (Q7®a <7®)
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e For a successor ordinal, let D = A @AI{”(H(“) A, iy (pr2(1(@))). Define

LA = [P UQ, CA% = CP, <Ma=<P U <Q U{(z,y) | z € LP Ay € Q},
and R4 = RP. Clearly Al e K.

e For i a limit ordinal, let D = Uj<i.Aj-c. Define LAY = LP U (Q x f(2)*),
CAl = CP U {z}, <M =<P U <O U{(a,b) | a € LP Ab € Q x f(i)*}, and
RAT = RPU{(y,z) | y € LP}. Cleatly A/ € K.

Define Af by U, Al. Then A7 = (L**, <4) is a model of DLO.
Notice that if i < k and C € K, |C| < &, are such that A/ < C, then there

is j <  such that A/(j) = C. Therefore there is [ < k such that II(I) = (4, ),

A;J:rl(l'[(l)) = A/, and Aim(n(l))(prg(l_[(l))) = C. We conclude that if i < x and

C € K., are such that A{ < C, then there is j < k and a strong embedding
F:C — Al such that F(C) < A/ and F | A] = id. Now we will show that if f
and g are functions from & into reg(k) such that f [ (k\reg(k)) = g | (k\reg(k)),
then f Bl g if and only if Al = A9, First of all, let us prove that (f,g) € By
implies A = A9. Suppose (f,g) € Ery. Then there is a club C' such that for all
a € CNreg(k), f(a) = g(a). Since f [ (k\reg(k)) = g | (k\reg(x)), we have that
for all @ € C, f(a) = g(a). By the way the models A/ and A9 were constructed
for a a limit ordinal, we know that if « is such that f(«a) = g(«) and there is an
isomorphism F': |J,_, Al — U,-., A?, then there is an isomorphism G: Af — A9
such that FF C G. For all i < k construct o; < k and a strong embedding F; such
that the following hold:

(i) For every i < k there is some v € C such that o; < v < @41.
(11) For all © < j < &, fz - fj‘
(iii) The following holds for every limit ordinal § < k:

and Fgy (AL ) <

e for every even 0 < i < w, dom(Fzy;) = Al A

p+i’?
g
aptit1’

* foreveryodd 0 <i <w, rang(Fﬂﬂ) - Ag‘ﬂm’ and FB_Jrlz(Agzﬁﬂ) = A£ﬂ+i+17
o ap = ;.5 i, dom(Fp) = A{;ﬁ, and rang(Fp) = Agﬁ_

We will construct these sequences by induction. For i = 0, take oy = 0 and Fj = id.
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Successor case: Suppose [ is a limit ordinal or zero, and 0 < ¢ < w are such
that apy; and Fay; are constructed such that (i), (ii), and (iili) are satisfied. Let
us start with the case when i is odd. Choose agi;+1 such that (i) holds. Since
F1(Ag,,) = Aﬁﬁﬂ_ﬂ, there are C € K, and F' 2 Fpy; such that Aj_ < C and
F: A v C is an isomorphism. By the observation we made above, there is
j < k and a strong embedding G: C — Af such that G(C) 2 A7 and G [ A3 | = id.
Define Fy,,,,, = Go Fy,,,. Clearly F,,, satisfies conditions (ii) and (iii). The
case when 7 is even is similar to the odd case.

Limit case: Suppose [ is a limit ordinal such that for all ¢ < 3, a; and F;
are constructed such that (i), (ii), and (iii) are satisfied. By (i), we know that
ag = Ujcpi is a limit point of C, so f(ag) = g(as). On the other hand, by
conditions (ii) and (iii) we know that

Ur: JAL - A

i<p i<p i<f

is an isomorphism. Therefore, there is an isomorphism G: A/ — A9 such that
Uiz Fi € G. We conclude that F,, = G satisfies (ii) and (iii).

Finally, notice that
UFr: JAL - A,
1<K 1<K 1<K
is an isomorphism. We conclude that A and A9 are isomorphic.
Let us prove that Af = A9 implies (f,g) € E%F. Suppose, towards a contra-

diction, that (f,g) ¢ Eff and there is an isomor[;eﬁism F: A — A9. Since F is
an isomorphism, there is a club C such that F(,_, A]) = U,., A7 holds for all
a € C. Since (f,g) ¢ By, CN{a € reg(k) | f(a) # g(a)} is nonempty. Take
a € CNn{yereg(r) | f(7) # 9(7)}. We know that F(U,, A]) = U, A and
f(a) # g(a). Hence, the co-initiality of {a € A" | Vb € |J,_, Al(b <A a)} with
respect to <’ is f(a). Since F is an isomorphism and F(J,., A!) = U,., A?, the
co-initiality of {a € A9 | Vb € |J,_, A?(b <’ a)} with respect to <4 is also f().
We conclude that f(«) = cf(g(a)), so f(a) = g(a), a contradiction. To finish with
the construction of the models, let us define A7) for all f: K — k. Fix a bijection

G: k — reg(k). Define F: k" — k" by

G(f(a)) if a € reg(k)

0 otherwise

F(f)(@) :{
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Clearly f Ef g if and only if F(f) Ejf F(g), and F(f) Efs F(g) if and only if
A7) and A7) are isomorphic. Now we will construct a reduction of E%* to =pro

reg
by coding the models A7) by functions n: k — .
Clearly the models A7) satisfy that

F(f) Ta=Flg) lae AT = A70).

For every f € " define Cy C Card N k such that for all @ € CY, it holds that for
every [ < a, |A§(f)] < ]Aﬂ”\. For every f € k" and a € C} choose a bijection
B¢ dom(ALY) = |AZY)| such that for all 8 < « in Cy it holds that E? C B¢
Then Uaecf E} = Ejy is such that Ey: dom(A7Y)) — &k is a bijection, and for
every f,g € k" and a < k the following holds: If F(f) | @ = F(g) | «, then

E; | dom(AZY)) = E, | dom(AL"Y). Let 7 be the bijection in Definition 1.4.
Define the function G by:

1 ifa=n(m,a,...,a,) and A7) = Pm(E]TI(al), . ,E;l(an))

0 in the other case.

G(F (D) = {

To show that G is continuous, let [ | a] be a basic open set and & € G~Y{[n | ]].
There is § € C¢ such that for all v < a, if v = 7(m, a1, as,...,a,), then Egl(ai) is
an element of dom(.Ag) for all i < n. Since for all ¢ € [¢ | ] it holds that A5 = AS,
for every v < a such that v = w(m, aq, as, . . ., a,), it holds that

AS = Po(E (1), By Has), .., B H(an))

if and only if
A | Po(E N (a1), B as), - .., B H(an)

We conclude that G(¢) € [ | a], and G o F is a continuous reduction of E%% to

reg

=DpLo- []

4 Further research

In this paper we showed for various equivalence relations in various models of set
theory, and sometimes in ZFC under certain cardinality assumptinos, that they
are Yi-complete. In particular the equivalence relation modulo the non-stationary
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ideal is Yl-complete if k is an ineffable cardinal. This, and related equivalence
relations, play a role in model theory as exemplified by Theorem 3.10 which shows
how generalized descriptive set theory is different from the classical study where
x = w and the isomorphism relation of countable structures is never 3i-complete.
This was also the original motivation for studying such fine grained questions as
whether EZfdub can be reduced to Eﬁ’fdub for some p < k. How much more can
one prove in ZFC for k > w? For successor cardinals the answer is partially known:
starting from V' = L for every successor cardinal x there exists a GCH and cardinal
preserving forcing notion such that in the extension the equivalence relation modulo
the non-stationary ideal is not Y{-complete. The following questions remain open.

Question 4.1. Is it consistent that the isomorphism relation on graphs or dense
linear orders is not Y}-complete for some £ > w? Of course k cannot be II}-
indescribable by Theorem 3.10.

Question 4.2. Is it consistent for some cardinal £ and a regular p < r that E;" is
not reducible to E»*? Note: it has been shown [FHK14] that it is consistent that

Eé’” is not reducible to Eé’,“ for S”\ S stationary which implies the consistency of
eg. Ert Lp Ei}” for pu # 1.

Question 4.3. Is it consistent that x is inaccessible and Eg’“ is not Yi-complete
for some stationary S C k7 What about x weakly compact and S = S} for some
regular © < k? Note: it follows from the result of [FWZ15] that it is consistent that
E?* is not Yl-complete (in fact A{) for successor k.
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